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Abstract. We introduce topological pressure for continuous actions of countable sofic
groups on compact metrizable spaces. This generalizes the classical topological pressure
for continuous actions of countable amenable groups on such spaces. We also establish the
variational principle for topological pressure in this sofic context.

1. Introduction
Starting from ideas in the statistical mechanics of lattice systems, in [19] Ruelle introduced
topological pressure of a continuous function for actions of the groups Zn on compact
spaces and established the variational principle for topological pressure in this context
when the action is expansive and satisfies the specification condition. Later, Walters [24]
dropped these assumptions when he proved the variational principle for a Z+-action.
A shorter and elegant proof of the variational principle for Zn

+-actions was given by
Misiurewicz [12]. Ollagnier and Pinchon [13, 14], Stepin and Tagi-Zade [20], and
Tempelman [21, 22] extended the variational principle to the case when Zn is replaced
by any countable amenable group.

From a viewpoint of dimension theory, Pesin and Pitskel’ [17] introduced another way
to define topological pressure for continuous functions on non-compact sets in the case of
Z-actions. For more information and references in this direction, see [16].

The notion of a sofic group was first introduced by Gromov [6]. All countable amenable
groups and residually finite groups are sofic. It is unknown whether every countable group
is sofic. We refer readers to [3–5, 18, 23, 26] for details on sofic groups.

In 2008, in a remarkable result, Bowen [1] defined sofic entropy for measure-preserving
actions of countable sofic groups on standard probability measure spaces admitting a
generating partition with finite entropy. Recently, in [8, 9], via an operator algebraic
method, Kerr and Li extended Bowen’s sofic measure entropy to all measure-preserving
actions of countable sofic groups on standard probability measure spaces, and defined sofic
topological entropy for continuous actions of countable sofic groups on compact metrizable
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spaces. They also established the variational principle between sofic measure entropy
and sofic topological entropy [8]. In the case of amenable groups, the sofic entropies
coincide with the classical entropies [2, 9]. After that, the approach of Kerr and Li [8, 9]
for continuous actions of countable sofic groups on compact metrizable spaces has been
applied to study mean dimension [10] and local entropy theory [27] in the sofic context.

Given Kerr and Li’s work, it is natural to ask how to define topological pressure of a
continuous function for actions of countable sofic groups on compact metrizable spaces
and whether it coincides with the classical topological pressure for actions of countable
amenable groups on such spaces. Furthermore, one might ask whether there exists a
relation between sofic topological pressure and sofic measure entropy via a variational
principle.

The goal of this paper is to answer all of these questions. We organize this paper as
follows. We define the sofic topological pressure P6( f, X, G) and establish some basic
properties of it in §2. In §3, we recall the definition of classical topological pressure
P( f, X, G) for actions of countable amenable groups and prove our first main result.

THEOREM 1.1. Let G be a countable amenable group acting continuously on a compact
metrizable space X. Let6 be a sofic approximation sequence for G and f be a real-valued
continuous function on X. Then P6( f, X, G)= P( f, X, G).

In §4, we recall the definition of sofic measure entropy h6,µ(X, G) and prove our
second main result about the variational principle for sofic topological pressure. The
variational principle for topological pressure is well known when the acting group G
is amenable. For example, see [25, Theorem 9.10] for the case G = Z and [14,
Theorem 5.2.7] for the case G is a countable amenable group.

THEOREM 1.2. Let α be a continuous action of a countable sofic group G on a compact
metrizable space X. Let6 be a sofic approximation sequence for G and f be a real-valued
continuous function on X. Then

P6( f, X, G)= sup
{

h6,µ(X, G)+
∫

X
f dµ : µ ∈ MG(X)

}
,

where MG(X) is the set of G-invariant Borel probability measures on X. In particular, if
P6( f, X, G) 6= −∞ then MG(X) is non-empty.

To illustrate an example, we compute the sofic topological pressure and find some
equilibrium state for some function on Bernoulli shifts in §5. Finally, in §6, we describe
some properties of topological pressure and give a sufficient condition for a finite signed
measure to be a member of MG(X), using topological pressure.

To finish the introduction, we recall the definitions of sofic groups, separated sets, and
spanning sets and fix some notations.

For each d ∈ N, we denote by [d] the set {1, . . . , d} and Sym(d) the permutation group
of [d].

For every real number y, we denote by byc the largest integer which is less than or equal
to y.
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Let G be a countable group. We say that G is sofic if there is a sequence6 = {σi : G→
Sym(di ), di ∈ N}i∈N such that:

(1) lim
i→∞

1
di
|{a ∈ [di ] : σi,sσi,t (a)= σi,st (a)}| = 1 for all s, t ∈ G;

(2) lim
i→∞

1
di
|{a ∈ [di ] : σi,s(a) 6= σi,t (a)}| = 1 for all distinct s, t ∈ G;

(3) limi→∞ di =∞.

Such a sequence is called a sofic approximation sequence for G. Note that when G is
infinite, the condition (3) is a consequence of the condition (2).

Let (Y, ρ) be a pseudometric space and ε > 0. A subset A of Y is called (ρ, ε)-
separated if ρ(x, y)≥ ε for all distinct x, y ∈ A, and (ρ, ε)-spanning if for every y ∈ Y we
can find an x ∈ A such that ρ(x, y) < ε. We denote by Nε(Y, ρ) the maximal cardinality
of a finite (ρ, ε)-separated subset of Y .

Throughout this paper, the space X is always compact metrizable and G is always a
countable sofic group with the identity element e. We denote by C(X) the set of all real-
valued continuous functions on X . A continuous action α of G on a compact metrizable
space X induces an action of G on C(X) as follows: for g ∈ C(X) and s ∈ G, the function
αs(g) is given by x 7→ g(s−1x). Given a map σ : G→ Sym(d) for some d ∈ N, for
s ∈ G, x ∈ X, and a ∈ [d] we will for convenience denote αs(x) and σs(a) by sx and sa
respectively.

Let ρ be a continuous pseudometric on X . For any d ∈ N, we define the pseudometrics
ρ2, ρ∞ on the set of all maps from [d] to X as follows:

ρ2(ψ, ϕ)=

(
1
d

d∑
i=1

(ρ(ψ(i), ϕ(i)))2
)1/2

,

and
ρ∞(ψ, ϕ)= max

1≤i≤d
ρ(ψ(i), ϕ(i)).

For every subset J of [d], we define on the set of maps from [d] to X the pseudometric

ρJ,∞(ψ, ϕ) := ρ∞(ψ |J , ϕ|J ).

2. Sofic topological pressure
In this section, we will define the topological pressure of a continuous function for actions
of countable sofic groups on compact metrizable spaces and establish some basic properties
of it.

Let α be a continuous action of a countable sofic group G on a compact metrizable
space X . Let f be a real-valued continuous function on X , ρ a continuous pseudometric
on X and 6 a sofic approximation sequence of G. Let F be a non-empty finite subset of G
and δ > 0. Let σ be a map from G to Sym(d) for some d ∈ N. Now we recall the definition
of Map(ρ, F, δ, σ ).

Definition 2.1. We define Map(ρ, F, δ, σ ) to be the set of all maps ϕ : [d] → X such that
maxs∈F ρ2(αs ◦ ϕ, ϕ ◦ σs) < δ.
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The space Map(ρ, F, δ, σ ) appeared first in [9, §2], and has been applied to study sofic
entropies [8], sofic mean dimension [10], and local entropy theory [27].

Definition 2.2. Let ε > 0. We define

Mε
6,∞( f, X, G, ρ, F, δ, σ )= sup

E

∑
ϕ∈E

exp
( d∑

a=1

f (ϕ(a))

)
,

where E runs over (ρ∞, ε)-separated subsets of Map(ρ, F, δ, σ ). Of course, the value of
the right hand side does not change if E runs over maximal (ρ∞, ε)-separated subsets of
Map(ρ, F, δ, σ ).

Now we define the sofic topological pressure of f .

Definition 2.3. We define

Pε6,∞( f, X, G, ρ, F, δ)= lim sup
i→∞

1
di

log Mε
6,∞( f, X, G, ρ, F, δ, σi ),

Pε6,∞( f, X, G, ρ, F)= inf
δ>0

Pε6,∞( f, X, G, ρ, F, δ),

Pε6,∞( f, X, G, ρ)= inf
F

Pε6,∞( f, X, G, ρ, F),

P6,∞( f, X, G, ρ)= sup
ε>0

Pε6,∞( f, X, G, ρ),

where F in the third line runs over the non-empty finite subsets of G.
If Map(ρ, F, δ, σi )= ∅ for all large enough i , we set Pε6,∞( f, X, G, ρ, F, δ)=−∞.
Similarly, we define Mε

6,2( f, X, G, ρ, F, δ, σi ), Pε6,2( f, X, G, ρ, F, δ), Pε6,2( f, X,
G, ρ, F), Pε6,2( f, X, G, ρ) and P6,2( f, X, G, ρ) using ρ2 in place of ρ∞.

Remark 2.4. When f = 0, P6,∞(0, X, G, ρ) is the sofic topological entropy
h6,∞(X, G, ρ), as defined in [9, §2] and originating in another equivalent form in [8, §4].

Now we prove that the definition of sofic topological pressure does not depend on the
choice of ρ2 and ρ∞.

LEMMA 2.5. Let ρ be a continuous pseudometric on X such that f is continuous with
respect to ρ. Then

P6,2( f, X, G, ρ)= P6,∞( f, X, G, ρ).

Proof. Since ρ∞ ≥ ρ2, then P6,2( f, X, G, ρ)≤ P6,∞( f, X, G, ρ).
Now we prove P6,∞( f, X, G, ρ)≤ P6,2( f, X, G, ρ).
Let θ > 0. Let ε′ > 0 be such that | f (x)− f (y)|< θ whenever x, y ∈ X with

ρ(x, y) <
√
ε′. Let ε > 0, which we will determine later. It suffices to prove that

P2
√
ε′

6,∞ ( f, X, G, ρ, F, δ)≤ Pε6,2( f, X, G, ρ, F, δ)+ 4θ,

for any δ > 0 and non-empty finite subset F of G. Let δ > 0, F be a non-empty finite
subset of G and σ be a map from G to Sym(d) for some d ∈ N.

Let E be a (ρ∞, 2
√
ε′)-separated subset of Map(ρ, F, δ, σ ) such that

M2
√
ε′

6,∞( f, X, G, ρ, F, δ, σ )≤ 2 ·
∑
ϕ∈E

exp
( d∑

i=1

f (ϕ(i))

)
.
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Let B be a maximal (ρ2, ε)-separated subset of E . Then E =
⋃
ϕ∈B(E ∩ Bϕ), where

Bϕ = {ψ ∈ X [d] : ρ2(ϕ, ψ) < ε}.

Let ϕ ∈ B. Let us estimate how many elements are in E ∩ Bϕ . Let Yε′ be a maximal
(ρ,
√
ε′)-separated subset of X .

For each ψ ∈ E ∩ Bϕ , we denote by3ψ the set of all a ∈ [d] such that ρ(ϕ(a), ψ(a)) <
√
ε′. Then |3ψ | ≥ (1− (ε2/ε′))d. We enumerate the elements of {3ψ : ψ ∈ E ∩ Bϕ} as

3ϕ,1, . . . , 3ϕ,`ϕ . Then E ∩ Bϕ =
⊔`ϕ

j=1 V j , where V j = {ψ ∈ E ∩ Bϕ :3ψ =3ϕ, j }, for
every j = 1, . . . , `ϕ .

For every j = 1, . . . , `ϕ , set3c
ϕ, j = [d]\3ϕ, j . Since Yε′ is a (ρ,

√
ε′)-spanning subset

of X , for every ψ ∈ V j , we can find fψ ∈ Y
3c
ϕ, j

ε′
such that ρ∞(ψ |3c

ϕ, j
, fψ ) <

√
ε′. Then

there exists A⊂ V j such that |V j | ≤ |Yε′ |
|3c
ϕ, j ||A| and fψ is the same, say f , for every

ψ ∈A. Then

ρ∞(ψ |3c
ϕ, j
, ψ ′|3c

ϕ, j
)≤ ρ∞(ψ |3c

ϕ, j
, f )+ ρ∞( f, ψ ′|3c

ϕ, j
) < 2
√
ε′,

for any ψ, ψ ′ ∈A. Since A is a (ρ∞, 2
√
ε′)-separated set, we get ψ = ψ ′. Thus |A| ≤ 1,

and hence |V j | ≤ |Yε′ |
|3c
ϕ, j ||A| ≤ |Yε′ |(ε

2/ε′)d .
By Stirling’s approximation formula, (ε2/ε′)d

( d
(ε2/ε′)d

)
is less than exp(βd) for some

β > 0 depending on ε but not on d when d is large enough with β→ 0 as ε→ 0. Since

b(ε2/ε′)dc∑
j=0

(
d

j

)
≤
ε2

ε′
d

(
d

(ε2/ε′)d

)
,

when d is large enough we have that the number of subsets of [d] of cardinality at least
(1− (ε2/ε′))d is at most exp(βd). Therefore,

|E ∩ Bϕ | ≤ `ϕ |Yε′ |
(ε2/ε′)d

≤ exp(βd)|Yε′ |
(ε2/ε′)d .

Since f is continuous on X , there exists Q > 0 such that | f (x)| ≤ Q for all x ∈ X .
Hence

M2
√
ε′

6,∞( f, X, G, ρ, F, δ, σ )

≤ 2 ·
∑
ϕ∈E

exp
( d∑

i=1

f (ϕ(i))

)

≤ 2 ·
∑
ϕ∈B

∑
ψ∈E∩Bϕ

exp
( d∑

i=1

f (ψ(i))

)

= 2 ·
∑
ϕ∈B

∑
ψ∈E∩Bϕ

exp
( d∑

i=1

f (ϕ(i))

)
exp

(∑
i∈3ψ

( f (ψ(i))− f (ϕ(i)))

)

× exp
(∑

i /∈3ψ

( f (ψ(i))− f (ϕ(i)))

)

≤ 2 ·
∑
ϕ∈B

∑
ψ∈E∩Bϕ

exp
( d∑

i=1

f (ϕ(i))

)
exp(θd) exp

(
2Q

ε2

ε′
d

)
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≤ 2 ·
∑
ϕ∈B
|Yε′ |

(ε2/ε′)d exp(βd) exp
( d∑

i=1

f (ϕ(i))

)
exp

(
θd + 2Q

ε2

ε′
d

)

≤ 2 · |Yε′ |
(ε2/ε′)d exp

(
βd + θd + 2Q

ε2

ε′
d

)
Mε
6,2( f, X, G, ρ, F, δ, σ ).

Thus

P2
√
ε′

6,∞ ( f, X, G, ρ, F, δ) ≤ Pε6,2( f, X, G, ρ, F, δ)

+
ε2

ε′
log N√

ε′
(X, ρ)+ β + θ + 2Q

ε2

ε′
.

We choose ε > 0 small enough, not depending on δ and F , such that β < θ, 2Q(ε2/ε′) < θ

and (ε2/ε′) log N√
ε′
(X, ρ) < θ . Then

P2
√
ε′

6,∞ ( f, X, G, ρ, F, δ)≤ Pε6,2( f, X, G, ρ, F, δ)+ 4θ for all δ > 0,

where F is a non-empty finite subset of G, as desired. 2

A continuous pseudometric ρ on X is called dynamically generating if for any
distinct points x, y ∈ X there exists s ∈ G such that ρ(sx, sy) > 0. The following two
lemmas will show that the quantity P6,∞( f, X, G, ρ) does not depend on the choice of
compatible metric ρ and furthermore it also does not depend on the dynamically generating
continuous pseudometric of X with respect to which f is continuous. Thus, we shall
write the topological pressure of f , P6,∞( f, X, G, ρ) (or P6,2( f, X, G, ρ)), where ρ is
a compatible metric on X or a dynamically generating continuous pseudometric on X with
respect to which f is continuous, as P6( f, X, G).

LEMMA 2.6. Let ρ and ρ′ be compatible metrics on X. Then

P6,∞( f, X, G, ρ)= P6,∞( f, X, G, ρ′).

Proof. Let ε > 0. We choose ε′ > 0 such that for any x, y ∈ X with ρ′(x, y) < ε′, one has
ρ(x, y) < ε. Let F be a non-empty finite subset of G and δ > 0. From the proof in [10,
Lemma 2.4], there exists δ′ > 0 such that for any map σ from G to Sym(d) for some
d ∈ N one has Map(ρ, F, δ′, σ )⊂Map(ρ′, F, δ, σ ). Then any (ρ∞, ε)-separated subset
of Map(ρ, F, δ′, σ ) is also a (ρ′∞, ε

′)-separated subset of Map(ρ′, F, δ, σ ). Thus

Pε6,∞( f, X, G, ρ, F)≤ Pε6,∞( f, X, G, ρ, F, δ′)≤ Pε
′

6,∞( f, X, G, ρ′, F, δ),

and hence
Pε6,∞( f, X, G, ρ, F)≤ Pε

′

6,∞( f, X, G, ρ′, F).

So
P6,∞( f, X, G, ρ)≤ P6,∞( f, X, G, ρ′).

Similarly, we also have

P6,∞( f, X, G, ρ′)≤ P6,∞( f, X, G, ρ). 2
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LEMMA 2.7. Let ρ be a dynamically generating continuous pseudometric on X with
respect to which f is continuous. Enumerate the elements of G as s1 = e, s2, . . . . Define
a new continuous pseudometric ρ′ on X by

ρ′(x, y)=
∞∑

n=1

1
2n ρ(sn x, sn y) for all x, y ∈ X.

Then ρ′ is a compatible metric on X and

P6,∞( f, X, G, ρ)= P6,∞( f, X, G, ρ′).

Proof. Since ρ is dynamically generating, ρ′ separates the points of X . If we denote by τ
the original topology on X , and by τ ′ the topology on X induced by ρ′, then the identity
map Id : (X, τ )→ (X, τ ′) is continuous. Since (X, τ ′) is Hausdorff and (X, τ ) is compact,
Id is a homeomorphism. Thus ρ′ is a compatible metric on X .

Let ε > 0. Similar to the proof of [10, Lemma 4.3], one has

Pε6,∞( f, X, G, ρ)≤ Pε/26,∞( f, X, G, ρ′).

Thus,
P6,∞( f, X, G, ρ)≤ P6,∞( f, X, G, ρ′).

Now we will prove

P6,∞( f, X, G, ρ′)≤ P6,∞( f, X, G, ρ).

It suffices to prove that

P6,∞( f, X, G, ρ′)≤ P6,∞( f, X, G, ρ)+ 3θ for any θ > 0.

Let θ > 0. Let ε′ > 0 such that | f (x)− f (y)|< θ whenever x, y ∈ X with ρ(x, y) < ε′.
It suffices to prove that for any 0< ε < ε′,

P4ε
6,∞( f, X, G, ρ′)≤ Pε6,∞( f, X, G, ρ)+ 3θ.

Let 0< ε < ε′. Choose k ∈ N such that diam(X, ρ)/2k < ε/2. Let F be a finite subset
of G containing {s1, . . . , sk}. Let δ > 0 be small enough, which we will determine later.
Put δ′ = δ/2. It suffices to prove that

P4ε
6,∞( f, X, G, ρ′, F, δ′)≤ Pε6,∞( f, X, G, ρ, F, δ)+ 3θ.

Let σ : G→ Sym(d) be a good enough sofic approximation of G, for some d ∈ N.
Since ρ′2(ϕ, ψ)≥

1
2ρ2(ϕ, ψ) for all maps ϕ, ψ : [d] → X , we have Map(ρ′, F, δ′, σ )⊂

Map(ρ, F, δ, σ ).
Let E be a (ρ′∞, 4ε)-separated subset of Map(ρ′, F, δ′, σ ) such that

M4ε
6,∞( f, X, G, ρ′, F, δ′, σ )≤ 2 ·

∑
ϕ∈E

exp
( d∑

i=1

f (ϕ(i))

)
.

For each ϕ ∈ E we denote by 3ϕ the set of all a ∈ [d] such that

max
s∈F

ρ(ϕ(sa), sϕ(a)) <
√
δ.
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Then |3ϕ | ≥ (1− |F |δ)d. We enumerate the elements of {3ϕ : ϕ ∈ E} as 31, . . . , 3`.
Then E =

⊔`
j=1 V j , where V j = {ϕ ∈ E :3ϕ =3 j }, for every j = 1, . . . , `. Let Y

be a maximal (ρ′, 2ε)-separated subset of X . Choose δ > 0 such that
√
δ < ε/4 and

|Y ||F |δ < exp(θ).

CLAIM. For any j = 1, . . . , `, and any ϕ ∈ V j , one has

|V j ∩ Bϕ | ≤ |Y |
|F |δd ,

where
Bϕ := {ψ ∈ X [d] : ρ∞(ϕ, ψ) < ε}.

A proof of this claim can be found in the proof of [10, Lemma 4.3].
By Stirling’s approximation formula, |F |δd

( d
|F |δd

)
is less than exp(βd) for some β > 0

depending on δ and |F | but not on d when d is large enough with β→ 0 as δ→ 0. Since
b|F |δdc∑

j=0

(
d

j

)
≤ |F |δd

(
d

|F |δd

)
,

when d is large enough we have that the number of subsets of [d] of cardinality at least
(1− |F |δ)d is at most exp(βd). Choose δ such that β < θ . Then, when d is large enough,
`≤ exp(βd)≤ exp(θd).

For each j = 1, . . . , `, let B j be a maximal (ρ∞, ε)-separated subset of V j . Then for
any j = 1, . . . , `, one has V j =

⋃
ϕ∈B j

(V j ∩ Bϕ). Thus

M4ε
6,∞( f, X, G, ρ′, F, δ′, σ )

≤ 2 ·
∑
ϕ∈E

exp
( d∑

i=1

f (ϕ(i))

)

= 2 ·
∑̀
j=1

∑
ϕ∈V j

exp
( d∑

i=1

f (ϕ(i))

)

≤ 2 ·
∑̀
j=1

∑
ϕ∈B j

∑
ψ∈V j∩Bϕ

exp
( d∑

i=1

( f (ψ(i))− f (ϕ(i)))

)
exp

( d∑
i=1

f (ϕ(i))

)

≤ 2 ·
∑̀
j=1

∑
ϕ∈B j

∑
ψ∈V j∩Bϕ

exp(θd) exp
( d∑

i=1

f (ϕ(i))

)

≤ 2 ·
∑̀
j=1

∑
ϕ∈B j

|Y ||F |δd exp(θd) exp
( d∑

i=1

f (ϕ(i))

)

≤ 2 ·
∑̀
j=1

|Y ||F |δd exp(θd)Mε
6,∞( f, X, G, ρ, F, δ, σ )

= 2 · `|Y ||F |δd exp(θd)Mε
6,∞( f, X, G, ρ, F, δ, σ )

≤ 2 · exp(3θd)Mε
6,∞( f, X, G, ρ, F, δ, σ ).

Therefore,

P4ε
6,∞( f, X, G, ρ′, F, δ′)≤ Pε6,∞( f, X, G, ρ, F, δ)+ 3θ. 2
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3. Topological pressure in the amenable case
The purpose of this section is to prove Theorem 1.1.

We begin this section by recalling the classical definition of topological pressure in [14,
§5]. A countable group G is said to be amenable if there exists a Følner sequence, which
is a sequence {Fi }

∞

i=1 of non-empty finite subsets of G such that

|s Fi1Fi |

|Fi |
→ 0 as i→∞ for all s ∈ G.

We refer the readers to [15] for details on amenable groups.
Let G be a countable amenable group and α a continuous action of G on a compact

metrizable space X . Let ρ be a compatible metric on X, f ∈ C(X), F a non-empty finite
subset of G and δ > 0. We define the metric ρF on X by ρF (x, y)=maxs∈F ρ(sx, sy).
An open cover U of X is said to be of order (F, δ) if for any U ∈ U , and x, y ∈U, one has
maxs∈F ρ(sx, sy) < δ. We define

P1(F, f, δ)= inf
U

∑
U∈U

sup
x∈U

exp
(∑

s∈F

f (αs(x))

)
,

where U runs over the set of all finite open covers of order (F, δ). By the Ornstein–Weiss
lemma in [11, Theorem 6.1], for any δ > 0 the quantities

1
|F |

log P1(F, f, δ)

converge to a number, denoted by p1( f, δ), as F becomes more and more left invariant in
the sense that for every ε > 0 there are a non-empty finite set K ⊆ G and a δ′ > 0 such that∣∣∣∣ 1

|F |
log P1(F, f, δ)− p1( f, δ)

∣∣∣∣< ε,
for any non-empty finite subset F of G satisfying |K F1F | ≤ δ′|F |. The topological
pressure of f is defined as supδ>0 p1( f, δ) and does not depend on the choice of
compatible metric ρ. We denote the topological pressure of f by P( f, X, G).

For any non-empty finite subset F of G, ε > 0 and any compatible metric ρ on X , define

Kε( f, X, G, ρ, F)= sup
D

∑
x∈D

exp
(∑

s∈F

f (αs(x))

)
,

where D runs over (ρF , ε)-separated subsets of X . Given a Følner sequence {Fn}
∞

n=1 of
G, the topological pressure of f can be alternatively expressed as

sup
ε>0

lim sup
n→∞

1
|Fn|

log Kε( f, X, G, ρ, Fn).

We use ideas in [9, §5] to prove Theorem 1.1. We need the following result, which is a
Rokhlin lemma for sofic approximations [9, Lemma 4.6].

LEMMA 3.1. Let G be a countable amenable group. Let 0≤ τ < 1, 0< η < 1, K be a
non-empty finite subset of G, and δ > 0. Then there are an ` ∈ N, non-empty finite sets
F1, . . . , F` ⊂ G with

max
1≤k≤`

|K Fk\Fk |

|Fk |
< δ and max

1≤k≤`

|Fk K\Fk |

|Fk |
< δ,
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a finite subset F of G containing e, and an η′ > 0 such that, for every d ∈ N, every map
σ : G→ Sym(d) for which there is a set B ⊂ [d] satisfying |B| ≥ (1− η′)d and

σsσt (a)= σst (a), σs(a) 6= σs′(a), σe(a)= a,

for all a ∈ B and s, t, s′ ∈ F with s 6= s′, and every set V ⊂ [d] with (1− τ)d ≤ |V |, there
exist subsets C1, . . . , C` of V such that the following hold.
(1) For every 1≤ k ≤ `, the map (s, c) 7→ σs(c) from Fk × Ck to σ(Fk)Ck is bijective.
(2) The family {σ(F1)C1, . . . , σ (F`)C`} is disjoint and

(1− τ − η)d ≤

∣∣∣∣⋃̀
k=1

σ(Fk)Ck

∣∣∣∣.
LEMMA 3.2. Let G be a countable amenable group acting continuously on a compact
metrizable space X. Let 6 be a sofic approximation sequence for G and f be a real-
valued continuous function on X. Then P6( f, X, G)≤ P( f, X, G).

Proof. We may assume that P( f, X, G) <∞. Let ρ be a compatible metric on X . It
suffices to prove that P6,∞( f, X, G, ρ)≤ P( f, X, G)+ 6κ for any κ > 0.

Let κ > 0. Let ε′ > 0 be such that | f (x)− f (y)|< κ whenever x, y ∈ X with
ρ(x, y) < ε′/2. It suffices to prove that

Pε6,∞( f, X, G, ρ)≤ P( f, X, G)+ 6κ for all 0< ε < ε′.

Let 0< ε < ε′. Then there are a non-empty finite set K ⊂ G and δ′ > 0 such that, for
any non-empty finite set F ′ ⊂ G satisfying |K F ′\F ′|< δ′|F ′|, we have

Kε/4( f, X, G, ρ, F ′) < exp((P( f, X, G)+ κ)|F ′|).

Since f is continuous on X , there exists Q > 0 such that | f (x)| ≤ Q for all x ∈ X .
Choose 0< η < 1 such that

(Nε/4(X, ρ))
2η
≤ exp(κ) and η <

κ

2Q
.

By Lemma 3.1 there are an m ∈ N and non-empty finite sets F1, . . . , Fm ⊂ G satisfying
max1≤k≤m |K Fk\Fk |/|Fk |< δ

′ such that for every good enough sofic approximation σ :
G→ Sym(d) for some d ∈ N and every W ⊂ [d] with (1− η)d ≤ |W | there exist finite
subsets C1, . . . , Cm of W satisfying the following.
(1) For every k = 1, . . . , m, the map (s, c) 7→ σs(c) from Fk × Ck to σ(Fk)Ck is

bijective.
(2) The family {σ(F1)C1, . . . , σ (Fm)Cm} is disjoint and (1− 2η)d ≤ |

⋃m
k=1 σ(Fk)Ck |.

Then
max

1≤k≤m
Kε/4( f, X, G, ρ, Fk)≤ exp((P( f, X, G)+ κ)|Fk |).

Let δ > 0 and set F =
⋃m

k=1 Fk . Let σ : G→ Sym(d) be a good enough sofic
approximation of G, for some d ∈ N. We will show that

Mε
6,∞( f, X, G, ρ, F, δ, σ )≤ exp((P( f, X, G)+ 6κ)d),

when δ is small enough.
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Let E be a (ρ∞, ε)-separated subset of Map(ρ, F, δ, σ ) such that

Mε
6,∞( f, X, G, ρ, F, δ, σ )≤ 2 ·

∑
ϕ∈E

exp
( d∑

a=1

f (ϕ(a))

)
.

For each ϕ ∈ E we denote by 3ϕ the set of all a ∈ [d] such that

ρ(ϕ(sa), sϕ(a)) <
√
δ for all s ∈ F.

Then |3ϕ | ≥ (1− |F |δ)d . We enumerate the elements of {3ϕ : ϕ ∈ E} as 31, . . . , 3`.
Then E =

⊔`
j=1 V j , where V j = {ϕ ∈ E :3ϕ =3 j }, for every j = 1, . . . , `.

Choose δ > 0 such that |F |δ < η and 2
√
δ < ε/4. Then for any j ∈ {1, . . . , `}, there

exist subsets C j,1, . . . , C j,m of 3 j such that the following hold.
(1) For every 1≤ k ≤ m, the map (s, c) 7→ σs(c) from Fk × C j,k to σ(Fk)C j,k is

bijective.
(2) The family {σ(F1)C j,1, . . . , σ (Fm)C j,m} is disjoint and (1− 2η)d ≤ |

⋃m
k=1

σ(Fk)C j,k |.
Let 1≤ j ≤ `, 1≤ k ≤ m and c ∈ C j,k . Let W j,k,c be a maximal (ρσ(Fk )c,∞, ε/2)-

separated subset of V j . Then W j,k,c is a (ρσ(Fk )c,∞, ε/2)-spanning subset of V j .
For any two distinct elements ϕ and ψ of W j,k,c , since c ∈3 j =3ψ =3ϕ , for every

s ∈ Fk , we have

ρ(sψ(c), sϕ(c)) ≥ ρ(ψ(sc), ϕ(sc))− ρ(ψ(sc), sψ(c))− ρ(sϕ(c), ϕ(sc))

≥ ρ(ψ(sc), ϕ(sc))− 2
√
δ,

and hence

max
s∈Fk

ρ(sψ(c), sϕ(c))≥max
s∈Fk

ρ(ψ(sc), ϕ(sc))− 2
√
δ ≥ ε/2− ε/4= ε/4.

Thus {ϕ(c) : ϕ ∈W j,k,c} is a (ρFk , ε/4)-separated subset of X .
Choose δ > 0 such that | f (x)− f (y)|< κ for all x, y ∈ X with ρ(x, y) <

√
δ. Then∑

ϕ∈W j,k,c

exp
(∑

s∈Fk

f (ϕ(sc))

)

=

∑
ϕ∈W j,k,c

exp
(∑

s∈Fk

f (sϕ(c))

)
exp

(∑
s∈Fk

( f (ϕ(sc))− f (sϕ(c)))

)

≤

∑
ϕ∈W j,k,c

exp
(∑

s∈Fk

f (sϕ(c))

)
exp(|Fk |κ)

≤ Kε/4( f, X, G, ρ, Fk) exp(|Fk |κ)

≤ exp((P( f, X, G)+ 2κ)|Fk |).

Let W j be a (ρZ j ,∞, ε/2)-spanning subset of V j with minimal cardinality, where
Z j = [d]\

⋃m
k=1 σ(Fk)C j,k . Then

|W j | ≤ (Nε/4(X, ρ))
|Z j | ≤ (Nε/4(X, ρ))

2ηd
≤ exp(κd).
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Denote by U j the set of all maps ϕ : [d] → X such that ϕ|Z j ∈W j |Z j and ϕ|σ(Fk )c ∈

W j,k,c|σ(Fk )c for all 1≤ k ≤ m and c ∈ C j,k . Then∑
ϕ∈U j

exp
( d∑

a=1

f (ϕ(a))

)

=

∑
ϕ∈U j

exp
( m∑

k=1

∑
c∈C j,k

∑
s∈Fk

f (ϕ(sc))

)
exp

(∑
a∈Z j

f (ϕ(a))

)

≤

∑
ϕ∈U j

exp(2Qηd)
m∏

k=1

∏
c∈C j,k

exp
(∑

s∈Fk

f (ϕ(sc))

)

≤ (Nε/4(X, ρ))
2ηd exp(2Qηd)

m∏
k=1

∏
c∈C j,k

∑
ψ∈W j,k,c|σ(Fk )c

exp
(∑

s∈Fk

f (ψ(sc))

)

≤ (Nε/4(X, ρ))
2ηd exp(2Qηd)

m∏
k=1

∏
c∈C j,k

exp((P( f, X, G)+ 2κ)|Fk |)

≤ (Nε/4(X, ρ))
2ηd exp(2Qηd) exp

(
(P( f, X, G)+ 2κ)

m∑
k=1

|Fk ||C j,k |

)
≤ exp(κd) exp(κd) exp((P( f, X, G)+ 2κ)d).

By the spanning properties of W j,k,c and W j , we can define a map 8 : V j → U j by
choosing for eachψ ∈ V j some8(ψ) ∈ U j with ρ∞(ψ, 8(ψ))≤ ε/2. Then8 is injective,
so∑
ψ∈U j

exp
( d∑

a=1

f (ψ(a))

)
≥

∑
ψ∈8(V j )

exp
( d∑

a=1

f (ψ(a))

)

=

∑
ϕ∈V j

exp
( d∑

a=1

( f (8(ϕ)(a))− f (ϕ(a)))

)
exp

( d∑
a=1

f (ϕ(a))

)

≥ exp(−dκ)
∑
ϕ∈V j

exp
( d∑

a=1

f (ϕ(a))

)
.

Therefore∑
ϕ∈E

exp
( d∑

a=1

f (ϕ(a))

)
=

∑̀
j=1

∑
ϕ∈V j

exp
( d∑

a=1

f (ϕ(a))

)

≤

∑̀
j=1

∑
ϕ∈U j

exp
( d∑

a=1

f (ϕ(a))

)
exp(κd)

≤ ` exp(κd) exp((P( f, X, G)+ 2κ)d) exp(2κd).

By Stirling’s approximation formula, |F |δd
( d
|F |δd

)
is less than exp(βd) for some β > 0

depending on δ and |F | but not on d when d is large enough with β→ 0 as δ→ 0.
Since

∑b|F |δdc
j=0

(d
j

)
≤ |F |δd

( d
|F |δd

)
, when d is large enough we have that the number of

subsets of [d] of cardinality at least (1− |F |δ)d is at most exp(βd). Choose δ such
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that β < κ . Then, when d is large enough, `≤ exp(βd)≤ exp(κd). Therefore

Mε
6,∞( f, X, G, ρ, F, δ, σ ) ≤ 2 ·

∑
ϕ∈E

exp
( d∑

a=1

f (ϕ(a))

)
≤ 2 · exp(κd) exp(3κd) exp((P( f, X, G)+ 2κ)d),

and hence

Pε6,∞( f, X, G, ρ)≤ Pε6,∞( f, X, G, ρ, F, δ, σ )≤ P( f, X, G)+ 6κ,

as we want. 2

LEMMA 3.3. Let G be a countable amenable group acting continuously on a compact
metrizable space X and f a real-valued continuous function on X. Then P6( f, X, G)≥
P( f, X, G).

Proof. Let ρ be a compatible metric on X .
We will prove that for any real number R < P( f, X, G) and κ > 0, P6,∞( f, X, G, ρ)≥

R − 5κ . Let R < P( f, X, G) and κ > 0. Choose ε1 > 0 such that p1( f, ε1) > R − κ .
Because f is continuous, it is uniformly continuous on the compact space X . Thus,
there exists ε2 > 0 such that | f (x)− f (y)|< κ for all x, y ∈ X with ρ(x, y) < ε2. Let
ε =min{ε1, ε2}.

For any non-empty finite subset F ′ of G, and (ρF ′ , ε/2)-separated subset D of X with
maximal cardinality, {BF ′(x, ε/2)}x∈D is an open cover of X of order (F ′, ε), where
BF ′(x, ε/2)= {y ∈ X :maxs∈F ′ ρ(sx, sy) < ε/2}. Then

|F ′|−1 log
∑
x∈D

sup
y∈BF ′ (x,ε/2)

exp
(∑

s∈F ′
f (sy)

)
≥ p1( f, ε)− κ,

whenever F ′ is sufficiently left-invariant.
We also have∑

x∈D
sup

y∈BF ′ (x,ε/2)
exp

(∑
s∈F ′

f (sy)

)
≤ exp(|F ′|κ)

∑
x∈D

exp
(∑

s∈F ′
f (sx)

)
.

Thus taking the logarithm on both sides, and dividing them by |F ′|, when F ′ is sufficiently
left-invariant, one has

|F ′|−1 log
∑
x∈D

exp
(∑

s∈F ′
f (sx)

)
≥ p1( f, ε)− 2κ ≥ R − 3κ.

Then there exist a non-empty finite subset K of G and δ′′ > 0 such that

1
|F ′|

log
∑
x∈D

exp
(∑

s∈F ′
f (sx)

)
≥ R − 3κ,

for any non-empty finite subset F ′ of G satisfying |K F ′\F ′|/|F ′|< δ′′, and any
(ρF ′ , ε/2)-separated subset D of X with maximal cardinality.

Let F be a non-empty finite subset of G and δ > 0. We will show that if σ : G→
Sym(d) is a good enough sofic approximation of G then

1
d

log Mε/2
6,∞( f, X, G, ρ, F, δ, σ )≥ R − 5κ.
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Since f is continuous on X and X is compact, there exists a number Q > 0 such
that f (x)≥−Q for all x ∈ X . Choose δ′ > 0 such that δ′ < δ′′,

√
δ′diam(X, ρ) < δ/

√
2,

(1− δ′)(R − 3κ)≥ R − 4κ and δ′ < κ/Q. By Lemma 3.1 there are an ` ∈ N and non-
empty finite sets F1, . . . , F` ⊂ G satisfying

max
1≤k≤`

|K Fk\Fk |

|Fk |
< δ′ and max

1≤k≤`

|F Fk\Fk |

|Fk |
< δ′

such that for every good enough sofic approximation σ : G→ Sym(d) for some d ∈ N,
and every V ⊂ [d] with (1− δ′/2)d ≤ |V |, there exist subsets C1, . . . , C` of V satisfying
the following.
(1) For every 1≤ k ≤ `, the map (t, c) 7→ σt (c) from Fk × Ck to σ(Fk)Ck is bijective.
(2) The family {σ(F1)C1, . . . , σ (F`)C`} is disjoint and (1− δ′)d ≤ |

⋃`
k=1 σ(Fk)Ck |.

For each map σ : G→ Sym(d) for some d ∈ N, put

3σ :=

{
a ∈ [d] : σst (a)= σsσt (a) for any s ∈ F and t ∈

⋃̀
k=1

Fk

}
.

When σ is a good enough approximation for G, one has |3σ | ≥ (1− δ′/2)d. Then there
exist C1, . . . , C` ⊂3σ as above.

For each 1≤ k ≤ `, pick a (ρFk , ε/2)-separated subset Ek of X with maximal
cardinality. Then

1
|Fk |

log
∑
x∈Ek

exp
( ∑

s∈Fk

f (sx)
)
≥ R − 3κ,

for any 1≤ k ≤ `.
For every

h = (hk)
`
k=1 ∈

∏̀
k=1

(Ek)
Ck

take a map ϕh : [d] → X such that

ϕh(tc)= t (hk(c))

for all 1≤ k ≤ `, t ∈ Fk and c ∈ Ck . Then for any 1≤ k ≤ `, c ∈ Ck , s ∈ F , and t ∈ Fk

satisfying st ∈ Fk , we have ϕh(s(tc))= sϕh(tc). Hence for any s ∈ F , one has∑̀
k=1

∑
a∈σ(Fk )Ck

(ρ(ϕh(s(a)), sϕh(a)))
2
=

∑̀
k=1

∑
c∈Ck

∑
t∈Fk ,st /∈Fk

(ρ(ϕh(s(tc)), sϕh(tc)))
2

≤

∑̀
k=1

|Ck ||s Fk\Fk |diam2(X, ρ)

≤

∑̀
k=1

|Ck ||F Fk\Fk |diam2(X, ρ)

≤

∑̀
k=1

|Ck ||Fk |δ
′diam2(X, ρ)

≤ δ′diam2(X, ρ)d.
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So

(ρ2(ϕh ◦ σs, αs ◦ ϕh))
2

=
1
d

(∑̀
k=1

∑
a∈σ(Fk )Ck

(ρ(ϕh(s(a)), sϕh(a)))
2
+

∑
a∈[d]\

⋃`
k=1 σ(Fk )Ck

(ρ(ϕh(s(a)), sϕh(a)))
2
)

≤ δ′diam2(X, ρ)+ δ′diam2(X, ρ) < δ,

for any s ∈ F . Thus ϕh ∈Map(ρ, F, δ, σ ).
For any distinct elements h = (hk)

`
k=1, h′ = (h′k)

`
k=1 in

∏`
k=1(Ek)

Ck , there are a 1≤
k ≤ ` and a c ∈ Ck such that hk(c) 6= h′k(c). Since Ek is (ρFk , ε/2)-separated, then
ρFk (hk(c), h′k(c))≥ ε/2 and thus we have ρ∞(ϕh, ϕh′)≥ ε/2. Then

Mε/2
6,∞( f, X, G, ρ, F, δ, σ )

≥

∑
h∈
∏`

j=1(E j )
C j

exp
( d∑

a=1

f (ϕh(a))

)

≥

∑
h∈
∏`

j=1(E j )
C j

exp
( l∑

k=1

∑
ck∈Ck

∑
sk∈Fk

f (ϕh(skck))

)
exp(−Qδ′d)

=

∑
h∈
∏`

j=1(E j )
C j

exp
( l∑

k=1

∑
ck∈Ck

∑
sk∈Fk

f (skh(ck))

)
exp(−Qδ′d)

= exp(−Qδ′d)
∑

h∈
∏`

j=1(E j )
C j

∏̀
k=1

∏
ck∈Ck

exp
(∑

sk∈Fk

f (skh(ck))

)

= exp(−Qδ′d)
∏̀
j=1

(∑
x∈E j

exp
(∑

s∈F j

f (sx)

))|C j |

.

Therefore,

1
d

log Mε/2
6,∞( f, X, G, ρ, F, δ, σ ) ≥

1
d

log
∏̀
j=1

(∑
x∈E j

exp
(∑

s∈F j

f (sx)

))|C j |

− Qδ′

=
1
d

∑̀
j=1

|C j | log
(∑

x∈E j

exp
(∑

s∈F j

f (sx)

))
− Qδ′

≥
1
d

∑̀
j=1

(R − 3κ)|C j ||F j | − κ.

If R − 3κ ≥ 0 then

1
d

∑̀
j=1

(R − 3κ)|C j ||F j | ≥ (1− δ′)(R − 3κ)≥ R − 4κ

and if R − 3κ < 0 then

1
d

∑̀
j=1

(R − 3κ)|C j ||F j | ≥ R − 3κ ≥ R − 4κ.
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Thus,
1
d

log Mε/2
6,∞( f, X, G, ρ, F, δ, σ )≥ R − 5κ,

as desired. 2

Combining Lemmas 3.2 and 3.3 we obtain Theorem 1.1.

4. The variational principle of topological pressure
We will prove Theorem 1.2 in this section. Let α be a continuous action of a countable
sofic group G on a compact metrizable space X . Before proving the variational principle
for sofic topological pressure, we recall the definition of sofic measure entropy [9, §3].

4.1. Sofic measure entropy. Let µ be a Borel probability measure on X and ρ a
continuous pseudometric on X .

Definition 4.1. Let L be a non-empty finite subset of C(X), F a non-empty finite subset
of G, and δ > 0. Let σ be a map from G to Sym(d) for some d ∈ N. We define
Mapµ(ρ, F, L , δ, σ ) to be the set of all ϕ in Map(ρ, F, δ, σ ) such that∣∣∣∣ 1d

d∑
j=1

f (ϕ( j))−
∫

X
f dµ

∣∣∣∣< δ for all f ∈ L .

Definition 4.2. For ε > 0 we define

hε6,µ,∞(ρ, F, L , δ) = lim sup
i→∞

1
di

log Nε(Mapµ(ρ, F, L , δ, σi ), ρ∞),

hε6,µ,∞(ρ, F, L) = inf
δ>0

hε6,µ,∞(ρ, F, L , δ),

hε6,µ,∞(ρ, F) = inf
L

hε6,µ,∞(ρ, F, L),

hε6,µ,∞(ρ) = inf
F

hε6,µ,∞(ρ, F),

h6,µ,∞(ρ) = sup
ε>0

hε6,µ,∞(ρ),

where L in the third line runs over the non-empty finite subsets of C(X) and F in the fourth
line runs over the non-empty finite subsets of G.

If Mapµ(ρ, F, L , δ, σi )= ∅ for all large enough i , we set hε6,µ,∞(ρ, F, L , δ)=−∞.

If µ is a G-invariant Borel probability measure on X and ρ is a dynamically generating
pseudometric then from [8, Proposition 5.4] and [9, Proposition 3.4] we conclude that
h6,µ,∞(ρ) coincides with the sofic measure entropy h6,µ(X, G) (see [8] for the definition
of h6,µ(X, G)). In particular, the quantities h6,µ,∞(ρ) do not depend on the choice of
compatible metrics on X .

Now we prove the variational principle for sofic topological pressure.

4.2. The variational principle. We denote by M(X) the convex set of Borel probability
measures on X . Denote by MG(X) the set of G-invariant Borel probability measures on
X . Under the weak* topology, M(X) is compact and MG(X) is a closed convex subset of
M(X).
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The following lemma was proved by Kerr and Li in [8, Theorem 6.1] for the case f = 0.
We modify the argument there to deal with general functions f in C(X).

LEMMA 4.3. Let α be a continuous action of a countable sofic group G on a compact
metrizable space X. Let 6 be a sofic approximation sequence for G and f be a real-
valued continuous function on X. Then

P6,∞( f, X, G)≤ sup
{

h6,µ(X, G)+
∫

X
f dµ : µ ∈ MG(X)

}
.

Proof. Let ρ be a compatible metric on X . We may assume that P6,∞( f, X, G) 6= −∞.
Let ε > 0. It suffices to prove that there exists µ ∈ MG(X) such that

hε6,µ,∞(ρ)+
∫

X
f dµ≥ Pε6,∞( f, X, G, ρ).

Take a sequence e ∈ F1 ⊂ F2 ⊂ · · · of finite subsets of G such that G =
⋃

n∈N Fn .
Since X is compact and metrizable, there exists a sequence {gm}m∈N in C(X) such that
{gm}m∈N is dense in C(X). Let n ∈ N and Ln = { f, g1, . . . , gn}. There exists Q > 0 such
that maxg∈Ln ‖g‖∞ ≤ Q. Choose δn > 0 such that

δn <
1

12Q|Fn|
, δn <

1
3n

and |g(x)− g(y)|<
1

6n

for all g ∈ Ln and for all x, y ∈ X with ρ(x, y) <
√
δn . We will find some µn ∈ M(X)

such that

hε6,µn ,∞

(
ρ, Fn, Ln,

1
3n

)
+

∫
X

f dµn +
1

3n
≥ Pε6,∞( f, X, G, ρ),

and |µn(αt−1(g))− µn(g)|< 1/n for any t ∈ Fn , g ∈ Ln .
Since M(X) is compact under weak* topology, there exists a finite subset D of M(X)

such that for any map σ : G→ Sym(d) for some d ∈ N and any ϕ ∈Map(ρ, Fn, δn, σ )

there is a µϕ ∈D such that

|µϕ(αt−1(g))− (ϕ∗ζ )(αt−1(g))|<
1

3n
for all t ∈ Fn, g ∈ Ln,

where ζ is the uniform probability measure on [d], i.e.,

(ϕ∗ζ )(h)=
1
d

d∑
a=1

h(ϕ(a)) for all h ∈ C(X).

Let σ be a map from G to Sym(d) for some d ∈ N. For each ϕ ∈Map(ρ, Fn, δn, σ ),
denote by 3ϕ the set of all a in [d] such that ρ(ϕ(ta), tϕ(a)) <

√
δn for all t ∈ Fn . Then

|3ϕ | ≥ (1− |Fn|δn)d. Thus, for all t ∈ Fn , g ∈ Ln , we have

|(ϕ∗ζ )(αt−1(g))− ((ϕ ◦ σt )∗ζ )(g)| ≤
1
d

∣∣∣∣∑
a∈3ϕ

(g(tϕ(a))− g(ϕ(ta)))

∣∣∣∣
+

1
d

∣∣∣∣∑
a /∈3ϕ

(g(tϕ(a))− g(ϕ(ta)))

∣∣∣∣
≤

1
d
|3ϕ | ·

1
6n
+

1
d

2Q|Fn|δnd

≤
1

6n
+

1
6n
=

1
3n
,

https://doi.org/10.1017/S0143385712000429 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385712000429


1380 N.-P. Chung

and hence

|µϕ(αt−1(g))− µϕ(g)| ≤ |µϕ(αt−1(g))− (ϕ∗ζ )(αt−1(g))| + |(ϕ∗ζ )(g)− µϕ(g)|

+ |(ϕ∗ζ )(αt−1(g))− ((ϕ ◦ σt )∗ζ )(g)|

≤
1

3n
+

1
3n
+

1
3n
=

1
n
.

Take a maximal (ρ∞, ε)-separated subset Eσ of Map(ρ, Fn, δn, σ ) such that

Mε
6,∞( f, X, G, ρ, Fn, δn, σ )≤ exp(1) ·

∑
ϕ∈Eσ

exp
( d∑

a=1

f (ϕ(a))

)
.

For any ν ∈D, we denote by W (σ, ν) the set of all elements ϕ in Eσ such that µϕ = ν. By
the pigeonhole principle there exists a ν0 ∈D such that

|D| ·
∑

ϕ∈W (σ,ν0)

exp
( d∑

a=1

f (ϕ(a))

)
≥

∑
ϕ∈Eσ

exp
( d∑

a=1

f (ϕ(a))

)
.

Since
|ν0( f )− (ϕ∗ζ )( f )|< 1/3n for all ϕ ∈W (σ, ν0),

we have

exp
(
ν0( f )d +

d

3n

)
≥ exp

( d∑
a=1

f (ϕ(a))

)
for all ϕ ∈W (σ, ν0)

and hence

|D||W(σ, ν0)| exp
(
ν0( f )d +

d

3n

)
≥ |D| ·

∑
ϕ∈W(σ,ν0)

exp
( d∑

a=1

f (ϕ(a))

)

≥

∑
ϕ∈Eσ

exp
( d∑

a=1

f (ϕ(a))

)
.

Note that W(σ, ν0)⊂Mapν0
(ρ, Fn, Ln, 1/3n, σ ) as e ∈ Fn and δn < 1/3n. Since

W(σ, ν0) is (ρ∞, ε)-separated, we obtain

1
d

log
∑
ϕ∈Eσ

exp
( d∑

a=1

f (ϕ(a))

)
≤

1
d

log(|D||W(σ, ν0)|)+ ν0( f )+
1

3n

≤
1
d

log
(
|D|Nε

(
Mapν0

(
ρ, Fn, Ln,

1
3n
, σ

)))
+ ν0( f )+

1
3n
.

Thus
1
d

log Mε
6,∞( f, X, G, ρ, Fn, δn, σ )

≤
1
d
+

1
d

log
(∑
ϕ∈Eσ

exp
( d∑

a=1

f (ϕ(a))

))

≤
1
d
+

1
d

log
(
|D|Nε

(
Mapν0

(
ρ, Fn, Ln,

1
3n
, σ

)))
+ ν0( f )+

1
3n
.
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Letting σ run through the terms of the sofic approximation sequence 6, by the
pigeonhole principle there exist µn ∈D and a sequence i1 < i2 < · · · in N with

Pε6,∞( f, X, G, ρ, Fn, δn)= lim
k→∞

1
dik

log Mε
6,∞( f, X, G, ρ, Fn, δn, σik )

such that

1
dik

log Mε
6,∞( f, X, G, ρ, Fn, δn, σ ) ≤

1
dik

log
(
|D|Nε

(
Mapµn

(
ρ, Fn, Ln,

1
3n
, σik

)))
+

1
dik

+ µn( f )+
1

3n
,

for all k ∈ N and |µn(αt−1(g))− µn(g)|< 1/n for any t ∈ Fn , and g ∈ Ln . Then

Pε6,∞( f, X, G, ρ)

≤ Pε6,∞( f, X, G, ρ, Fn, δn)

= lim
k→∞

1
dik

log Mε
6,∞( f, X, G, ρ, Fn, δn, σik )

≤ lim
k→∞

(
1

dik

+
1

dik

log
(
|D|Nε

(
Mapµn

(
ρ, Fn, Ln,

1
3n
, σik

)))
+ µn( f )+

1
3n

)
≤ hε6,µn ,∞

(
ρ, Fn, Ln,

1
3n

)
+ µn( f )+

1
3n
.

Let µ be a weak* limit point of the sequence {µn}
∞

n=1. For any t ∈ G and g ∈ {gm}m∈N,
we have

|µ(αt−1(g))− µ(g)| ≤ |µ(αt−1(g))− µn(αt−1(g))| + |µn(αt−1(g))− µn(g)|

+ |µn(g)− µ(g)|.

Since the right hand side converges to 0 as n→∞ and {gm}m∈N is dense in C(X), we
deduce that µ is G-invariant.

Let F be a non-empty finite subset of G, L a non-empty finite subset of C(X) and δ > 0.
Choose n ∈ N such that

F ⊂ Fn,
1

3n
≤ δ/4, max

g∈L∪{ f }
|µn(g)− µ(g)|< δ/4

and for any g ∈ L there exists g′ ∈ Ln such that ‖g − g′‖∞ < δ/4. Then for any map
σ : G→ Sym(d) for some d ∈ N, ϕ ∈Mapµn

(ρ, Fn, Ln, 1/3n, σ ) and g ∈ L , we have

|(ϕ∗ζ )(g)− µ(g)| ≤ |(ϕ∗ζ )(g)− (ϕ∗ζ )(g
′)| + |(ϕ∗ζ )(g

′)− µn(g
′)|

+ |µn(g
′)− µn(g)| + |µn(g)− µ(g)|

<
3δ
4
+

1
3n
≤ δ,

and hence ϕ ∈Mapµ(ρ, F, L , δ, σ ). Thus

Mapµn

(
ρ, Fn, Ln,

1
3n
, σ

)
⊂Mapµ(ρ, F, L , δ, σ )
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and then

hε6,µ,∞(ρ, F, L , δ)+
∫

X
f dµ ≥ hε6,µn ,∞

(
ρ, Fn, Ln,

1
3n

)
+

∫
X

f dµn −
δ

4

≥ Pε6,∞( f, X, G, ρ)−
1

3n
−
δ

4

≥ Pε6,∞( f, X, G, ρ)−
δ

2
.

Since F, L , δ are arbitrary we get

hε6,µ,∞(ρ)+
∫

X
f dµ≥ Pε6,∞( f, X, G, ρ),

as desired. Then

P6,∞( f, X, G)≤ sup
{

h6,µ(X, G)+
∫

X
f dµ : µ ∈ MG(X)

}
. 2

We can now prove Theorem 1.2.

Proof of Theorem 1.2. Let ρ be a compatible metric on X and µ ∈ MG(X). Let F be a
non-empty finite subset of G, and δ, ε > 0. Put L1 = { f }. Fix i ∈ N. Let E be a (ρ∞, ε)-
separated subset of Mapµ(ρ, F, L1, δ, σi ) with maximal cardinality. Then E is also a
(ρ∞, ε)-separated subset of Map(ρ, F, δ, σi ).

Since the function x 7→ log x for x > 0 is concave, one has

log
∑
ϕ∈E

1
|E |

exp
( di∑

j=1

f (ϕ( j))

)
≥

1
|E |

∑
ϕ∈E

di∑
j=1

f (ϕ( j)).

Hence

log
∑
ϕ∈E

exp
( di∑

j=1

f (ϕ( j))

)
≥ log |E | +

1
|E |

∑
ϕ∈E

di∑
j=1

f (ϕ( j))

≥ log |E | +
1
|E |

∑
ϕ∈E

(∫
X

f dµ− δ

)
di

= log |E | +
(∫

X
f dµ− δ

)
di .

Thus

Pε6,∞( f, X, G, ρ, F, δ)+ δ ≥ hε6,µ,∞(ρ, F, L1, δ)+

∫
X

f dµ,

for all non-empty finite subsets F of G and all δ, ε > 0, yielding

Pε6,∞( f, X, G, ρ, F)≥ hε6,µ,∞(ρ, F, L1)+

∫
X

f dµ≥ hε6,µ,∞(ρ, F)+
∫

X
f dµ

for all non-empty finite subsets F of G and any ε > 0. Hence

P6( f, X, G)≥ h6,µ(X, G)+
∫

X
f dµ.

Combining with Lemma 4.3, we get

P6( f, X, G)= sup
{

h6,µ(X, G)+
∫

X
f dµ : µ ∈ MG(X)

}
. 2
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Remark 4.4. From the variational principle theorem we see that if X has no G-invariant
Borel probability measure then the topological pressure will be −∞. For an example of
such action, see the example at the end in [8, §4]. Note that when G is amenable, for any
continuous action of G on a compact metrizable space there always exists a G-invariant
Borel probability measure. In this case, the sofic topological pressure is always different
from −∞ since it coincides with the classical topological pressure; see Theorem 1.1.

5. Equilibrium states and examples
In this section we will calculate the sofic topological pressure of some functions over a
Bernoulli shift. Let α be a continuous action of a countable sofic group G on a compact
metrizable space X .

Definition 5.1. Let 6 be a sofic approximation sequence of G and f be a real-valued
continuous function on X . A member µ of MG(X) is called an equilibrium state for f with
respect to 6 if P6( f, X, G)= h6,µ(X, G)+

∫
X f dµ.

Definition 5.2. Let Y = {0, . . . , k − 1} for some k ∈ N and µ a probability measure on Y .
Let Y G

=
∏

s∈G Y be the set of all functions y : G→ Y . For any non-empty finite subset
F of G, a = (as)s∈F ∈ Y F , put AF,a = {(yt )t∈G : ys = as for all s ∈ F}. Then there exists
a unique measure µG on Y G defined on the σ -algebra of Borel subsets of Y G such that
µG(AF,a)=

∏
s∈F µ(as) for any non-empty finite subset F of G, and a = (as)s∈F ∈ Y F ;

see [25, p. 5].

The following result is known when the acting group G equals Zd for some d ∈ N. For
example, see [25, Theorem 9.16] for the case d = 1 and [7, Example 4.2.2] for the general
case d ∈ N.

THEOREM 5.3. Let G be a countable sofic group, k ∈ N and X = {0, 1, . . . , k − 1}G .
Let a0, . . . , ak−1 ∈ R and define f ∈ C(X) by f (x)= axe where x = (xt )t∈G . Let α be
the continuous action of G on X G by the left shifts s · (xt )t∈G = (xs−1t )t∈G . Let 6 be
a sofic approximation sequence of G and µ the probability measure on {0, . . . , k − 1},
defined by

µ(i)=
exp(ai )∑k−1

j=0 exp(a j )
for all 0≤ i ≤ k − 1.

Then

P6( f, X, G) = sup
{

H(p)+
k−1∑
i=0

p(i)ai : p is a probability measure on {0, . . . , k − 1}
}

= log
(k−1∑

j=0

exp(a j )

)
,

where H(p)=
∑k−1

i=0 −p(i) log p(i). Furthermore, the measure µG is an equilibrium
state for f .

Proof. Let ρ be the pseudometric on X defined by ρ(x, y)= 1 if xe 6= ye and ρ(x, y)= 0
if xe = ye, where x = (xs)s∈G , y = (ys)s∈G ∈ X . Then ρ is a continuous dynamically
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generating pseudometric on X . Let 1> ε > 0, δ > 0 and F be a non-empty finite subset of
G. Let σ be a map from G to Sym(d) for some d ∈ N. Let E be a (ρ∞, ε)-separated subset
of Map(ρ, F, δ, σ ). Since E is (ρ∞, ε)-separated, for any distinct elements ϕ, ψ ∈ E ,
(ϕ( j))e 6= (ψ( j))e for some 1≤ j ≤ d . Thus∑

ϕ∈E
exp

( d∑
j=1

f (ϕ( j))

)
=

∑
ϕ∈E

exp
( d∑

j=1

a(ϕ( j))e

)

≤

∑
(b1,...,bd )∈{a0,...,ak−1}

d

exp
( d∑

j=1

b j

)

=

∑
(b1,...,bd )∈{a0,...,ak−1}

d

d∏
j=1

exp(b j )

=

(k−1∑
i=0

exp(ai )

)d

,

and hence
1
d

log Mε
6,∞( f, X, G, F, δ, σ )≤ log

(k−1∑
i=0

exp(ai )

)
.

For each β ∈ {0, . . . , k − 1}d , take a map ϕβ : {1, . . . , d} → X G such that for each
i ∈ [d] and t ∈ G, ((ϕβ)(i))t = β(σ(t−1)i). We denote by Z the set of i in [d] such that
σ(e)σ (s)i = σ(s)i for all s ∈ F . For every β ∈ {0, . . . , k − 1}d , s ∈ F and i ∈ Z , we have

(sϕβ(i))e = (ϕβ(i))s−1 = β(σ(s)i) and (ϕβ(si))e = β(σ(e)si),

and hence (sϕβ(i))e = (ϕβ(si))e.
When σ is a good enough sofic approximation of G, one has 1− |Z|/d < δ2, and hence

ϕβ ∈Map(ρ, F, δ, σ ). Note that {ϕβ}β∈{0,...,k−1}d is (ρ∞, ε)-separated. Thus

1
d

log Mε
6,∞( f, X, G, F, δ, σ ) ≥

1
d

log
∑

β∈{0,...,k−1}d
exp

( d∑
i=1

f (ϕβ(i))

)

=
1
d

log
∑

β∈{0,...,k−1}d
exp

( d∑
i=1

a(ϕβ (i))e

)

=
1
d

log
∑

β∈{0,...,k−1}d
exp

( d∑
i=1

aβ(σ(e)i)

)

=
1
d

log
(k−1∑

i=0

exp(ai )

)d

= log
(k−1∑

i=0

exp(ai )

)
,

and hence
1
d

log Mε
6,∞( f, X, G, F, δ, σ )= log

(k−1∑
i=0

exp(ai )

)
.
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Thus

P6( f, X, G)= log
(k−1∑

i=0

exp(ai )

)
.

Let ν ∈ MG(X). Put Ai = {(xs)s∈G ∈ X : xe = i} for any i = 0, . . . , k − 1. Let p
be the probability measure on {0, . . . , k − 1}, defined by p(i)= ν(Ai ) for any i =
0, . . . , k − 1. Then∫

X
f dν =

k−1∑
i=0

∫
Ai

f dν =
k−1∑
i=0

aiν(Ai )=

k−1∑
i=0

ai p(i)=
∫

X
f dpG .

Since ξ = {A0, . . . , Ak−1} is a finite generating measurable partition of X , applying [1,
Proposition 5.3] (taking β there to be the trivial partition), [8, Theorem 3.6] and [9,
Proposition 3.4], we get h6,ν(X, G)≤ Hν(ξ), where

Hν(ξ)=
k−1∑
i=0

−ν(Ai ) log ν(Ai ).

Hence, by [25, Lemma 9.9],

h6,ν(X, G)+
∫

X
f dν ≤ Hν(ξ)+

k−1∑
i=0

ai p(i)

=

k−1∑
i=0

p(i)(ai − log p(i))

≤ log
(k−1∑

i=0

exp(ai )

)
.

From combining [1, Theorem 8.1], [8, Theorem 3.6] and [9, Proposition 3.4], we know
that the inequality in the first line becomes equality when ν = pG . Furthermore, by [25,
Lemma 9.9], the inequality in the third line becomes equality if and only if

p(i)=
exp(ai )∑k−1

j=0 exp(a j )
= µ(i) for every 0≤ i ≤ k − 1.

Thus

P6( f, X, G) = sup
{

H(p)+
k−1∑
i=0

p(i)ai : p is a probability measure on {0, . . . , k − 1}
}

= log
(k−1∑

j=0

exp(a j )

)
,

and µG is an equilibrium state for f . 2

When G = Z, µG is the unique equilibrium state for f ; for example, see [25,
Theorem 9.16]. The proof there also works for the case G is countable amenable. Thus,
we raise the following question.

Question 5.4. Let G be a countable sofic group, k ∈ N, and X, f ∈ C(X) and α, µ be as
in the assumptions of Theorem 5.3. Is µG the unique equilibrium state for f with respect
to 6, for any sofic approximation sequence 6 of G?
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6. Properties of topological pressure
Let α be a continuous action of a countable sofic group G on a compact metrizable space
X and 6 a sofic approximation sequence of G. In this section, we study some properties
of the map P6(·, X, G) : C(X)→ R ∪ {±∞} and give a sufficient condition involving
topological pressure for determining membership in MG(X)when G is a general countable
sofic group.

The following result is well known when G is amenable. For example, see [25,
Theorem 9.7] for the case G = Z and [14, Corollary 5.2.6] for the general case G is
amenable.

PROPOSITION 6.1. If f, g ∈ C(X), s ∈ G and c ∈ R then the following are true.
(i) P6(0, X, G)= h6(X, G).
(ii) P6( f + c, X, G)= P6( f, X, G)+ c.
(iii) P6( f + g, X, G)≤ P6( f, X, G)+ P6(g, X, G).
(iv) f ≤ g implies P6( f, X, G)≤ P6(g, X, G). In particular, h6(X, G)+min f ≤

P6( f, X, G)≤ h6(X, G)+max f .
(v) P6(·, X, G) is either finite valued or constantly ±∞.
(vi) If P6(·, X, G) 6= ±∞, then |P6( f, X, G)− P6(g, X, G)| ≤ ‖ f − g‖∞,

where ‖ · ‖∞ is the suprenorm on C(X).
(vii) If P6(·, X, G) 6= ±∞ then P6(·, X, G) is convex.
(viii) P6( f + g ◦ αs − g, X, G)= P6( f, X, G).
(ix) P6(c f, X, G)≤ c · P6( f, X, G) if c ≥ 1 and P6(c f, X, G)≥ c · P6( f, X, G) if

c ≤ 1.
(x) |P6( f, X, G)| ≤ P6(| f |, X, G).

Proof. Let ρ be a compatible metric on X . Let σ be a map from G to Sym(d) for some
d ∈ N. Let ε, δ > 0 and F be a non-empty finite subset of G.

(i)–(iv) These are clear from the definition of pressure and Remark 2.4.
(v) From (i) and (ii) we get P6( f, X, G)=±∞ if and only if h6(X, G)=±∞.
(vi) Follows from (iii) and (iv).
(vii) By Hölder’s inequality, if p ∈ [0, 1] and E is a finite subset of Map(ρ, F, δ, σ )

then we have∑
ϕ∈E

exp
(

p
d∑

a=1

f (ϕ(a))+ (1− p)
d∑

a=1

g(ϕ(a))

)

≤

(∑
ϕ∈E

exp
( d∑

a=1

f (ϕ(a))

))p(∑
ϕ∈E

exp
( d∑

a=1

g(ϕ(a))

))1−p

.

Therefore,

Mε
6,∞(p f + (1− p)g, X, G, ρ, F, δ, σ ) ≤ Mε

6,∞( f, X, G, ρ, F, δ, σ )p

· Mε
6,∞(g, X, G, ρ, F, δ, σ )1−p,

and (vii) follows.
(viii) Let σ be a map from G to Sym(d) for some d ∈ N. Let ε, κ > 0 and F be a non-

empty finite subset of G containing s. Since g is continuous there exists Q > 0 such
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that |g(x)| ≤ Q for any x ∈ X . Choose δ > 0 such that 2Qδ|F |< κ and |g(y)−
g(z)|< κ for any y, z ∈ X with ρ(y, z) <

√
δ. Let E be a (ρ∞, ε)-separated subset

of Map(ρ, F, δ, σ ). For each ϕ ∈ E we denote by 3ϕ the set of all a ∈ [d] such that
ρ(ϕ(ta), tϕ(a)) <

√
δ for all t ∈ F . Then |3ϕ | ≥ (1− |F |δ)d and so

exp
( d∑

a=1

(g(sϕ(a))− g(ϕ(sa)))

)
= exp

(∑
a∈3ϕ

(g(sϕ(a))− g(ϕ(sa)))

)
exp

(∑
a /∈3ϕ

(g(sϕ(a))− g(ϕ(sa)))

)
≤ exp(κd) exp(2Q|F |δd).

Therefore, ∑
ϕ∈E

exp
( d∑

a=1

( f + g ◦ αs − g)(ϕ(a))

)

=

∑
ϕ∈E

exp
( d∑

a=1

f (ϕ(a))

)
exp

( d∑
a=1

(g(sϕ(a))− g(ϕ(sa)))

)

≤

∑
ϕ∈E

exp
( d∑

a=1

f (ϕ(a))

)
exp(κd) exp(2Q|F |δd).

Thus

log Mε
6,∞( f + g ◦ αs − g, X, G, ρ, F, δ, σ )

≤ log Mε
6,∞( f, X, G, ρ, F, δ, σ )+ κd + 2P|F |δd

≤ log Mε
6,∞( f, X, G, ρ, F, δ, σ )+ 2κd,

and hence

Pε6,∞( f + g ◦ αs − g, X, G, ρ, F)≤ Pε6,∞( f, X, G, ρ, F)+ 2κ

for any non-empty finite subset F of G, ε > 0 and κ > 0. Therefore,

P6,∞( f + g ◦ αs − g, X, G, ρ)≤ P6,∞( f, X, G, ρ)+ 2κ,

for any κ > 0.
Similarly, from

exp
( d∑

a=1

(g(sϕ(a))− g(ϕ(sa)))

)
= exp

(∑
a∈3ϕ

(g(sϕ(a))− g(ϕ(sa)))

)
exp

(∑
a /∈3ϕ

(g(sϕ(a))− g(ϕ(sa)))

)
≥ exp(−κd) exp(−2Q|F |δd),

we get
P6,∞( f + g ◦ αs − g, X, G, ρ)≥ P6,∞( f, X, G, ρ)− 2κ,

for any κ > 0. Therefore,

P6,∞( f + g ◦ αs − g, X, G, ρ)= P6,∞( f, X, G, ρ).
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(ix) If a1, . . . , ak are positive numbers with
∑k

i=1 ai = 1 then
∑k

i=1 ac
i ≤ 1 when

c ≥ 1, and
∑k

i=1 ac
i ≥ 1 when c ≤ 1. Hence if b1, . . . , bk are positive numbers then

k∑
i=1

bc
i ≤

( k∑
i=1

bi

)c

when c ≥ 1,

and
k∑

i=1

bc
i ≥

( k∑
i=1

bi

)c

when c ≤ 1.

Therefore, if E is a finite subset of Map(ρ, F, δ, σ ) we have∑
ϕ∈E

exp
(

c
d∑

j=1

f (ϕ( j))

)
≤

(∑
ϕ∈E

exp
( d∑

j=1

f (ϕ( j))

))c

when c ≥ 1,

and ∑
ϕ∈E

exp
(

c
d∑

j=1

f (ϕ( j))

)
≥

(∑
ϕ∈E

exp
( d∑

j=1

f (ϕ( j))

))c

when c ≤ 1.

Then (ix) follows.
(x) From (iv) and (ix) we get (x). 2

Let B(X) be the σ -algebra of Borel subsets of X . Recall that a finite signed measure is
a map µ : B(X)→ R satisfying

µ

( ∞⋃
i=1

Ai

)
=

∞∑
i=1

µ(Ai ),

whenever {Ai }
∞

i=1 is a pairwise disjoint collection of members of B(X).
Now we prove a sufficient condition for a finite signed measure to be a member

of MG(X), using topological pressure. It is known for the case of Z-actions [25,
Theorem 9.11] and we follow the proof there.

THEOREM 6.2. Assume that h6(X, G) 6= ±∞. Let µ : B(X)→ R be a finite signed
measure. If

∫
X f dµ≤ P6( f, X, G) for all f ∈ C(X), then µ ∈ MG(X).

Proof. Suppose f ≥ 0. If κ > 0 and n > 0 we have∫
n( f + κ) dµ = −

∫
−n( f + κ) dµ≥−P6(−n( f + κ), X, G)

≥ −[h6(X, G)+max(−n( f + κ))] by Proposition 6.1(iv)

= −h6(X, G)+ n min( f + κ)

> 0 for large n.

Therefore
∫
( f + κ) dµ > 0 and hence

∫
f dµ≥ 0. Thus µ takes only non-negative

values.
If n ∈ Z then ∫

n dµ≤ P6(n, X, G)= h6(X, G)+ n,

so that µ(X)≤ 1+ h6(X, G)/n if n > 0 and hence µ(X)≤ 1, and µ(X)≥ 1+
h6(X, G)/n if n < 0 and hence µ(X)≥ 1. Therefore µ(X)= 1.
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Lastly we show µ ∈ MG(X). Let s ∈ G, n ∈ Z and f ∈ C(X). By Proposition 6.1(viii),
one has

n
∫
( f ◦ αs − f ) dµ≤ P6(n( f ◦ αs − f ), X, G)= h6(X, G).

If n > 0 then dividing both sides by n and letting n go to∞ yields
∫
( f ◦ αs − f ) dµ≤

0, and if n < 0 then dividing both sides by n and letting n go to −∞ yields
∫
( f ◦

αs − f ) dµ≥ 0. Therefore
∫

f ◦ αs dµ=
∫

f dµ, for any f ∈ C(X), s ∈ G. Thus
µ ∈ MG(X). 2

In the case G is amenable, as a consequence of the variational principle for topological
pressure, the converse of Theorem 6.2 is also true; see for example [25, Theorem 9.11] for
the case G = Z. Thus, it is natural to ask the following question.

Question 6.3. Let a countable sofic group G act continuously on a compact metrizable
space X , 6 a sofic approximation sequence of G and µ ∈ MG(X). Do we have∫

X
f dµ≤ P6( f, X, G) for all f ∈ C(X)?

Indeed, when G is a general countable sofic group, we only need to consider the case
h6,µ(X, G)=−∞ since if h6,µ(X, G) 6= −∞ then by Theorem 1.2 we obtain∫

X
f dµ≤ P6( f, X, G) for all f ∈ C(X).
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