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Certain subsemigroups of the full transformation semigroup Tn on a finite set of cardinality n are investigated,
namely those subsemigroups S of Tn which are normalised by the symmetric group on n elements, the group
of units of Tn. The Sn-normal closure of an element of Tn is determined, and the structure o f the S.-normal
ideals consisting of the members of Tn whose image contains at most r elements is studied.

1991 Mathematics subject classification: 20M20.

Let Tn denote the full transformation semigroup on a set of finite cardinality n, and let
Sn denote the symmetric group on n elements, the group of units of Tn. A subsemigroup
S of Tj, is defined to be Sn-normal if for each a in S and for each h in Sn, the element
h~lah is in S. Both Tn and Sn themselves are Sn-normal; so are the ideals K(n,r) =

Given aeTn, denote by <a:Sn> the smallest Sn-normal subsemigroup of Tn containing
a. Thus <a:Sn> is the subsemigroup S of Tn generated by {g~lag:geSn}. If a is a
permutation then <a:Sn> is a normal subgroup of Sn and we know what that is.
Assuming for the rest of this paper that a is not a permutation, associate with a the
partition n(a) of X such that x and y are in the same class of n(a) if and only if xa = ya.
Partitions P, Q of X are said to be of the same type (denoted by P = Q) if they have the
same number of classes of each size. We show that (a:Sn) is idem potent-generated and
consists of all transformations b in Tn for which n(b) contains a partition of the same
type as n(a).

The idempotent rank of an idempotent-generated semigroup S is the cardinality of a
minimal generating set of idempotents of S [2]. It was shown in [2] that the idempotent
rank of the SB-normal semigroup K(n,r), consisting of all transformations a with
|im(a)|^r, is S(n,r), the Stirling number of the second kind. We define the Sn-idempotent
rank of an Sn-normal semigroup S to be the cardinality of a minimal generating set A of
idempotents of S such that S = </1:SB> ( = <{g~lag:aeA,geSn}y). Given l g r ^ n , let
T(n,r) denote the number of different types of partitions of an n-element set into r
subsets. We present a recursive formula for T(n,r) and show that the Sn-idempotent
rank of K(n,r) is T(n,r). Moreover, we can choose a minimal Sn-generating set of
idempotents in a single L-class of both Tn and S.

For each r such that 2 g r g « , the principal factor K(n,r)/K(n,r— 1) of Tn is denoted
by Pr in [2]. Each Pr is a completely 0-simple semigroup whose non-zero elements may
be thought of as the elements a of Tn having |im(a)| = r. Then Pr is a band of T(n,r)
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subsemigroups, each of which is a quotient semigroup of an Sn-normal semigroup of
Sn-idempotent rank 1 (Theorem 8).

Recall that two elements of Tn are ^-equivalent if and only if they have the same
partition, and if-equivalent if and only if they have the same image. Given aeTn and
heSn denote by n(a)h the partition {Ah:Aen(a)} of X. For any aeTn and heSn we have
that (a,ah)eM and (ha,a)e£f, and the proof of the first two parts of the following
Lemma is obvious.

Lemma 1. (i) if heSn and aeTn, then im(ah)=im(a)h = im(h~iah) and n(h~la) =
n(a)h = n(h-1ah).

(ii) For any subset A and partition P of X such that |i4| = |im (a)|, P = n(a), there exist
b, ce(a:S^} with im(b) = A and 7t(c) = P.

(iii) Let e, f be idempotents with n(e) = n(f). Then there exists a permutation h of X
such that e = h~lfh.

Proof of (iii). Noting that the image of an idempotent e is a transversal of the
partition of e, we can choose h such that n(f)h = n(e) and im(/)ft = im(e). Then for any
xeX and Ben(e) containing x there exists Aen(f) such that B=Ah,
Bnim(e)=(A nim(/))/> and so xh~lfh = Afh = B nim(e) = xe.

Since for all a,beTtt, heSn, n(a) = n(h~1ah) and n(a)£n(ab), we have that (a:Sn}^
{ceTn:n(c) contains P = n(a)}. The reverse inclusion is proved in Lemmas 2, 3 and
Proposition 4 below. We note that a variation of this result may be found in [4].
However, the present proofs are in a completely different vein and are much shorter
than those in [4].

It is clear that for each aeTn, every conjugate of a is ^-equivalent to a and is in a
group ^f class if and only if a itself is in a group Jtf-class. It is not obvious that if a is
not in a group J^-class then <a:Sn> contains even one idempotent in the ^-class of a.
But we do have Lemma 2.

Lemma 2. The semigroup (a:Sn} contains all idempotents e with n(e) = n(a).

Proof. Observe that for transformations b and c with |im(b)| = |im(c)|, we have that
n(bc) = n(b) if and only if im(fc) is a transversal of n(c). Let a = a0, and consider all
products of the form

where for each i= 1,2,3,...,«, is a conjugate of a such that im(a,_i) is a transversal of
n{af). Since (a:Sn} is finite, there exist i<j such that

... a,- =

Define u = aoala2...ai, v = ai+1 a}. Then
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u = uv, 7i(u) = 7t(a) = 7r(v),

so im(u) = im(v) and im(v) is a transversal of 7i(v), thus v is the identity on its image,
and so v is an idempotent. The result follows from Lemma 1 (iii).

For transformations a and b, let D(a,b) = {xeX:xa^xb}.

Lemma 3. Let a, beTn with n(b) = n(a), and let Ea be the set of all idempotents e in Tn

with n(e) = n(a). Then be ({a} u £a>c<fl:Sn>.

Proof. Let S = (a:Sn} and take beTn satisfying n(b) = n{a). To show that beS, it
suffices to prove that if b^=a then we can enlarge the set on which a and b agree by
finding ceS with |D(b,c)|<|D(a,f>)| and observing that S = (a:Sny^(c:Sn}. The result
follows by induction on \D(a, b)\.

We may assume without loss of generality that im(a)#im(ft). For if im(a) = im(6) we
may replace a by af, where feS is an idempotent chosen as follows to ensure that
D{af,b) = D{a,b). Let veim(a) be such that va~i¥=vb~i, and weX — im(a). Choose /
with im(a) being a transversal of n(f) = n(a), vf = wf = w, and uf = u for all
ueim(a) — {v}. Observe that n(af) = n(a) = n(b) while w = v/eim(a/) — im(a) =
im (af) - im (b), and D(af, b) = D(a, b).

Now we show that for any zeim(b) — \m(a) and A e n(af) = n(a) such that Ab = z,
there exists ceS satisfying Ac-Ab and xc = xa for all xeX — A. Let Aa = y. Choose an
idempotent eeS such that n(e) = n(a), ye = ze = z, and ue = u, for all weim(a) — {y}. Then
c = ae is the required mapping.

Let us illustrate the proof of Lemma 3 by the following example.

Example 1. Let a = 333112 (by which is meant la = 2a = 3a = 3,4a = 5a= l,6a = 2),
6 = 222113. We have that im(a) = im(b) = {l,2,3}, D(a,fc) = {l,2,3,6}. Let v = 3,3<T1 =
{1,2,3}, 3b"1 = {6}, and we take w=4. Then a possible / is / = 124422, giving
af=444112, with im(a/) = {l,2,4} ^im(fe), D(af, b) = {1,2,3,6} = D(a,b). Replace a by
af, so that a=444112. Take v = 3, A = {6}, y = 2. Then a possible e is e= 133444, with
c = ae=444113, | | | | | |

Proposition 4. Let aeTn. Then (a:Sn) = {beTn:n(b) contains P = n(a)}.

Proof. We show that for any transformation b of X such that n(b) contains n(a) and
|im(b)| = |im(a)| — 1, there exist transformations c,d with n(c) = n(d) = n(a) and b = cd. The
result then follows from Lemmas 3 and 1, using an inductive argument. Let n(a) =
{Al,A2,...,A,-i,Ar} n{b) = {AuA2,...,Ar-ivAr}, and Aib = xh i= l , 2 , . . . , r - l .
Choose an idempotent c with n(c) = n(a) and let yt = Ap, i = 1,2,...,r. Choose a partition
P~n(a) such that {y,:i = l,2,...,r—1} is a partial transversal of P, and JV-I>JV

 a r e m

the same class of P. Choose a transformation d with n(d) = P, and yid = xi, i = l ,
2, . . . , r — 1. Then 6 = cd, as required.

It follows from the description of <a:Sn> above and Lemma 1 that (,a:Sn} is actually
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the complement of the symmetric group in the semigroup generated by a and Sn. As the
example below demonstrates, this surprising result generally does not hold for the
infinite analog of Sn-normal semigroups, the ^-normal semigroups on an infinite set X.
(The symmetric group on an infinite set X is denoted by yx, and a semigroup of
transformations of X is said to be ^-normal if it is invariant under conjugation by
elements of 9X).

Example 2. Let X be the set of all integers, and let a be the transformation of X
defined by xa=x+l, for JC^O, and xa=x, if x<0. Note that a is a one-to-one
transformation with \X — im(a)| = l. Let h be the permutation of X given by xh = x+\,
for all xeX. Then ahe({a},&xy — (a:c§x

s). Indeed, for all one-to-one transformations b
and c, |A"-im(ftc)| = |Ar-im(fc)| + |A'-im(c)|. Therefore if a/ie<a:^x>. then ah has to be
a conjugate of a. However, this is impossible since ah fixes no element of X but any
conjugate p~lap of a fixes infinitely many points of X (for each xeX such that
xp~l <0, we have that xp~1ap = xp~1p = x).

It is easy to see that the intersection of two Sn—{^x —) normal semigroups is again
an Sn—(&x —) normal semigroup. In [3], the first author described the ^normal
semigroups of total one-to-one transformation of an infinite set X. It follows from this
description that a union of two G^-normal semigroups does not have to be a
semigroup. However for any a, beTn — Sn,

an Sn-normal semigroup (this is a direct consequence of Proposition 4 and the
observation that n(a) £ n(ab)). Therefore a union of two Sn-normal semigroups is again
an Sn-normal semigroup and so the following is true.

Proposition 5. Let S be an Sn-normal semigroup. Then the set S(u, n) of the Sn-normal
subsemigroups of S forms a modular lattice.

It follows from Proposition 4 that if a is any transformation of X, and e is an
idempotent with n(e) = n(a), then <a:Sn> = <e:Sn>, and so the following is true.

Theorem 6. An Sn-normal semigroup is generated by its idempotents.

Recall that for l ^ r g n , T(n,r) denotes the number of different types of partitions of
an n-element set into r subsets. Let P be a partition of X, and let tj <t2 < • • • <tk be the
sizes of classes of P, and suppose that P contains exactly m, classes of size fj. We say
that P is a partition of type T = [(m,,t,).i = l,2,...,/c].

Lemma 7. T(n, r) = Y?=iT' "~r) T(n-r,k).

It is possible to deduce Lemma 7 using classical partition generating functions—see
[1]. To avoid introducing extraneous formulae not needed in the sequel, we offer
instead the following direct proof.
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Proof. Assume P is a partition of X of type T = [(m,,t,):i = l,2,...,fc] hacing r
classes, that is m1 + m2+-- + mk = r. Let Y be a transversal of P; then the restriction of
P to X — 7 is a partition of X — y of type T1 = [(mI,t1— l):i = l ,2 , . . . , / c ] if tx>l, and
t 2 = [(«!,-,t,-—l):i = 2,. . . ,fc] if tj = l. Observe that xx and T 2 are partition types of an
(n—r)-elemement set having r and t — m, classes respectively. Therefore with each T we
may associate uniquely a type of a partition of an (n — r)-element set into k classes,
fc _ r, fc ̂  n — r. Therefore

min {r,n — r}

T(n,r)Z X T{n-r,k).

Conversely, let Q be a partition of an (n — r)-element subset Z of X of a type
T3 = [(ffjj,tj):i= 1,2,...,^] consisting of k classes, 1 ^k^min{r,n — r}. Let g be a
one-to-one function from the classes of T3 into X — Z. Then Q' = {{x} <j xg~1:xeX-Z}
is a partition of X of type [(m'i,t'i+l):i=l,2,...,S'~\, if fc = r, and
[(mj, \),{m\,t\ + \),...,(m'i,t'e)~\, if/c<r, where m1=r — k. The equality follows.

Recall that for each i?-class L of Tn, there exists an r, 1 _ r ̂  n such that
LsK(n, r ) -K(n, r - l ) , where X(«,0) is the empty set.

Theorem 8. (i) For each r, l_r_w— 1, and each <£-class L of Tn, such that
L<^K(n,r) — K(n,r—\), there exists a subset E of idempotents in L such that <£:Sn> =
K(n,r).

(ii) The Sn-idempotent rank of K(n,r) is T(n,r).
(iii) For each r, 1 :g r ;S n, Pr is a band of T(n, r) subsemigroups, each of which is a

quotient semigroup of an Sn-normal semigroup of Sn-idempotent rank 1.

Proof, (i) Let r and L be as stated. Let A £ X be the image of a transformation in L.
It suffices to show that given a partition type T = [(m,,t,):i = 1,2,...,/] consisting of r
classes, there exists an idempotent eeTn with im (e) = A, n(e) = x. Let Q be a partition of
X — A of type [(m,,t,— l):i = j,...,f\, where y = 1 if tj> 1, and j = 2 if ^ = 1. Let g be a
one-to-one function from the classes of Q into A. Define e to be the identify on A, and
for x e X — A let xe = Bg, where B is the class of Q containing x.

(ii) It follows from the above that the SB-idempotent rank of K{n, r) is at most T(n, r).
Also if C is any set of idempotents in Tn with <C:Sn> = K(n,r), then |im (/)| < r +1 for
each feC. If aeK(n,r), |im(a)| = r, there exists teC, heSn, seTn with a = h~1ths, so
!t(l) = it(/i"'(li)gii(fl). Since n(t) and n(a) consist of r classes each we have that
n(t) = n(a). Therefore the Sn-idempotent rank of K(n, r) is at least T(n, r).

(iii) Let E be the Sn-generating set of K(n,r) constructed in (i). For each eeE, let
X(c) = (e:S,)/((c:S,)n/i(n,r-l)). Then S(e) is a subsemigroup of Pr. If e and / are
distinct elements of E, then n(e)£n(f), and so for any be(e:Sny n K(n,r), ce(f:Sny n
K(n,r), we have that n(b)£n(c). Therefore S(e)nS(f) is zero. Moreover S(e)S(f)=S(e).
Indeed, since for any ue<e:Sn>, ve</:Sn>, we have that n(u)£n(uv), so S(e)S(f)^S(e).
Also since im(e) = im(/) we have that ef = e, so S(e)^S{e)S(f).
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Our last result asserts that Green's relations on an Sn-normal subsemigroup S of T,
coincide with the restrictions of the corresponding relations on Tn to S.

Proposition 9. Let S be an Sn-normal semigroup. Then

(i) a@b if and only ifn{a) = n(b)\

(ii) a i f b if and only if im (a) = im (b);

(iii) aQib if and only if |im (a)| = |im (b)\;

(iv) 3 = /;

(v) S is regular.
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