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Abstract

In this paper, we determine the group of contact transformations modulo contact
isotopies for Legendrian circle bundles over closed surfaces of non-positive Euler
characteristic. These results extend and correct those presented by the first author
in a former work. The main ingredient we use is connectedness of certain spaces of
embeddings of surfaces into contact 3-manifolds. This connectedness question is also
studied for itself with a number of (hopefully instructive) examples.

Introduction

In this paper, we study contact transformations of 3-manifolds which are circle bundles equipped
with contact structures tangent to the fibers. The main example of such a manifold is the unit
cotangent bundle V = T ∗1 S of a surface S, endowed with its canonical contact structure ξ:
this contact manifold is also called the manifold of cooriented contact elements over S. Other
examples are obtained as follows: for any positive integer d dividing |2g−2| where g is the genus
of S, the manifold V admits a d-fold fibered cyclic cover Vd and the pullback ξd of ξ on Vd is a
contact structure tangent to the fibers of Vd over S. It is a nice and easy observation that all
Legendrian circle bundles are of this form (see [Lut83, p. 179]).

Our goal here is to determine the contact mapping class group of (Vd, ξd), namely the
group π0D(Vd; ξd), where D(Vd; ξd) denotes the group of contact transformations of (Vd, ξd)
(diffeomorphisms preserving the contact structure with its coorientation). This group has an
obvious homomorphism to the usual (smooth) mapping class group π0D(Vd) (where D(Vd)
consists of all diffeomorphisms of Vd) which has been computed in [Wal67]. By standard fibration
results (see § 1), the kernel of this homomorphism is tightly related to the fundamental group
of the isotopy class of ξd, i.e. the connected component of ξd in the space CS(Vd) of all contact
structures on Vd.

Our main result is the following theorem, in which Vd is endowed with any principal circle
bundle structure inherited from one on V = T ∗1 S.

Theorem (Theorem 2.5, Corollary 2.6, and Theorem 2.9). Let S be a closed, connected,
orientable surface of genus g > 1 and d a positive integer dividing 2g−2. Denote by Rt : Vd → Vd
the action of 2πt ∈ R/2πZ by rotation along the fibers. Then:

– the fundamental group π1(CS(Vd), ξd) is infinite cyclic and generated by the loop (Rt)∗ξd,
t ∈ [0, 1/d];
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On the contact mapping class group of Legendrian circle bundles

– the kernel of the natural homomorphism

π0D(Vd; ξd) → π0D(Vd)

is the cyclic group Z/dZ spanned by the contact mapping classes of the deck transformations
of Vd over T ∗1 S.

In the torus case, g = 1, Geiges and Gonzalo Pérez proved in [GG04, Theorem 2.1], also
using topological methods, that the loop appearing in the previous theorem generates an infinite
cyclic group in π1(CS, ξd) (but they did not prove that this cyclic subgroup is the full group).
Bourgeois reproved this using contact homology in [Bou06, Proposition 2]. Then Geiges and
Klukas in [GK14] proved the theorem when g = 1 and d = 1.

As a direct consequence of the theorem above, we obtain the following result.

Corollary (Corollary 2.8). Let S be a closed orientable surface of genus g > 2. Then the
natural homomorphism

π0D(S) → π0D(T ∗1 S; ξ)

induced by the differential is an isomorphism.

This corollary is stated as [Gir01b, Theorem 1] but the ‘proof’ given there contains a mistake.
See § 3.1 for a detailed erratum and § 3.2 for several related examples.

In the case g = 1, each manifold Vd is diffeomorphic to T3 = (R/Z)3 fibering over S = T2 by
the projection (x, y, z) 7→ (x, y), and its contact structure ξd can be defined by

cos(2dπz) dx− sin(2dπz) dy = 0, x, y, z ∈ R/Z.

Then the results of [Gir94, Gir99] about the so-called ‘pre-Lagrangian tori’ readily imply that
the image of the obvious homomorphism

π0D(T3, ξd) → π0D(T3) = SL3(Z)

is the subgroup Π of transformations preserving Z2 × {0} ⊂ Z3 (see also [EP94]). Therefore, we
have the following result.

Corollary (Theorem 2.9). The induced homomorphism π0D(T3, ξ1) → Π is an isomorphism.

Finally, for g = 0, an unpublished result of Fraser shows that the contact transformation
group of the standard projective 3-space (namely, the unit cotangent bundle of the 2-sphere) is
connected. This completes the list of contact mapping class groups for unit cotangent bundles
of closed orientable surfaces.

1. Natural fibrations in contact topology

For any compact manifold V with (possibly empty) boundary, we denote by D(V, ∂V ) the group
of diffeomorphisms of V relative to a neighborhood of the boundary. When the boundary of V
is empty, we sometimes drop ∂V from our notation.

Lemma 1.1. Let (V, ξ) be a compact contact manifold. The natural map

D(V, ∂V ) → D(V, ∂V ) · ξ, φ 7→ φ∗ξ,

is a locally trivial fibration whose fiber is the contact transformation group D(V, ∂V ; ξ).
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Proof. By the classical Cerf–Palais fibration criterion (see [Cer91, Lemma 2, p. 240, § 0.4.4] or
[Pal60, Theorem A]), it suffices to show that the above map admits a continuous local section
near every point ξ0 ∈ D(V, ∂V ) · ξ. Choose a vector field ν transverse to ξ0 and observe that ξ0
has a convex open neighborhood U in D(V, ∂V ) ·ξ which consists of contact structures transverse
to ν. Then Gray’s theorem associates to any contact structure ξ1 ∈ U an isotopy φt ∈ D(V, ∂V ),
t ∈ [0, 1], such that φ0 = Id and φt∗ξ0 = (1− t)ξ0 + tξ1 for all t ∈ [0, 1]. Moreover, one can easily
arrange that this isotopy varies continuously with ξ1. Indeed, it is uniquely determined by a
smooth path σt of sections V → TV/ξt and, if this path depends continuously on ξ1 (if σt is
identically 0, for instance), then so does the corresponding isotopy, and the map ξ1 7→ φ1 gives
the required continuous section. 2

Assume from now on that the contact manifold (V, ξ) has dimension three, and let F be a
compact orientable surface properly embedded in V . Recall that the characteristic foliation ξF
of F in (V, ξ) is the (singular) foliation spanned by the line field ξ ∩ TF (the singularities are
the points where ξ = TF ). We denote by:

– P(F, V ) the space of proper embeddings F → V which coincide with the inclusion ι : F → V
near ∂F ;

– Po(F, V ) ⊂ P(F, V ) the connected component of the inclusion ι;

– P(F, V ; ξ) ⊂ P(F, V ) the subspace of embeddings ψ which induce the same characteristic
foliation as the inclusion, i.e. satisfy ξ ψ(F ) = ψ∗(ξF );

– Po(F, V ; ξ) the intersection Po(F, V ) ∩ P(F, V ; ξ).

The same standard tools as in the proof of Lemma 1.1 give the following result.

Lemma 1.2. Let (V, ξ) be a compact contact manifold of dimension three. For every properly
embedded surface F ⊂ V , the restriction map

D(V, ∂V ; ξ) → P(F, V ; ξ), φ 7→ φ|F ,

is a locally trivial fibration over its image.

Proof. Each embedding ψ0 ∈ P(F, V ; ξ) which lies in the image is also in the image of the
restriction map

D(V, ∂V ) → P(F, V ), φ 7→ φ|F ,

which is a locally trivial fibration by the Cerf–Palais fibration theorem. As a result, there exists
a neighborhood V of ψ0 in P(F, V ; ξ), and a continuous extension map V → D(V, ∂V ) which
associates to every embedding ψ1 ∈ V a diffeomorphism φ1 ∈ D(V, ∂V ) such that ψ1 = φ1|F . Using
Gray’s theorem, and the fact that embeddings in V induce the same characteristic foliation, it is
easy to correct this extension map so that it takes values in D(V, ∂V ; ξ). We conclude applying
again the Cerf–Palais fibration criterion. 2

Remark 1.3. The above lemma is a typical result where it is useful to work relatively to a
neighborhood of the boundary and not just to the boundary itself. Indeed, any diffeomorphism
relative to both ∂V and a properly embedded surface F is tangent to the identity along ∂F , and
so the fibration property fails in this case. However, since the inclusion of D(V, ∂V ; ξ) into the
group of contact transformations relative to the boundary is a homotopy equivalence, this does
not matter.

296

https://doi.org/10.1112/S0010437X16007776 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X16007776


On the contact mapping class group of Legendrian circle bundles

We now recall how the theory of ξ-convex surfaces can be used to study the homotopy type
of P(F, V ; ξ) (see [Gir91, Gir01b]). Let F be a compact orientable surface properly embedded
in (V, ξ) with (possibly empty) Legendrian boundary; F is ξ-convex if it admits a homogeneous
neighborhood, namely a product neighborhood

U := F × R ⊃ F = F × {0} with ∂U = ∂F × R ⊂ ∂V,

in which the vector field ∂t, t ∈ R, preserves ξ. The points p ∈ F where ∂t(p) ∈ ξ then form a
multi-curve Γ called the dividing set of F associated with U . This curve depends on U and its
product structure, but its isotopy class does not, and is uniquely determined by the foliation
ξF : specifically, Γ is the unique multi-curve (up to isotopy) which avoids the singularities of
ξF , is transverse to ξF and divides F into regions where the dynamics of ξF is alternatively
expanding and contracting (see [Gir91, Gir01b] for more details). It follows that the curves
dividing a given singular foliation on a surface, in the above sense, form a contractible space.
Among them, the dividing sets associated with all possible homogeneous neighborhoods U of F
are those intersecting ∂F at the points where ξ is tangent to ∂V . Moreover, we have the following
proposition (see [Gir01b, Lemmas 6 and 7]).

Proposition 1.4. Let F be a ξ-convex surface, U a homogeneous neighborhood, and Γ the
associated dividing set.

(a) The space F (F ; Γ) of singular foliations on F which are tangent to ∂F and admit ΓU as
a dividing set is an open contractible neighborhood of ξF in the space of all singular foliations
on F .

(b) There exists a continuous map F (F ; Γ) → P(F, V ), σ 7→ ψσ, with the following
properties:

(i) ψξF is the inclusion F → V ;

(ii) ψσ(F ) is contained in U = F × R and transverse to the contact vector field ∂t for all
σ ∈ F (F ; Γ);

(iii) ξ ψσ(F ) = ψσ(σ) for all σ ∈ F (F ; Γ).

(c) Let P(F, V ; Γ) denote the space of embeddings ψ ∈ P(F, V ) such that ψ(F ) is ξ-convex
with dividing set ψ(Γ). Then the inclusion P(F, V ; ξ) → P(F, V ; Γ) is a homotopy equivalence.

We will also need the following result which shows that the homotopy type of D(V, ∂V ; ξ) is
locally constant when ∂V is ξ-convex (see [Gir01b, Proposition 8].

Proposition 1.5. Let V be a compact 3-manifold, ∆ a multi-curve on ∂V , and CS(V,∆)
the space of contact structures ξ on V for which ∂V is ξ-convex with dividing set ∆. For
ξ ∈ CS(V,∆), the homotopy type of D(V, ∂V ; ξ) depends only on the connected component of
CS(V ; ∆) containing ξ.

2. Legendrian circle bundles over surfaces

2.1 The general case
In this section, we consider a compact oriented surface S which is neither a sphere nor a torus.
The torus case will be treated in § 2.2. Actually, using results of [Mas08], the following discussion
can be carried over to orbifolds.
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As in the introduction, (Vd, ξd) denotes the d-fold fibered cyclic cover of the unit cotangent

bundle V := V1 = T ∗1 S, equipped with the pullback of the canonical contact structure ξ of V .

In any trivialization of π : Vd → S over a subsurface R ⊂ S with non-empty boundary, the

contact structure ξd can be described as follows: if J denotes the complex structure on S induced

by our choice of a principal bundle structure on T ∗1 S, then the restriction of ξd to Vd|R ' R× S1
has the form

ξλ,d = ker(cos(dθ)λ+ sin(dθ)λ ◦ J), θ ∈ S1,

where λ is a non-singular 1-form on R. In practice, we will take R equal to S if S has non-empty

boundary, and to S with an open disk removed if S is closed.

Now observe that the preimage F := π−1(γ) of any properly embedded curve γ in S is a

ξd-convex surface in Vd. Indeed, any vector field X in S transverse to γ (and tangent to ∂S)

lifts to a contact vector field X̄ transverse to F (and tangent to ∂Vd). The dividing set of ξdF

associated with X̄ is the set of points in F where ξd projects down (by the differential of π) to

the line spanned by X.

If γ is contained in the subsurface R, the trivialization of Vd|R induces a diffeomorphism

F = π−1(γ) ' γ×S1. Then the dividing set, provided all its components are consistently oriented

(as parallel curves), represents the homology class 2(d, x−1) ∈ Z2 = H1(γ×S1), where x denotes

the index of λ along γ.

The following proposition can be proved using [Gir00, Lemma 4.7] (a special case of the

semi-local Bennequin inequality proved later as [Gir01a, Proposition 4.10]) exactly as in [Gir01a,

Lemma 3.9] which dealt with circle bundles without boundary.

Proposition 2.1. Let F be a torus fibered over a homotopically essential circle in S, and Γ a

dividing set for ξdF . For any isotopy ϕ such that ϕ1(F ) is also ξd-convex, the foliation ξdϕ1(F )

is divided by a collection of curves isotopic to the components of ϕ1(Γ).

We now turn to spaces of embeddings of surfaces. The following lemma is useful to prove the

existence of contact transformations which are smoothly but not contact isotopic to the identity.

Lemma 2.2. Let T be a fibered torus over a homotopically non-trivial circle C in S, and

i : T → Vd the inclusion map. Let Rt be the action of e2iπt on Vd. For any non-zero integer

k in Z, the path γk : [0, 1] → Po(T, Vd) defined by γk(t) = Rkt/d ◦ i is non-trivial in π1(Po(T, Vd),
Po(T, Vd; ξd)).

For any integer k between 1 and d− 1, the action of Rk/d on π0(Po(T, Vd; ξd)) is non-trivial.

The above lemma will be reduced to the following statement.

Proposition 2.3 [Ghi06, Proposition 7.1]. In (T2 × R, ker(cos(2nπz) dx − sin(2nπz) dy)), the

Legendrian circles {0} × S1 × {0} and {0} × S1 × {k} are not contact isotopic for any k 6= 0.

Alternatively, one could use the stronger result due to Eliashberg et al. [EHS95] saying

that, in (T3, ker(cos(2nπz) dx − sin(2nπz) dy)), the Legendrian circle {0} × S1 × {0} cannot be

displaced from the pre-Lagrangian torus S1×S1×{0} by a contact isotopy. However, this result

uses holomorphic curves in symplectizations so it has a different flavor from the techniques we

use in this paper.
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Proof of Lemma 2.2. We first explain how to reduce the first statement to a statement in a
thickened torus. Suppose for contradiction that there is a path j in Po(T, Vd; ξd) from the inclusion
to γk(1). The path lifting property of the fibration D(Vd; ξd) → P(T, Vd; ξd) of Lemma 1.2 gives
a contact isotopy ϕt such that γk(t) = ϕt ◦ i. Let p : Ŝ → S be the covering map associated
to the subgroup generated by C in π1(S), and let V̂ be the induced circle bundle over Ŝ. We
denote by T̂ the compact component of p−1(T ). The contact isotopy ϕ lifts to a contact isotopy
ϕ̂ for the induced contact structure p∗ξd. The interior of Ŝ is an open annulus, and contains a
closed sub-annulus A such that ϕ̂t(T̂ ) stays above A for all t. One can then cut off ϕ̂t, using
Libermann’s theorem from [Lib59], to get a contact isotopy with support in A×S1. In H1(T̂ ,Z),
we consider a Z-basis (S, F ), where F is the homology class of fibers. The torus T̂ has circles
of singularities which can be oriented consistently to get a total homology class 2(dS + mF ),
where m is an unknown integer. After pulling back everything under a d-fold covering map from
A to itself, we can assume there are exactly 2d circles of singularities. The circle bundle over
A then embeds into T3 equipped with ker(cos(2dπz) dx− sin(2dπz) dy), so it is sufficient to get
a contradiction there. Note that we do not make any claim concerning how the circle bundle
structure embeds inside T3 and we will not use it.

We now consider the covering map T2 × R → T3 sending (x, y, s) to (x, y, s mod Z). The
contact isotopy ϕ̂ lifts to a contact isotopy contradicting Proposition 2.3.

The statement about π0(Po(T, Vd; ξd)) follows immediately from what we proved and the long
exact sequence of the pair (Po(T, Vd),Po(T, Vd; ξd)), since the path corresponding to k between 1
and d− 1 does not come from a loop in Po(T, Vd). 2

Proposition 2.4. If T is a fibered torus over a non-separating embedded circle in S, then
the group of deck transformations of Vd → V acts freely and transitively on π0(Po(T, Vd; ξd)).
If A is a fibered annulus over a non-separating properly embedded arc in S, then Po(A, Vd; ξd) is
connected.

The following proof will need one more technical ingredient from the study of contact
structures on circle bundles: the twisting number. Fibers in Vd have a canonical framing coming
from vector fields along the fiber which project to some constant vector on the base. If L is
any Legendrian curve isotopic to a fiber, we call twisting number of L the number t(L) of turns
made by ξd along L compared to the canonical framing transported by isotopy from some fiber,
see [Gir01a, p. 227] for further discussion. As explained in [Gir01a, Lemma 3.6], it follows from
Bennequin’s inequality in R3 that t(L) 6 −d for all L.

Proof. We first prove connectedness of Po(A, Vd; ξd). Let (jt)t∈[0,1] be an isotopy of embeddings
of A which coincides with the inclusion map on a neighborhood of ∂A. Let Γ be a dividing set
on A associated to some homogeneous neighborhood. According to Proposition 1.4(c), we only
need to prove that j is homotopic to a path in Po(A, Vd; Γ).

We use Colin’s discretization technique [Col97], which relies on the following observation.
We can find times t0 = 0 < t1 < · · · < tk = 1 such that, for t in [ti, ti+1], the annuli jt(A) are
all contained in some pinched product: Ai × [0, 1] with {x} × [0, 1] collapsed to a point for x in
a neighborhood of ∂Ai. The sub-path jt, t ∈ [ti, ti+1] is then homotopic, with fixed end points,
to the concatenation of two paths whose common extremity has image Ai × {0}. In addition,
genericity of ξd-convex surfaces allows us to assume Ai×{0} is ξd-convex. So we have replaced j
by the concatenation of 2k paths of embeddings sweeping out pinched products. We can assume
there is only one such path, and the general case follows by induction.
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The classification of tight contact structures on solid tori [Gir00, Hon00] guarantees that, in
this situation, j is homotopic to an isotopy in Po(A, Vd; Γ) as soon as A′ = j1(A) is divided by a
curve Γ′ isotopic to j1(Γ). So we prove that fact.

We first remark that both Γ and Γ′ are made of 2d traversing curves, because otherwise we
could use the realization lemma (Proposition 1.4(b)) to produce a Legendrian circle L isotopic
to the fibers with twisting number t(L) > −d. We now need two separate arguments, depending
on the value of d.

Suppose first that d is greater than one. Let A′′ and A′′′ be annuli isotopic to A′ through
ξd-convex surfaces and such that the annuli A, A′, A′′, A′′′ pairwise bound pinched products,
and there is an arc going from A to A′′′ in the pinched product they bound and meeting A′ and
then A′′ in its interior. Near their boundary, all of these annuli are fibered over arcs in S. Let
T × [0, 1] be a thickened torus with ξd-convex boundary T0 t T1, such that T0 is a smoothing of
A ∪ A′′′, T1 is a smoothing of A′ ∪ A′′, and those tori are fibered in the smoothing region. We
identify the first homology groups of T0 and T1 using the product T × [0, 1], and fix an integer
basis (S, F ) where F is the class coming from fibers of V .

If Γ′ is not isotopic to j1(Γ), then, after orienting all dividing curves of T0 and T1 in the
same way, their total homology class is 2(d, x0) on T0 and 2(d, x1) on T1 with x1 6= x0. Pick’s
formula, proved in [Pic99], ensures that the triangle with vertices (0, 0), (d, x0) and (d, x1) in
H1(T ;R) contains integer points outside its vertical edge. If (a, b) is such a point, then a < d.
The classification of tight contact structures on thickened tori then gives a ξd-convex torus in
T × [0, 1] divided by a collection of parallel curves which can be oriented all in the same way
to have total homology class 2(a, b). The realization lemma gives again a Legendrian curve with
twisting number t = −a > −d, hence a contradiction.

We now handle the case d = 1. In particular (Vd, ξd) is isomorphic to (V, ξ). Adding 1-handles,
one can easily embed S into a surface S′ with connected boundary so that ξ extends to a contact
structure tangent to the fibers of S′×S1 and, of course, the projection of A stays non-separating
in S′. So we assume S has connected boundary. Let S′′ be the surface obtained by gluing a disk
along the boundary of S. The description of the contact structure ξ in terms of a 1-form λ on
S allows us to understand the characteristic foliation ξ∂V in terms of the index of λ along ∂S.
The latter is given by the Poincaré–Hopf theorem, so it is fixed. Using this information, we can
embed (V, ξ) into the space V ′′ of contact elements of S′′, with its canonical contact structure.
In V ′′, one can extend A and A′ to isotopic non-separating tori, which coincide outside V . Both
tori are divided by two curves, and Proposition 2.1 guarantees those curves are isotopic. This
implies that Γ′ is isotopic to j1(Γ).

We now turn to the case of a torus T fibered over a non-separating circle C in S. We fix a
dividing set Γ of ξdT . Let j be any isotopy of embeddings of T in Vd such that T ′ = j1(T ) is
ξd-convex. Proposition 2.1 ensures that any component of any dividing set of ξdT

′ is isotopic in
T ′ to a component of j1(Γ). However, there always exist isotopies of T which change the number
of dividing curves and, as explained in § 3, there is no general result allowing us to get rid of
them. This is where we need C to be non-separating, and not only homotopically non-trivial.
The idea, which was born in [Ghi05, Proposition 5.4] and further developed in [Mas08, Lemma
8.5], is to consider a fibered torus F intersecting T along one fiber. Then for any isotopy ϕt, one
can discretize the movement of F while constructing an isotopy of T through ξd-convex surfaces.
There is no boundary in [Mas08], but one can check that it does not change anything here. This
trick constructs a contact isotopy ϕ′t such that ϕ′1(T ) = ϕ1(T ). Of course parametrizations do
not match in general: (ϕ′1)

−1◦ϕ1 induces a self-diffeomorphism of T which may fail to be isotopic
to the identity among diffeomorphisms preserving ξdT . However, after composing ϕ′1 by a deck
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transformation, we can assume that each circle of singularities of T is globally preserved and,
after an ultimate contact isotopy, we get a path in Po(T, Vd; ξd). So the deck transformations
group acts transitively on π0(Po(T, Vd; ξd)). The last part of Lemma 2.2 states that this action is
also free. 2

Theorem 2.5. If S is closed, then the kernel of the canonical homomorphism π0D(Vd, ξd) →

π0D(Vd) is the cyclic group of deck transformations of Vd over V . If V has non-empty boundary,
then π0D(Vd, ∂V ; ξd) → π0D(Vd, ∂Vd) is injective.

Proof. We first assume V has non-empty boundary and prove that the map π0D(Vd, ∂Vd; ξd) →

π0D(Vd, ∂Vd) is injective. The proof proceeds by induction on

n(S) = −2χ(S)− β(S) = β(S) + 4g(S)− 4,

where χ(S) and g(S) are the Euler characteristic and genus of S and β(S) is the number of
connected components of ∂S. So n(S) > −3 with equality when S is a disk.

We first explain the induction step so we assume n(S) > −3. Let ϕ be a contactomorphism of
Vd relative to some neighborhood U of ∂Vd, and smoothly isotopic to the identity relative to U .
Let a be a properly embedded non-separating arc in S, and denote by A the annulus fibered over
a, and i : A → Vd the inclusion map. According to Proposition 2.4, Po(A, Vd, ξd) is connected.
Hence, the path lifting property of the fibration Do(Vd, ∂Vd; ξd) → Po(A, Vd; ξd) from Lemma 1.2
implies that ϕ is contact isotopic to some ϕ′ which is relative to A and U . Using Remark 1.3, we
can assume ϕ′ is relative to a neighborhood of ∂Vd ∪A which is fibered over some neighborhood
W of a∪ ∂S in S. We cut S along a, and round the corners inside W to get a subsurface S′ ⊂ S
with n(S′) < n(S). By induction hypothesis applied to π−1(S′), ϕ′ is contact isotopic to the
identity so the induction step is complete.

The induction starts with the disk case, which is already explained with all details in [Gir01b,
p. 345]. The idea is the same as for the induction step, but the cutting surface in the solid torus
Vd is a meridian disk. There are no such disks with Legendrian boundary in Vd but one can use
the realization lemma (Proposition 1.4) to deform ξd near ∂Vd until such a disk exists. This does
not change the homotopy type of D(Vd, ∂Vd; ξd) according to Proposition 1.5. A variation on
Colin’s result about embedding of disks in [Col99, Theorem 3.1] then replaces Proposition 2.4,
and the final isotopy is provided by Eliashberg’s result in [Eli92] that π0D(B3, ∂B3; ξ) is trivial
for the standard ball.

We now turn to the case where Vd is closed. We first prove that the group of deck
transformations injects into π0D(Vd; ξd). Let C be a non-separating circle in S and T the fibered
torus over C. Denote by i the inclusion of T in Vd. Proposition 2.4 guarantees that the action of
a non-trivial deck transformation f on π0(Po(T, Vd; ξd)) is non-trivial. Hence, f is non-trivial in
π0D(Vd; ξd).

We now prove surjectivity. Let ϕ be a contactomorphism of Vd which is smoothly isotopic
to the identity. Proposition 2.4 gives a deck transformation f such that f ◦ ϕ ◦ i is isotopic to i
in Po(T, Vd; ξd). As above, this implies that f ◦ ϕ is contact isotopic to a contactomorphism ϕ′

which is relative to an open fibered neighborhood U of T . The circle bundle Vd\U has non-empty
boundary hence we know that ϕ′ is contact isotopic to identity. 2

Corollary 2.6. Assume that Vd has empty boundary and denote by CS the space D(Vd) · ξd
of contact structures isomorphic to ξd on Vd. Let Rt denote the action of e2iπt ∈ S1 on Vd. The
fundamental group π1(CS, ξd) is an infinite cyclic group generated by the loop t 7→ (Rt/d)∗ξd.
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Proof. The fibration D(Vd) → CS of Lemma 1.1 gives the exact sequence

π1(D(Vd), Id) → π1(CS, ξd) → π0(D(Vd; ξd)) → π0(D(Vd)).

We know from [Lau74, Hat76] that π1(D(Vd), Id) is an infinite cyclic group generated by the
loop t 7→ Rt, t ∈ [0, 1]. Lemma 2.2 implies that this group injects into π0(Do(Vd),Do(Vd; ξd)) '
π1(CS, ξd). The result then follows from Theorem 2.5 describing the kernel of π0(D(Vd; ξd)) →

π0(D(Vd)). 2

Before coming back to the special case of V = V1, we note one more general corollary of
Proposition 2.1.

Lemma 2.7. A diffeomorphism of Vd which is fibered over the identity is isotopic to a
contactomorphism only if it is isotopic to the identity.

Proof. Let f be a diffeomorphism of Vd fibered over the identity of S. In order to guarantee
that f is isotopic to the identity, it is enough to check that, for every torus T fibered over
a homotopically essential circle, the restriction of f to T preserves an isotopy class of curves
which is different from the class of fibers. Assume that f is isotopic to a contactomorphism.
This condition means that ξ′d = f∗ξd is isotopic to ξd. Since f is fibered, the contact structure
ξ′d is also tangent to the fibers. Proposition 2.1 then implies that, for each torus T as above, f
preserves the isotopy class of dividing curves. Those dividing curves are homotopically essential,
and not isotopic to fibers. Hence, f is isotopic to the identity. 2

Corollary 2.8. The lifting map from π0D(S) to π0D(V, ξ) is an isomorphism.

Proof. We denote by p the projection from V to S, and by D(S, ∂S) the group of diffeomorphisms
of S relative to a neighborhood of ∂S. In the sequence of maps

π0D(S, ∂S) → π0D(V, ∂V ; ξ) → π0D(V, ∂V )

the composite map is known to be injective (this follows from considerations of fundamental
groups), so the first map is also injective. It remains to prove that it is surjective. Let ϕ
be a contactomorphism. We want to prove that ϕ is contact isotopic to the lift of some
diffeomorphism of S. According to Waldhausen [Wal67, Satz 10.1], ϕ is smoothly isotopic to
a fibered diffeomorphism f : there exists an isotopy ψ, and a diffeomorphism f̄ in D(S, ∂S), such
that f = ψ1 ◦ϕ and p ◦ f = f̄ ◦ p. We will prove that ϕ is contact isotopic to the lift Df̄ . We first
note that f ◦D(f̄)−1 is fibered over the identity, and is smoothly isotopic to a contactomorphism
(through the path t 7→ ψ1−t ◦ ϕ ◦ D(f̄)−1). Lemma 2.7 then guarantees that f ◦ D(f̄)−1 is
smoothly isotopic to the identity. Hence, ϕ is smoothly isotopic to Df̄ , hence contact isotopic to
Df̄ according to Theorem 2.5. 2

2.2 The torus case
We now explain how the previous discussion can be modified to handle the case of a torus base.
On T3 = (R/Z)3 with coordinates (x, y, z), we set

ξd = ker(cos(2dπz) dx− sin(2dπz) dy).

The case d= 1 corresponds to the contact element bundle of T2 while higher values of d come from
self-covering maps unwrapping the fibers. We denote by Rt the map (x, y, z) 7→ (x, y, z + 2πt).

302

https://doi.org/10.1112/S0010437X16007776 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X16007776


On the contact mapping class group of Legendrian circle bundles

Theorem 2.9. On (T3, ξd):

(1) a diffeomorphism is isotopic to a contactomorphism if and only its action on H2(T3)
preserves the homology class, up to sign, of the pre-Lagrangian torus {z = 0};

(2) the kernel of π0D(T3; ξ) → π0D(T3) is isomorphic to the cyclic group of order d−1 generated
by (x, y, z) 7→ (x, y, z + 1/d);

(3) the fundamental group π1(CS(T3), ξd) is an infinite cyclic group generated by the loop
t 7→ (Rt/d)∗ξd, t ∈ [0, 1].

The first point comes directly from the classification of isotopy classes of tight contact
structures on T3, that we now recall. The first result, proved in [Gir94], is that all incompressible
pre-Lagrangian tori in (T3, ξd) are isotopic to {z = 0}. In particular, they share a common
homology class which is well defined up to sign in H2(T3). Next recall that the torsion of a
contact manifold (V, ξ) was defined, in [Gir00, Definition 1.2], to be the supremum of all integers
n > 1 such that there exist a contact embedding of

(T 2 × [0, 1], ker(cos(2nπz) dx− sin(2nπz) dy)), (x, y, z) ∈ T 2 × [0, 1]

into the interior of (V, ξ), or zero if no such integer n exists. It follows from [Gir00,
Proposition 3.42] that the torsion of ξd on T3 is d−1. The classification of isotopy classes of tight
contact structure on T3 established in [Gir00] is that any tight contact structure is isomorphic
to some ξd, and two of them are isotopic if and only if they have the same torsion and their
incompressible pre-Lagrangian tori are homologous. The first point of the above theorem follows
from this classification, and the obvious observation that isomorphic contact structures have the
same torsion.

The description of the kernel in the second point has exactly the same proof as in the
preceding section.

The third point is slightly different because π1(D(T3), Id) has rank three. It is generated by
the three obvious circle actions on (S1)3. However, two of these circle actions actually belong to
D(T3; ξd) so that, in the exact sequence

π1(D(T3), Id) → π1(CS, ξd) → π0(D(T3; ξd)) → π0(D(T3))

considered in the proof of Corollary 2.6, the extra generators of π1(D(T3, Id)) are mapped to
trivial elements of π1(CS, ξd), and the end result does not change.

3. Examples of disconnected spaces of embeddings

3.1 Erratum about the reference [Gir01b]
In the proof of [Gir01b, Proposition 10], the assertion following the words Grâce au lemme 14
(namely, the claim that il est possible de trouver des points s0 = 0 < s1 < · · · < sk = 1 tels
que, pour 0 6 i 6 k − 1, les surfaces Fs, s ∈ [si, si+1] soient toutes incluses dans un voisinage
rétractile Ui de Fsi) is wrong. In fact, the statement of Proposition 10 turns out to be wrong
(Proposition 3.5 below provides a counter-example). As a consequence, Lemma 19 and the proofs
of Theorems 1, 3 and 4 are also wrong. Other intermediate results (in particular, Lemma 15 which
is sometimes useful as a complement to contact convexity theory) are not impacted.

To be more explicit, Lemma 14 allows us to assume that each surface Fs has a retractible
neighborhood Us. Each neighborhood Us contains all surfaces sufficiently close to Fs; in other
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words, there exists a positive number εs such that Ft ⊂ Us as soon as |s− t| < εs. The intervals
Js = (s− εs, s+ εs) form an open covering of the segment [0, 1] so this covering admits a finite
subcovering Jsi , 0 6 i 6 k, and the points si can be chosen and indexed so that s0 = 0, sk = 1
and si−1 < si for 1 6 i 6 k. Thus, each Ui = Usi is a retractible neighborhood of Fsi such that
Ui ⊃ Fs for all s with |s − si| < εsi . This does not imply that Ui ⊃ Fs for all s ∈ [si, si+1] and,
in general, it is impossible to force Ui to contain Fsi+1 . Here is an example: assume that Fs is a
convex torus for s /∈ {1/3, 2/3} and that s = 1/3 (respectively s = 2/3) corresponds to the death
(respectively the birth) of a pair of parallel components in the dividing set; then F1/3 cannot
appear in any retractible neighborhood of any Fs with s < 1/3. Indeed [Gir00, Lemma 4.7]
guarantees, in particular, that a homogeneous neighborhood of a torus divided by 2n essential
curve contains no essential torus divided by 2k curves with k < n. In contrast, F2/3 can appear
in a retractible neighborhood of some Fs with 1/3 < s < 2/3, see [Gir00, Lemma 3.31b].

3.2 Disconnected spaces of embeddings
In this section we describe examples of disconnected spaces consisting of smoothly isotopic
embeddings inducing a fixed characteristic foliation. Those examples should be compared with
the connectedness results which were crucial in § 2, and complement the erratum above. More
specifically, we construct disconnected spaces of smoothly isotopic ξ-convex embeddings with a
fixed dividing set, and the former spaces are deformation retracts of the latter by Proposition 1.4.

Proposition 3.1. In S3 equipped with its standard contact structure, let D be an unknotted
immersed disk with a single clasp self-intersection and such that the contact structure is tangent
to D along its boundary (here unknotted means that D has a regular neighborhood which is an
unknotted solid torus, see Figures 1 and 2). Let W be any unknotted solid torus which is a
regular neighborhood of D. Assume that T = ∂W is ξ-convex. The space Po(T, S3; ξ) is not
connected.

Proof. We coorient T so that W is on the negative side of T and we denote by W ′ the solid
torus which is the closure of S3\W . Since ξ orients S3, we also get an orientation on T . This
orientation induces a cyclic ordering on P (H1(T ;R)). We set d = ker(H1(T ) → H1(W )) and
d′ = ker(H1(T ) → H1(W

′)) where maps are induced by inclusion. A direction in H1(T ) distinct
from d and d′ will be called positive if it lies between d and d′, and negative otherwise.

If T1 is any cooriented unknotted torus, then we can repeat the above discussion and, for
any isotopy sending T to T1 (preserving orientations), positive directions will get identified with
positive directions because such isotopies map meridian disks to meridian disks in each solid
torus.

Claim. Any unknotted ξ-convex torus in S3 is divided by a collection of essential closed curves
whose direction is positive.

Proof of claim. Because ξ is tight, we know from [Gir01a, Théorème 4.5] that T is divided by a
collection of parallel homotopically essential circles. We fix a positive basis (µ, µ′) of H1(T ) such
that µ is in d and µ′ is in d′ (using the notation above). Let Γ be a dividing set for T . For some
choice of orientation, the components of Γ have homology class pµ+qµ′ with q > 0. The realization
lemma (recalled as part of Proposition 1.4) allows to perturb T so that the characteristic foliation
ξT has a circle of singularities parallel to Γ. Such a circle L is a Legendrian (p, q) torus knot
along which ξ does not twist compared with T . The Seifert framing of L differs from the framing
coming from T by pq, so that the Thurston–Bennequin invariant of L is −pq. Since the genus of
L is (|p| − 1)(q − 1)/2, the Bennequin inequality gives −pq 6 |p|q − |p| − q. This condition is
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Figure 1. An unknotted immersed disk with a single clasp, sitting inside an unknotted solid
torus.

Figure 2. Lagrangian projection of the boundary of an immersed overtwisted disk in the
standard contact R3.

equivalent to p > 0 and (q − 1)(p − 1) > 1/4 and, since p and q are integer, it is equivalent to
p > 1 and q > 1. 2

We can see S3 as the union of two unknotted curves transverse to ξ and an open interval of
pre-Lagrangian tori whose directions sweep out all positive directions. For each rational positive
direction d and each positive integer n, we can perturb the corresponding pre-Lagrangian torus
to a ξ-convex torus T ′ divided by 2n curves with direction d. So one of those T ′ has the same
dividing set as T up to isotopy. After using once more the realization lemma, we can ensure
that T ′ is the image of T under some embedding j ∈ Po(T, S3; ξ). But the complement of T ′

is universally tight, whereas ξ|W becomes overtwisted in a two-fold cover. So j is not in the
component of the inclusion in Po(T, S3; ξ). 2

Remark 3.2. In order to get the weaker result that some solid torus W satisfies the conclusion of
the above proposition, it is sufficient to observe that the complement of D contains an unknotted
Legendrian knot L entwining D, and define W as the complement of a standard neighborhood
of L. In that case, we already control the dividing set of ∂W by construction. Note also that
the knot L is not isotopic to the canonical Legendrian unknot L0, since the complement of the
later is universally tight. The classification of Legendrian unknots in [EF98] guarantees that L
is stabilization of L0. So, in order to entwine D, one needs a somewhat tortuous Legendrian
unknot.

Next we want to describe examples where we have explicit smooth isotopies among surfaces
which are all ξ-convex except for a finite number of times, and exhibit various behaviors for
those isotopies. We also want to highlight situations where persistent intersection phenomena
occur, and situations where a contact isotopy exists in the ambient manifold, but not inside a
smaller manifold (where a smooth isotopy still exists). For all this we need the following technical
definition.
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Definition 3.3. A discretized isotopy of embeddings of an oriented surface S into a contact
3-manifold (V, ξ) is an isotopy of embeddings j : S × [0, 1] → V such that, for some (unique)
integer n:

– the restriction of j to S × [i/n, (i+ 1)/n] is an embedding for each i from 0 to n− 1;

– all surfaces jt(S) are ξ-convex except when t = i/n + 1/(2n) for some integer i between 0
and n− 1.

Each embedding of S × [i/n, (i+ 1)/n] is called a step of the discretized isotopy. It is called
a forward or backward step depending on whether it is orientation preserving or reversing.

Colin’s idea, described in our proof of Proposition 2.4, combines with [Gir01b, Lemme 15] to
prove that any isotopy of embeddings which starts and ends at ξ-convex embeddings is homotopic,
relative to its end points, to a discretized isotopy.

Any discretized isotopy j defines a sequence of isotopy classes of multi-curves Γ0, . . . ,Γn such
that the characteristic foliation of ji/n(S) is divided by ji/n(Γi).

Our examples below will use facts about S1-invariant contact structures on circle bundles,
which we now recall. Let S be an oriented surface with non-empty boundary, and V = S×S1 seen
as a circle bundle over S. Let Γ be a properly embedded multi-curve on S such that components
of the complement of Γ are labelled by plus or minus, so that adjacent components have different
signs. Lutz proved, in [Lut77], that there is a cooriented S1-invariant positive contact structure
ξ on V which is tangent to fibers exactly along Γ × S1, and positively (respectively negatively)
transverse to fibers over positive (respectively negative) components of S\Γ. One says that Γ is
the dividing set of ξ (it is indeed a dividing set for each surface S × {θ}). Lutz also proved that
two invariant contact structures which agree near ∂V and have the same dividing set are isotopic
relative to ∂V . Let ξ be such a contact structure. One can check that, for any properly embedded
curve γ in S which intersects the dividing set Γ transversely (along a non-empty subset), the
surface γ×S1 is ξ-convex and divided by (γ ∩Γ)×S1. Proposition 1.4 and Bennequin’s theorem
in [Ben83] can be used to prove that ξ is tight if and only if Γ has no homotopically trivial
component or S is a disk and Γ is connected, see [Gir01a, Proposition 4.1b]. In addition, two
tight S1-invariant contact structures on V are isotopic (relative to ∂V ) if and only if their dividing
sets are isotopic (relative to ∂S). This is stated only for closed surfaces in [Gir01a, Théorème
4.4b], but the proof is only easier if the boundary of S is not empty.

Recall from § 2.2 that the contact structures ξd on T3 with coordinates (x, y, z) are defined
by

ξd = ker(cos(2dπz) dx− sin(2dπz) dy)

and they are pairwise non-isomorphic.

Proposition 3.4. In (T3, ξd), let T be the torus {8d z = cosx}. Denote by j0 the inclusion of
T into T3 and by j1 the embedding obtained by restriction to T of the rotation (x, y, z) 7→
(x, y, z + 1/d). Those two embeddings are smoothly isotopic and:

– j0 and j1 induce the same characteristic foliation on T ;

– j0 is not isotopic to j1 among ξd-convex embeddings;

– there is a discretized isotopy from j0 to j1 with only forward steps changing the direction
of dividing curves;

– there is a discretized isotopy from j0 to j1 consisting of four forward steps which change
the number of dividing curves without changing their direction.
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Figure 3. Discretized isotopy of curves lifting to tori in (T3, ξd). Curves lifting to non-convex
tori are dashed.

Proof. Since the rotation map is a contactomorphism, j0 and j1 induce the same characteristic
foliation on T . Assume for contradiction that j0 and j1 are isotopic through ξd-convex surfaces.
Proposition 1.4(c) and Lemma 1.2 then imply that there is a contact isotopy ϕ such that
j1 = ϕ1 ◦ j0. We lift this isotopy to T2 × R which covers T3 by (x, y, s) 7→ (x, y, s mod 2π). We
denote by ϕ′ the lifted isotopy and by T ′ some (fixed) lift of T . We denote by τn the translation
(x, y, s) 7→ (x, y, s+n) and by T[a,b] the compact manifold bounded by τa(T

′) and τb(T
′). Because

T ′ is compact, and contact isotopies can be cut-off, we can assume that ϕ′ is compactly supported.
Then there is some N such that ϕ1 sends T[−N,0] to T[−N,1]. In particular, those submanifolds are

contactomorphic. This contradicts the classification of tight contact structures on T3, since this
contactomorphism could be used to build a contactomorphism from (T3, ξN+1) to (T3, ξN+2).

The existence of a discretized isotopy from j0 to j1 consisting of forward steps changing the
direction of dividing curves follows from repeated uses of a small part of the classification of
tight contact structures on thickened tori: if ξ is a tight contact structure on T2 × [0, 1] such
that T2 × {0} and T2 × {1} are ξ-convex with two dividing curves γ0, γ

′
0 and γ1, γ

′
1 respectively,

such γ0 intersects γ1 transversely at one point, then ξ is isotopic, relative to the boundary, to a
contact structure ξ′ such that all tori T2 × {t} are ξ′-convex except T2 × {1/2}.

In order to construct a discretized isotopy where the direction of dividing curves is constant,
we see ξd as an S1-invariant contact structure on T3 with S1 action given by rotation in the y
direction. In order to describe an S1-equivariant isotopy of embeddings of T , it is enough to give
an isotopy of curves in T2. Curves corresponding to ξd-convex tori are exactly those which are
transverse to Γ = {x ∈ (π/d)Z}. Figure 3 then finishes the proof. 2

In our next example, the discretized isotopy oscillates, and there is persistent intersection.

Proposition 3.5. Let V be the torus bundle over S1 with monodromy B = (5 1
4 1), i.e.

V = (T2 × R)/((Bx, t) ∼ (x, t+ 1)).

Let T be the image of T2 × {1/2} in V , and let j0 be the inclusion map from T to V . There is
a tight virtually overtwisted contact structure ξ on V , and an embedding j1 ∈ Po(T, V ; ξ) such
that:

– j0 is not isotopic to j1 in Po(T, V ; ξ);

– any j ∈ Po(T, V ; ξ) such that j(T ) is disjoint from T is isotopic to j0 in Po(T, V ; ξ) (in
particular, j1(T ) cannot be disjoined from T by contact isotopy);

– there is a discretized isotopy from j0 to j1 with one forward step and one backward step,
both modifying the direction of dividing curves.
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Proof. We will use the theory of normal forms for tight contact structures on V established in

[Gir00, § 3] (see also [Hon00]). With the notation used in [Gir00], V = T 3
A where A = B−1 =(

1 −1
−4 5

)
. Other choices of monodromies are possible, we only want to explain one simple example.

We will describe the lifts of relevant contact structures on T2×[0, 1] ⊂ T2×R. In [Gir00], tight

contact structures on thickened tori are described using two types of building blocks: rotation

sequences and orbit flips, that we will briefly review.

Recall that a foliation σ on a torus T is called a suspension if there is a circle which

transversely intersects all leaves. It then has an asymptotic direction d(σ), which is a line through

the origin in H1(T ;R) spanned by limits of renormalized very long orbits of a directing vector

field.

We fix a contact structure ξ on T × [0, 1], and set Ta = T × {a}. An interval J ⊂ [0, 1] is

called a rotation sequence for ξ if all characteristic foliations ξTt, t ∈ J are suspensions. We say

that J is minimally twisting if the directions d(ξTt) do not sweep out the full projective line

P (H1(T ;R)). Theorem 3.3 from [Gir00] guarantees that two contact structures on T × J which

agree along the boundary and have J as a minimally twisting rotation sequence are isotopic on

T × J relative to boundary.

An interval [a, b] ⊂ [0, 1] is an orbit flip sequence for ξ, with homology class d ∈ H1(T ;Z), if:

– ξTa is a Morse–Smale suspension with two closed orbits whose homology classe is d;

– ξTb is a Morse–Smale suspension with two closed orbits whose homology classe is −d;

– there is a multi-curve which divides all ξTt, t ∈ J .

The uniqueness lemma [Gir00, Lemma 2.7] ensures that two contact structures on T × [a, b]

which agree along the boundary, and admit [a, b] as an orbit flip sequence, are isotopic relative

to boundary. There is an explicit model in [Gir00, § 1.F] where all ξTt are suspensions except

one which has two circles of singularities instead of regular closed leaves.

Here we need two (isotopic) contact structures on T2×[0, 1]. We fix a Morse–Smale suspension

σ0 on T2 with two closed orbits having homology class (1, 0), and we denote by σ1 the image of

σ0 under A. We also fix a Morse–Smale suspension σ1/2 with two closed orbits having homology

class (−1, 1). Let ξ be a contact structure on T2 × [0, 1] such that:

– ξ prints σt on T2 × {t} for t ∈ {0, 1/2, 1};
– [0, 1] is a union of minimally twisting rotation sequences and two orbit flip sequences with

homology classes (1, 0) and (−1, 1) respectively.

Let ξ′ be a contact structure with the same properties except that orbit flip homology classes

are (1,−1) and (−1, 2). The explicit construction of [Gir00, Example 3.41] guarantees that ξ and

ξ′ are isotopic (relative to the boundary). More specifically, it builds a contact structure printing

a non-generic movie of characteristic foliations where two saddle connections happen on the same

torus, and such that the movies printed by ξ and ξ′ are essentially obtained by choosing the order

in which these connections appear. Alternatively, one can see the isotopy between ξ and ξ′ as

an application of the ‘shuffling lemma’ of Honda [Hon00, Lemma 4.14]. We will also denote by

ξ and ξ′ the induced contact structures on V . And we denote by T the image in V of T2
1/2.

Let ϕ be a smooth isotopy of V such that ξ′ = ϕ∗1ξ. Assume for contradiction that j0 : T ↪→ V

and j1 = ϕ1 ◦ j0 are in the same component of Po(T, V ; ξ). Using the path lifting property for

the map Do(V ; ξ) → Po(T, V ; ξ) guaranteed by Lemma 1.2, we get a contact isotopy θ for ξ such

that j1 = θ1 ◦ j0. Then ψ := θ−11 ◦ ϕ1 is a diffeomorphism relative to T , and pulls back ξ to ξ′.

Thus, we can cut V along T to get a thickened torus Y , naturally identified with T2× [1/2, 3/2].

308

https://doi.org/10.1112/S0010437X16007776 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X16007776


On the contact mapping class group of Legendrian circle bundles

The diffeomorphism ψ induces a diffeomorphism of Y which is relative to the boundary, hence
acts trivially on H1(Y ). This is a contradiction because the restriction of ξ and ξ′ to Y do not have
the same relative Euler class in H1(Y ). Recall that e(Y ; ξ) is the homology class of the vanishing
locus of any generic section of ξ which spans ξ∂Y (with the correct orientation) along ∂Y . Here,
contributions to this class come from orbit flips and we get e(Y ; ξ) = 2(−1, 1)+2A(1, 0) = 2(0,−3)
while e(Y ; ξ′) = 2(−1, 2) + 2A(1,−1) = 2(1,−7). Note, for sanity check, that those two classes
become the same in V , since e(Y ; ξ′)− e(Y ; ξ) = 2(1,−4) = (Id−A)(0, 1).

The second point of the proposition follows again from classification results. Let j be an
embedding in Po(T, V ; ξ) such that j(T ) is disjoint from T . The classification of incompressible
tori in the complement of T guarantees that T and j(T ) bound a thickened torus N in V . The
classification of tight contact structures on thickened tori in [Gir00] or [Hon00] ensures that
either j is isotopic to j0 in Po(T, V ; ξ), or there exists a contact embedding of

(T 2 × [0, 1], ker(cos(πz) dx− sin(πz) dy)), (x, y, z) ∈ T 2 × [0, 1]

into the interior of N . But the existence of such an embedding is ruled out by the study of tight
contact structure on V , specifically [Gir00, Proposition 1.8].

The announced discretized isotopy uses the image of T2×{0} as a intermediate surface, and
its existence is guaranteed by the classification result quoted in the proof of Proposition 3.4. 2

Finally we describe an example on a manifold with boundary with the same situation as
above, but things untangle inside a larger manifold.

Proposition 3.6. Let V denote the manifold T2 × [0, 1], and V ′ = T2 × [0, 1/2]. There is a
universally tight contact structure ξ on V , and two smoothly isotopic ξ-convex embeddings
j0, j1 : T2

→ V ′ with images T0 and T1, such that:

– j0 is isotopic to j1 among ξ-convex embeddings in V ;

– j0 is not isotopic to j1 among ξ-convex embeddings in V ′;

– T0 cannot be disjoined from T1 by an isotopy among ξ-convex surfaces in V ′;

– there is a discretized isotopy from j0 to j1 in V ′ with one forward step and one backward
step, both modifying the direction of dividing curves;

– there is a discretized isotopy from j0 to j1 in V ′ with one forward step and one backward
step, both modifying the number of dividing curves.

Proof. The construction is pictured in Figure 4. Let S be the annulus {1 6 |z| 6 3} ⊂ C and
S′ ⊂ S the subannulus {1 6 |z| 6 2}. We fix an identification between V and S × S1 which
identifies V ′ with S′× S1. Let Γ′ = Γ′1 ∪Γ′2 be a disjoint union of two properly embedded arcs in
S′ whose end points are on the circle {|z| = 2}. Let Γ be a smooth homotopically essential circle
in S such that Γ ∩ S′ = Γ′. Let ξ be an S1-invariant contact structure on V with dividing set Γ,
and denote by ξ′ its restriction to V ′. Let γ0 and γ1 be homotopically essential circles in S′ such
that γi intersects transversely Γ′i in two points, and does not intersect the other component of
Γ′. The tori we want are T0 = γ0 × S1 and T1 = γ1 × S1, parametrized by product maps.

There is an isotopy through ξ-convex surfaces in V because γ0 and γ1 are isotopic in S
through curves transverse to Γ.

Assume for contradiction that there is such an isotopy in V ′. We can arrange ξ so that j0 and
j1 induce the same characteristic foliation on T2 and, using Proposition 1.4(c) and Lemma 1.2,
our isotopy through convex surfaces can then be converted into a contact isotopy ϕ relative
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Figure 4. The example of Proposition 3.6. The dividing set Γ is the thick curve, γ0 and γ1 are
dashed.

Figure 5. Dividing curves for the proof of Proposition 3.6. Thin curves are boundary
components of S′ and thick curves are the components of the dividing sets.

to the boundary. We denote by ∂1V
′ and ∂2V

′ the connected components {|z| = 1} × S1 and
{|z| = 2} × S1 of ∂V ′. Let ψ0 and ψ1 be smooth embeddings of V ′ into itself such that:

– each ψi is S1-equivariant;

– each ψi is the identity on ∂2V
′;

– ψi(∂1V
′) = Ti.

The contact structures ψ∗0ξ and ψ∗1ξ on V ′ are S1-invariant and the associated dividing sets
Γψ0 and Γψ1 are shown on Figure 5. The contactomorphism ϕ1 then induces a contactomorphism
between (V ′, ψ∗0ξ) and (V ′, ψ∗1ξ) which is the identity on ∂2V

′. However, the classification of
S1-invariant contact structures forbids the existence of this contactomorphism. In this case, we
can argue directly as follows. We denote by S′′ the annulus {2 6 |z| 6 3}. Let ξ′′ be a contact
structure on S′′ × S1 which is S1-invariant and tangent to S1 along some Γ′′ such that Γψ0 ∪ Γ′′

has a homotopically trivial component but Γψ1 ∪ Γ′′ has not. The contact structure ξ′′ ∪ ψ∗0ξ on
V is overtwisted, whereas ξ′′ ∪ ψ∗1ξ is tight, so we have a contradiction.

So there is no contact isotopy ϕ in V ′ such that j1 = ϕ1 ◦ j0. Assume for contradiction that
there is a contact isotopy ϕ in V ′ such that T ′0 = ϕ1(T0) is disjoint from T1. The classification of
incompressible surfaces in thickened tori ensures that T ′0∪T1 is the boundary of a thickened torus
in the interior of V ′. After some smooth deformation, we can assume that T ′0 = {|z| = r0} × S1
and T1 = {|z| = r1} × S1 and the contact structure is S1-invariant near T ′0 and T1 (note that
we do not know the sign of r0 − r1). Those tori are both divided by vertical curves {∗} × S1,
so the classification of universally tight contact structures on thickened tori guarantees that,
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after some further isotopy relative to T ′0 and T1, the contact structure is S1-invariant everywhere
(see [Gir00, Théorème 4.4] or [Hon00]). The dividing set in the annulus {|z| ∈ [r0, r1]} intersects
each boundary component in two points, so it is either two boundary parallel arcs and some
closed components, or two traversing arcs. The first possibility is ruled out by the classification
of S1-invariant contact structures up to (non-necessarily invariant) isotopy since the full dividing
set on S′ would not be isotopic to Γ′. The second possibility is ruled out because T ′0 and T1
would then be isotopic among ξ′-convex surfaces, contradicting the previous point.

The construction of discretized isotopies is completely analogous to what we discussed for
Proposition 3.4. 2
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