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1-COMPLEMENTED SUBSPACES OF SPACESWITH
1-UNCONDITIONAL BASES

BEATA RANDRIANANTOANINA

ABSTRACT. We prove that if X is a complex strictly monotone sequence space
with 1-unconditional basis, Y C X has no bands isometric to Zg and Y is the range of
norm-one projection from X, then Y isaclosed linear span afamily of mutually digoint
vectorsin X.

We completely characterize 1-complemented subspaces and norm-one projections
in complex spaces (p({q) for 1 < p,q < oo.

Finally we give a full description of the subspaces that are spanned by a family
of digointly supported vectors and which are 1-complemented in (real or complex)
Orlicz or Lorentz sequence spaces. In particular if an Orlicz or Lorentz space X is
not isomorphic to ¢ for some 1 < p < oo then the only subspaces of X which are
1-complemented and digointly supported are the closed linear spans of block bases
with constant coefficients.

1. Introduction. Projections and norm one projections have been studied by many
authors. The question about the form of a (horm-one) projection and the structure of its
range arises naturally not only in geometry of Banach spaces, but also in approximation
theory, spectral theory, ergodic theory; see, e.g., the surveys [ChP, D] for more detailed
discussions of applications.

The difficulty in studying 1-complemented subspacesof spaceswith 1-unconditional
bases arises from the following classical fact due to Lindenstrauss [L] (cf. also [LT,
Theorem 3.b.1])

THEOREM 1.1. Every space Y with a 1-unconditional basis is 1-complemented in
some symmetric space X.

Thusit seemshopelessto give any characterization of 1-complemented subspacesof,
even symmetric, spaceswith 1-unconditional bases.

Theonly classof spaceswherethefull characterization of 1-complemented subspaces
was available are the classical spaces ¢, and co. Namely it is well known that every
subspace of a Hilbert spaceis 1-complemented (with the unique orthogonal projection)
andin ¢, for p # 2, oo, we havethe following result:

THEOREM 1.2 ([AN], cf. also [LT, THEOREM 2.a.4]). Let F C {p, wherel < p < oo,
p # 2. Then F is 1-complemented if and only if
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(a) Fisisometricto (3mF,
or
(b) F isspanned by a family of mutually disjoint vectors.

It is clear that Theorem 1.2(a) cannot be extended to other spaces. Namely Lind-
berg [Lg] showed aclass of Orlicz functions ¢ (for necessary definitions see Section 2)
sothat there existsa 1-complemented subspaceF in ¢, suchthat F isnot evenisomorphic
to (.. Altshuler, Casazzaand B. L. Lin [ACL] showed a similar example in the class
of Lorentz sequence spaces (\,,. However, both of these examples were spanned by a
family of mutually disjoint vectors; in fact they were closed linear spansof ablock basis
with constant coefficients. Also the symmetric space X constructed in Theorem 1.1 was
such that Y was isometrically isomorphic to a closed linear span of a block basis with
constant coefficients.

Itiswell known that all such spansare 1-complemented in any symmetric space ([LT,
Theorem 3.a.4]), so in fact all of those examples satisfy condition (b) of Theorem 1.2.

In this paper we prove that indeed Theorem 1.2(b) can be extended to alarge class of
1-complemented subspaces of complex spaces with 1-unconditional basis.

Namely, if X isacomplex, strictly monotone sequence space with a 1-unconditional
basis, Y C X is 1-complemented in X, and Y does not contain a band isometric to (2,
then Y is spanned by a family of disjointly supported vectors (see Corollary 3.2). It is
clear that our restrictions on X and Y are necessary (see Remark after Corollary 3.2 and
examplesin Section 4).

The above-mentioned assumption on Y is satisfied, for example, in all spaces X that
do not have a 1-complemented subspace isometric to (3. We discussit in greater detail
in Section 4.

In Theorem 3.1 we also describe the form of general 1-complemented subspaces of
complex strictly monotone spaces.

Our method of proof cannot be extended to real sequence spaces. We usein particular
the fact that every 1-complemented subspace of a complex space with 1-unconditional
basisalso hasa 1-unconditional basis. Theanalogousfactisfalsein real spaces[Le, BFL]
(see[R1] for the discussion in special real spaces).

As a consequence of Theorem 3.1 we obtain a complete characterization of 1-
complemented subspaces of complex (,({q), where 1 < p,q < oo (Theorems 5.1
and 5.2).

Further we study the subspacesthat are spanned by disjointly supported vectors and
are 1-complemented in X. Calvert and Fitzpatrick [CF] showed that if all disjointly
supported subspaces are 1-complemented in X then X is isometric to ¢y, for some p,
1 <p < oo, o0rtoc.

In Section 6 we completely characterize the disjointly supported subspaces that are
1-complemented in Orlicz and Lorentz sequence spaces (Theorems 6.1 and 6.3). In
particular, if aLorentz or Orlicz space X isnotisomorphicto £, for somel < p < oo then
the only digjointly supported subspaces that are 1-complemented are those guaranteed
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by [LT, Theorem 3.a.4], i.e., spanned by a block basis with constant coefficients. The
results of Section 6 are valid for both real and complex spaces.

ACKNOWLEDGEMENTS. | wish to express my gratitude to Professors W. B. Johnson
and A. Koldobsky for valuable suggestions.

2. Preliminaries. Inthefollowing wewill consider complex Banach spaces X with
anormalized 1-unconditional basis {e }ic;, whereN D | = {1,..., dim X}. Our results
arevalid in both the finite- and infinite-dimensional cases.

If x € Xwewill write x = (X)ie if

dimX
x= > x& and suppx={ieN:x #O0}.
iel
For x € X wewill denote by x* (or sometimes by x) anorming functional for x, that is,
X" € X, X [x = Land x*(x) = [[X]|x.

We say (following [KW], see also [ST]) that an element x € X is hermitian if there
exists a hermitian projection Py from X onto span{x}.

Equivalently, x is hermitian if and only if for al y € X, y* norming for y, and x*
norming for x we have

X (Y)Y () € R.

The set of al hermitian elementsis denoted h(X).

Let {Hy : A € A} be the collection of maximal linear subspaces of h(X). Then
{H, : A\ € A} are called Hilbert components of X. Kalton and Wood [KW] proved that
Hilbert components are well-defined and mutually disjoint.

A Hilbert component H,, is called nontrivial if dimH, > 1.

For the careful analysis and properties of Hilbert components of various spaces we
refer to [KW] and to expository papers [F, R2]. Here we just want to recall some
properties which will be used in our arguments.

First, recall that if X has 1-unconditional basis {e }ici then each basis element is
hermitian. Moreover Kalton and Wood proved the following:

THEOREM 2.1 ([KW, THEOREM 6.5]). Let X be a Banach space with a normalized
1-unconditional basis. Then x € X is hermitian in X if and only if
(i) Iyllx = llyll2for all y € X with suppy C suppx, and
(i) forally,z € XwithsuppyUsuppz C suppxandfor all v e Xwith suppvnsuppx =
Dit{lyllx = l|zllx then [ly +v[x = [|z+ v||x.

For our main result we will need the following two facts.

PROPOSITION 2.2 ([KW, LEMMA 5.2]). Suppose that X,y are hermitian elements in
X. Denote by x* a norming functional for x.
If x*(y) # 0 then span{x, y} C h(X).
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PrROPOSITION 2.3 ([F, LEMMA 4]). Supposethat X hasa 1-unconditional basis{e }ie|
and let P: X — X be normone projection with range of P equal to Y. Thenfor all i € I,
Pe isahermitian elementin Y.

We will also frequently use the following well-known fact:

PROPOSITION 2.4. Let X be a Banach space with a 1-unconditional basis. Suppose
that Y C X is 1-complemented and a norm-one projection P: X — Y is given by

P() = 2y 0y

whereY =span{ y;} and y; isnorming for y; for all i.
Thenfor anyy € Y there exists y* norming for y and constants K; so that

Yk :ZKiYik.

Moreover, we have

PrRoOPOSITION 2.5 (CALVERT [C]). Let X be a strictly convex reflexive Banach space
with strictly convex dual X*. Let J: X — X* be the duality map; ||Ix|| = ||x]|, Ix(X) =
Ix]I2

Then a closed linear subspaceY of X is 1-complemented in X if and only if J(Y) isa
linear subspace of X*.

Finally we recall afew definitions (see [LT]).

We say that a Banach space X with 1-unconditional basis is strictly monotone if
Ix+y|| > ||x|| for al x,y > 0 withy # 0.

An Orliczfunction ¢ isaconvex non-decreasing function ¢: [0, co) — [0, oo] with
©»(0) = 0and (1) = 1 or co. To any Orlicz function ¢ we associate the Orlicz space £,
of all sequencesof scalars x = (x); such that

S
PN (7) < oo forsomep > 0.
i=1

with the norm
1%

p:inf{p>0:§<p(§) <1}.

Letl <p < ooandletw = {W}ic, wherel = Norl ={1....d}, beanon-

increasing sequence such that w; = 1 and w; > 0 for all i. The Banach space of all
sequencesof scalars x = (X;)ie¢ for which

(Z IXa(i)I"Wi)% < oo,

[Xlwp = sup (
) \iel

oeP

where P (1) is the set of all permutations of I, is denoted ¢,,, and it is called a Lorentz
seguence space (another notation frequently used in the literature is d(w. p)).
Notice that
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e (, isstrictly monotoneif and only if ¢(t) > Ofor all t > 0and ¢(t) < oo for all
t<1
e (ypisstrictly monotoneif and only if w; > Ofor all i € 1.
o (p(Ly) isstrictly monotoneif and only if p, g # co.
Forany 1 < p, g < oo we denote by ¢,({q) the space of sequences of scalars
X = (Xj)iel jes such that

¥l = [ (I0idicalleg )i [, < o-

We follow standard notations as defined in [LT] and this is also where we refer the
reader for al undefined terms.

3. General form of contractiveprojections. Weare now ready to present our main
theorem.

THEOREM 3.1. Suppose that X is a complex strictly monotone sequence space with
1-unconditional basis {e } and X # ¢, and let P be the projection of norm 1 in X. Let
{Hy : v € I'} bethe collection of Hilbert components of Y = PX. Then the H,'s are
disiointly supported as elements of X.

PrOOF. By Proposition 2.3 all {Pe }ic| are hermitian elements of Y. Let i.j be such
that Pe and Pe are not in the same Hilbert component of Y. Assume that there exists k
such that k € suppPe N suppPeg. If Pec # O, then P*e is anorming functional for Pe
inY and (P*e;. Pe) = (g, Pe) # 0. Thus, by Proposition 2.2, Pe, Pe are in the same
Hilbert component of Y. Similarly Pey, Pg arein the same Hilbert component of Y. But
then Pe, Pg arein the same Hilbert component of Y contrary to our assumption.

Thus Pg, = 0.

Now supposethat Pe = Y5 o6 +axe for some oy, o # 0, whereS= suppPe \ {k}.

Since P is aprojection and P(g,) = 0 we get

> e+ o

Pe = P(Pe) = P(Z oz|e|) + oaxP(8))
leS leS

P(Za.a).

les

Hence S# () and by strict monotonicity of X
[P @a)| =[[3 e + v > [ e
les les les

which contradicts the fact that ||P|| = 1.
Thusif Pe, Pg are not in the same Hilbert component of Y then they are disjoint. =

COROLLARY 3.2. Supposethat X isa complex strictly monotone sequence space with
1-unconditional basis {e } and X # ¢, and let P be the projection of norm1in X.
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Suppose that Y = PX C X has no nontrivial Hilbert components. Then there exist
disjointly supported elements{ y; }J-”;l (m=dimPX < oo) whichspanY = PX. Moreover,
for all x € X,

Px = iyf(x)yj,
iz

where {y7 1y € X satisy ;| = [y} =y; (y)) = 1for all .

PrROOF. By Proposition 2.3 al {Pe }ic are hermitian elementsin Y.

By our assumption all Hilbert componentsof Y are one-dimensional so if Pe;, Pg are
linearly independent then they belong to different Hilbert components of Y. Therefore,
by Theorem 3.1, if Pe;, Pg are linearly independent then they are disjoint and Y can be
presented as span{Pe, : i € |} where| isacollection of suchindicesi. | that Pe, Pg are
mutually disjoint.

Theny; = Pe/||Pe|| for al i €|, and for each x € X we have Px = ¥ Ciyi, where
Ci € C are uniquely determined by x. Clearly y;(x) = Ci(x) satisfies the conclusion of
the theorem.

Notice also that suppy;’ = suppy; forali € 1. n

REMARKS. (1) Notice that the assumption about X being strictly monotone is
important. Indeed, Blatter and Cheney [BCh] (see also [B]) showed examples of 1-
complemented hyperplanesin (2, that are not spanned by disjointly supported vectors.

(2) Also the assumption about Y cannot be removed. We discussit in greater detail
in the next section.

(3) As mentioned in the Introduction, Calvert and Fitzpatrick [CF] showed that if
every subspace of the form described in Corollary 3.2 is 1-complemented in X then X is
isometric to £, for somep, 1 < p < oo, Or to Cp.

As a consequence of Corollary 3.2 we can express 1-complemented subspaces as an
intersection of hyperplanesof special simpleform (see[BP] for analogousrepresentation
in £p).

COROLLARY 3.3. Let X and Y be as described in Corollary 3.2. Then Y can be
presented as inter section of kernels of functionals f;, such that card(suppf;) < 2for all j.

4. 1-complemented copies of (2. In this section we discuss in what situation it
is possible that a space X has a 1-complemented subspace Y with nontrivial Hilbert
components. Thisclearly reducesto the question of characterizing under what conditions
X can have a 1-complemented subspaceF that isisometric to (3. The question that arises
hereis:

Is it possible that a space X with only 1-dimensional Hilbert components has a

1-complemented subspace isometric to (3?

One quickly realizes that the answer is yes.

ExAMPLE 1. Consider thespaceX = (5(¢1) andfor x = (xj)ij € (2((1) let PX = (Xi1)i.
Then PX isisometric to (2.
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Further there exists an orthogonal projection Q of PX onto a span of any collection
of orthogonal vectorsfrom PX = (5.

In Lemma 5.5 we show that if ¢,({q) has a 1-complemented subspace F that is
isometric to (3 then either g = 2 and F is contained in a Hilbert component of £(¢4) or
p = 2 and F issimilar to the range of QP in Example 1.

Below we present two more examples: a 1-complemented copy of (2 in a Lorentz
spaceand in aOrlicz space. We do not know afull characterization of spaces X that have
1-complemented copies of ¢3, but we suspect that if X isa Lorentz or Orlicz space then
X hasto be very similar to the examples presented below.

ExAMPLE 2. Consider the Lorentz space (> with the weight w = (1, 1, w3, Wy, . . .).
Then span{e;, &} C (2 isisometric to (3 and clearly it is 1-complemented.

ExAMPLE 3. Consider 4-dimensional Orlicz space (., where

t2 fo<t<a
(1+at—a ifast<1

o=

and /2/3<a< 1 Thatis,

4 :
(X1, - ... X, = inf {)\ e (@) < 1}.

i=1

In fact we have it ¢ (ﬂ) =1foralxe (,.LetF =ker(e] + € +€}) = span{e; —

(X1l

€. — €3.e1}. Then, if X = (X1, X2. X3. Xa) € F then ||x||,, is anumber such that

3 12
(4.1) E%+gp<“|;(4|?> =1
Indeed, supposethat x € F and denote ||x||,, = . Then
(4.2) 1:i¢0ﬂ)>iLﬁ
i=1 a) T {H o?
Assumethat thereisj, 1 < j < 3suchthat % > a. Then, by (4.2)
> |2—22 <1-&

Hence

X1 +Xp + i -
‘M‘Zu_ZiZa_\/ﬁ,/l_a2>o
sincea > ,/2/3. But thiscontradictsthefact thatx € F = ker(e’{+e*z+e§).Thus@ a

forj =1,2,3,0 -
S (k) &P x|
=ne(5) e e (5

i o4 i=1
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Equation (4.1) and Theorem 2.1 immediately imply that e, — &, and e; — e3 are
hermitian in F and belong to the same Hilbert component of F, but clearly F is not
isometric to 4.

Moreover (4.1) implies that F is 1-complemented in (. Indeed, define P: {, — F

by:
1 1 1
P(X1, X2. X3, Xg) = (Xl - §(X1 + X+ X3), X0 — §(X1 + X+ X3), X3 — §(X1 + X2 + X3), X4) .
Noticethat Q: £3 — (3 defined by
1 1 1
Q(X1. X2, X3) = (Xl - §(X1 +Xo +X3), X2 — §(X1 +X2 +X3), X3 — §(X1 +Xo + Xa))

is the norm one projection on this Hilbert space. Let x € (. Denote y = Px and
[IPX||, = 3. Then, by (4.1)

1= é%“ﬁ('w') _ Gy y2. y3)lI3 +¢(|)’4|)

g 2 8
_ 11Q(4a. %2, %3) 15 lyal ) _ [1(xa, X2, 3|13 [%al
R w( 3 ) A ( 3 )
x1l2  |[%l?  |xs|? X4
(o)

| A

(%)

Thus x|, = 8 = [[Px|,.. i.e, [|P] < 1.

We finish this section with alemma characterizing 1-complemented subspaces F in
X that are isometric to £3 in terms of norming functionals.

LEMMA 4.1. If span{x,y} C Xis1-complementedin X and span{x, y} isisometric to
(2, then there exist X* norming for x cand y* norming for y such that, for all a, b € € with
|al? + |b|? = 1, the functional ax* + by* is norming for ax + by.

PROOF. LetP: X — span{x, y} beanorm-one projection. Thenthereexistx* norming
for x and y* norming for y such that

P(u) = x"(ux+y*(uyy foralueX
and x*(y) = y*(X) = 0. Moreover, span{x*, y*} C X* isisometric to (3. Thus

(@ + by*)(ax + by) = aax*(x) + bby*(y) = |a? + |bJ? = [|ax" + by" ||« ax + by[|x. =
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5. 1-complemented subspaces of (,({y). The main results of this section (Theo-
rems 5.1 and 5.2) completely characterize 1-complemented subspaces of the complex
space (p(Lq), 1 <p,q<oo,p7Za.

To formul ate the theorem conveniently we will need somenotation. For all xin £,({q)
wewill write x = 3L, x;, wheren = dim £, < oo, andx € {4 foral i <n. Wewill also

write

n m

X =200 %6y,
i=1j=1

wherem = dim {4 < oo and g; are standard basiselementsin £,({y). Wewill distinguish
two types of support of x:
e the usual support

suppx = {(i.j) C {1,....n} x {L.....m} : ; #O}.

which we will sometimes call the scalar support of x, and
e the vector support

v-supp x = {i C {L.....n}: (g > % #0}.

Thus we will have notions of disjointness of elementsin £,({) in the scalar and vector
Senses.

THEOREM 5.1. Let 1 < p, q < oo with p # g, 2. Consider the complex space £p({q).
Then'Y C £p(£q) is 1-complemented if and only if there exist {V' }4MY C ¢,(¢4) so that

Y = (v 1Y,

and for all i #j < dimY one of the following conditions holds:
(@) v-supp Vi Nv-supp Vi =0,
or
(b) v-supp V' = v-supp VJ, ||Vi||q = |[Vi]|q for all k € v-supp V. and
(b1) if q # 2 then suppV N suppV! = 0,
(b2) if g=2thenvi, v,j( are orthogonal for each k € v-supp V.

The structure of 1-complemented subspaces of £>({y) can be somewhat more com-
plicated asillustrated in Example 1. We have the following:

THEOREM 5.2. Let 1 < q < oo with g Z 2. Consider the complex space (>({q) =
£3(¢g), n,m e NU {oo}. Then Y C (5({q) is 1-complemented if and only if there exist
{VHMY © (5(¢q) so that

Y = (v .

and for all i #j < dimY one of the conditions (a) or (b) of Theorem 5.1 holds or
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(c) for eachk € v-supp Vi N v-supp V! there exists a constant C,, € € with
Vlk = Clej(

and for everymap o: {1..... n} — {1.... m} such that (k. o(K)) € suppVv' U

supp V! whenever k € v-supp V' U v-supp Vi, the vectors

. e , v
sg(\f):<||\/k||q|v!‘ (k>|> €, and SU(V]):(HVH(Hq ',-‘”(k)> €l
ko(k)! / k<n \ |Vkrr(k) | k<n

(with the convention 0/0 = 0) are orthonormal.

COROLLARY 5.3. If Y C £p(€q), 1 < p,g < 00, p Z 0, is 1-complemented in £p({q)
if and only if Y isisometric to 3" @pY;, where each Y; isisometrically isomorphic to ¢4,
di=dimY, e N U{OO}

PROOF OF COROLLARY 5.3. The “only if” part follows immediately from Theo-
rems5.1and 5.2, and the“if” part when g # 2 isasimple consequenceof [Ko, Lemma6]
and Theorems 5.1 and 5.2. When q = 2 the “if” part follows from Lemma5.5. ]

For the proof of Theorems5.1 and 5.2 we use Theorem 3.1 and the following lemmas:

LEMMA 5.4. Suppose that x1,x2, [|x}|| = ||x?|| = 1, are digjointly supported (in the
scalar sense). Then span{x?, x2} is 1-complementedin (,((q), with1 < p,q < oo, p #
if and only if one of the following conditions holds:

(a) v-supp x' Nv-supp x* = {), inthis case F isisometric to (3,
or
(b) v-supp x! = v-supp x? and ||xt||lq = |[|X?||q for all i € v-supp XL, in this case F is
isometric to (3,

LEMMA 5.5. Supposethat F C (y({q) is isometric to (2 and is 1-complemented in
lp(lq), 1 < p,q<oo,p#q. Then
(a) F isspanned by disjointly supported vectors (in the scalar sense),
(b) p=2,
or
() g =2 and there exists a surjective isometry U of {({q) such that UF is spanned
by disjointly supported vectors (in the scalar sense).

RemMARK. It followsimmediately from Lemma 5.4 that if Lemma 5.5(a) holds then
p=2orq=2.

LEMMA 5.6. Letx,y € (5((g), n.me NU{oo}, 1 <q<oo,q# 2 [x]| =yl = 1.
Then F = span{x, y} C (2({q) isisometrically isomorphic to ¢3 and 1-complemented in
{5(Lg) ifand onlyif for eachi € v-supp xMv-supp Yy thereexistsa constant C; € C with

X = Gy
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and for every map o:{1,....n} — {1,..., m} such that (i.o(i)) € suppxU suppy
whenever i € v-supp xU v-supp Y, the vectors

Xio o
509= (Il ) o and 5= (2] et
Iy i<n o( i<n

(with the convention 0/0 = 0) are orthonormal.

PrROOF OF THEOREMS 5.1 AND 5.2.  Since {,({q) iscomplex, if Y is 1-complemented
in £p({q), then Y hasa 1-unconditional basis {v'}dmY.

Consider Vi, v/ for somei #j < dimY.

If Vi, vl belong to different Hilbert components of Y, then by Theorem 3.1, Vi and
vl are scalarly disjoint and conditions (a), (b) of Theorem 5.1 follow from Lemma 5.4
(sinceit is clear that span{V', vl } is 1-complemented in Y and therefore in £,({g)).

If Vi, vl are in the same Hilbert component of Y, then span{V', v!} is isometric to (2
andwhenp # 2L emma5.5 reducesour considerationsto the case of disjointly supported
vectors (in the scalar sense), where we apply Lemma5.4.

When p = 2 we apply Lemma 5.6. ]

PrROOF OF LEMMA 5.4. Notice that when z € (({g) then the norming functional z*
for zisgiven by
1

D 7 = (s S 2l e

By Proposition 2.5, span{x!, x?} is 1-complemented in £,({g) if and only if for all
al,a? € C thereexist Ks (= Kg(al, a?)), s= 1,2, in C so that

(5.2) (@lx! +a2x?)* = KoxM + Kox?*.

Thisis equivalent, by digointness of x*, x? and (5.1) to the existence of constants K
(= Ks(al. @?)), s= 1.2, such that for all (i.]) € suppx;

1 —
||alxl+a2X2||p_1HalXil+a2Xi2||g 9Ja; | sgn(@x)
= Kg(a®. &) 1§ 1 sgn(s).

which is further equivalent to the existence of constants Cs (= Cs(al, @) = Ky(a'. a?) -
lalx + a®x?||P-1), s =1, 2, such that for all i € v-supp X:

pP—q
o +ad@ea O
T - (B RGeE) = 6@,
| 1

wheret # sand {t. s} = {1.2}.
Since p # q thisis equivalent to the conditionsthat for all (i, ) € suppx®:

<llg _ Il
el ~ T
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This means that either v-supp x* N v-supp x> = @ or v-supp x* = v-supp x? and
1%l = [IX?lq for all i € v-supp x* (since [|x*]| = [X]]).
132V igi i 2 2 i i
Thefact that span{x*, x*} isisometric to (5 or (g, resp., follows immediately. L]

PROOF OF LEMMA 5.5. First we prove that if Part (a) does not hold then p = 2 or
g = 2. The proof follows the standard technique of showing that ¢, can be isometrically
embedded in £, only when p is an even integer (see [LV]) and was suggested to me by
Alex Koldobsky.

Assumethat F = span{x.y}, where ||x|| = |ly]| = 1andfordl a,b € C

1
2

lax+ by]| = (Jal* + [b[?)

Then
2 2\5 YA §
(53) (I + bI7)* = lax+by[P= 5 (5 ax; + by
i=1 Vj=

Foreachi <nletS ={j <m: (xj.yj) # (0.0} ={j <m:(i.j) € suppxU suppy}.
We define an equivalence relation R, on the set S by the condition that (ji,j2) € R if
and only if the pairs (i, , yij,) and (xi,. Yij,) are proportional.

Let A denote the set of equivalenceclassesfor R andlet J = {i < n: card(\;) = 1}
and M = {i < n: cad(\j) > 1}. For eachi € J let j; be the representative of
the equivalence class of R, (i.e,, ji € S§) and for i € M let {j,}aen, be the set of
representatives of each equivalence class. Then there exist positive constants {K; }icg,
{Ci.a }iem.aen, SO that (5.3) can be written as

p R
(54)  (la®+[b*)? = X Kiaxg, + by [P+ > ( > Ciolaxj, + byija|q> !
ied ieEM “aeh;
where the pairs (X;j, , Vi, Joen, @re mutually linearly independent for eachi € M. If there
existsi € M and 3 € A with X, - Vij, # 0, then there exist ag. by € C with

apXij, + boyij, =0

and
apX;j, + boyij, 70 forall a # 3, € A

Fix b = by and differentiate (5.4) with respect to a along thereal axisat ag. Theleft-hand
side of (5.4) can be differentiated (in this fashion) infinitely many times. But, if g is not
an even integer then the ([q] + 1)-st derivative of |ax;;, + boy;j,|9 does not exist at ap.

Hence, if gisnot even, x; - y; =0forall i € M, j € S. In particular, this implies that
card(\j) = 2foral i € M.

Similarly, if there existsi € J with x;j; - yij; # 0, then there exist ag.bp € C with
apXij, + boyij, = 0, we fix b = by and differentiate (5.4) with respect to a along the resl
axis at ap. As before, the left-hand side of (5.4) can be differentiated (in this fashion)
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infinitely many times. But, if p is not an even integer then the ([ p] + 1)-st derivative of
|axij, + boyij |P does not exist at ao.

Hence, if pisnot even, x; - y;; =0forali € J,j € S.

Further, by Lemma 4.1, if x*, y* denote norming functionals for x,y, respectively,
then span{x*,y*} is isometric to ¢3 and is 1-complemented in (Ep(fq))* = (y(lg),
wherel/p+1/p’ =1=1/q+1/q. By (5.1) relations analogous to R defined using
coefficients of x* and y* areidentical asthe original relations R.. Hence, if g’ is not even,
thenx; -y; =0forali e M,j € §andif p’ isnot even, then x; - y; = Oforal i € J,

j €S.
Thus, by (5.1), if g, ¢/, p, p’ are not al even integers, that is, g # 2 and p # 2 then x
and y are (scalarly) digjoint. ]

We postpone the proof of Part (c), because the proof of Lemma 5.6 is the direct
continuation of just presented argument and uses the same notation.

PROOF OF LEMMA 5.6. The“onlyif” part: By thefirst part of the proof of Lemmab.5,
sinceq # 2, ;- yij =0forali e M,j € S. Wewill show that M = ().

Since span{x, y} = (3 we get, by Lemma4.1, that for all a, b € € with |a|?+|b|? = 1,
the functional ax* + By* isnorming for ax + by. That is, by (5.1),

iZ l|ax; + byi[5 ¢ ]Z |ax;j + byij| 4~ sgn(axij + by;)e;
=ax ”Xi”q_qu [x{]** sgn(x;)e + 5; ||yi||q“‘; lyi |+ san(¥)es.
Thusif i € M, by disjointness of x;, y;, for each j with (i, j) € suppx we have
2 + by 1| sgn(axg;) = a1 1| sgn(;).
Hence, sinceq # 2,
[axi + byillq = |l [1%illq = [12%lg-

Since x; and y; are disjoint and {4 is strictly monotone we conclude that y; = 0. But this
implies that card(A\;) = 1, which contradictsthe fact that i € M. ThusM = ().
Hence J = v-supp xU v-supp y and for each i € v-supp x N v-supp Y there exists a
constant C; € C with
X = Gy;.

Now (5.3), (5.4) and definition of J imply that for every map o:{1...., np —
{1,...,m} such that (i. a(i)) € suppxU suppy whenever i € v-supp XU v-supp y we
have (with the convention 0/0 = 0):

amn

[af2 +[bf? = [|ax+by|[2 = 3= (5 la; + byq|?)
ied Yjeg
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a\ 4
=2 /Z ( |aXiq(i) + by.g(.)l) )
i€d \jeS |Xm(l)|
2
/ i1 >q 2
= ax.U. +by0
icd \jeS Yo 3%t 0l
[Iill3
=)= I_ L [aXiog) + bYia@)|?
ied |Xl0(l |
||X|||q I¥illg 2
= Xla +b Yio(i
5o O Pyl Y0

Thus the vectors

s00= (o) etz ad s)=(Ivldl) <o
Xio()| Ji<n Yiot| ) i<
(with the convention 0/0 = 0) are orthonormal.
The “if” part: It is clear from the above calculations that if x.y are of the form
described in Lemma 5.6 then span{x, y} isisometrically isomorphic to ¢3.
Further, by (5.1) we havefor al a,b € C:

(ax+by)* = 712 llax; + byi[|5 79> |ax; + by;j| 9" sgn(axi; + by;)e;
(laf2+pf2)* i

_
(Iaf2 + [bf2)*

) laxi +bCixi |59 3 [ax; + bCix;| 4~ sgn(axij + bCixi)e;j
J

i€v-supp X\v-supp y

/

> llaxlld Y a4 sgn(axg)e]
i€v-supp X\v-supp y J

5 oyl byl son(Bye; )
i€v-supp y\v-supp x |
1 _
=———=(a X I%i[159 3= x| son(s)e;
(|a|2+|b|2)%( iev-supp X\v-supp y ' j : o
+a+bC Y Ii[159 D" 1% son(s)e
i EV-SUpp XN\V-sUpp y i
B> IlES byl s )
iEev-supp y\v-supp X J
1 -
= —— (" +by").
(laf2 +1b[2)?

Thus, by Lemma 2.5, span{x, y} is 1-complemented. "
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PrROOF OF LEMMA 5.5(c). Assume that q = 2. First notice that, if z € (,({2) and
l|Z]| = 1, then the norming functional Z* for zis given by

n m
(55) Z =3 |lzly - Yz

i=1 =1

Let F = span{x,y}, where |[x|| = [|ly|l = 1 and [|ax + by|| = (ja|* + [b[?)*/2 for all

a.b e C.LetUj: (2 — (2 beasurjectiveisometry such that, for al i < n,

Uixi = ||| 2€1-
Define an isometry U: £,(£2) — £p({2) by

U((Zi)inzl) = (Uiz)lL,.

Then UF = span{Ux, Uy} isisometric to (3 and is 1-complemented in £,((2).
Thus, by Lemma4.1, for al a. b € C with |a2 + |b|? = 1, we have

(aUx + bUy)* = a(Ux)* + b(Uy)".
Hence, by (5.5) and by the choiceof U, weget forali <nandallj > 2:
(56) lla(Ux); + b(Uy) |52 - (@- 0+b- [Ty);)

=a- [[(Uxgll5 - 0+ b [|(UyilI5 (@)

Now for eachi with ||(Ux)i||2 # O we consider two cases: either
1. thereexistsj > 2 with (Uy); # 0, or

2. (Uy)i = ((Uy)i.0.0.....0).

In case (1) we have

laUx)i +b(Uy)il5* = | UyXlI5~2
whenever |aj2 + |b[?> = 1. In particular, sincep # 2 and ||(UX)i||2 = | (Uy)i||2, we get

(Ux)i (Uy)i
Hamummz+bmuwmz

Thus (Ux)i /||(Ux)i]|2 and (Uy)i /||(Uy)i]|> form an orthonormal basis for ¢,. Since
(Ux)i /[|(Ux)i]| = (1, 0,0,...), the vectors (Ux); and (Uy); are dijoint.

In case (2), i.e., when (Uy); = ((Uy)i1. 0.0 ... 0), then by (5.5) and by the form of
U we get for all a,bwith |a? + |b|2 = 1:

2

(5.7) |a(Ux)iz + b(Uy)ia P2 - (a(UX)iz + b (Ty)i)
= AU 2(Ux)i + bl(Uy)ia [>Ty
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Leta € R, andb = c€’, wherec € Ry, a® + ¢ = 1 and 6 is such that e - (Uy)iy =
|(Uy)is]. Set o = (Ux)ix > 0, 3 = [(Uy)iz| > 0. Then (5.7) becomes

(5.8) (aa +cB)P L =aaP 1 + Pt

and this equation holds for all a, ¢ > O with a® + ¢? = 1.
For any fixed u, v > 0 defineafunction f,,: [0, 1] — R by

fuv(@) =au++v1— av.

Itisnot difficult to check that f,,, attainsits maximumon [0, 1] at the point ap = ap(u. v) =
u(u? + v2)~1/2 and the maximum value of f,,, is equal to M(u, v) = (U2 +V?)Y/2,
Since equation (5.8) can be written as

(fas(@)® = s go(a).

we have

ao(a. §) = ag(a® ™, BP77).
M(ex. 8P = M(aP~, BP7).

Thus
p—1
A
\¢M+m> Vo + 2
Since p # 2, we conclude that either o = 0 or a(e? + 332 =1, i.e, 8 = 0. But
a = (Ux)iz = [[(Ux)i|lz and 8 = |(Uy)iz] = ||(UY)i||2- Thus (Ux); =0 or (Uy); = 0. Hence
Ux and Uy are digjoint. ]

REMARK. Lemmas 5.4-5.6 are al valid (with the presented proofs) both in the
complex and real case. We suspect that Theorems 5.1 and 5.2, too, are true in the real
case, but our method of proof does not work then.

6. 1-complemented disjointly supported subspacesof Orliczand L orentz spaces.
In this section we fully characterize subspaces of (real or complex) Orlicz and Lorentz
spacesthat are spanned by disjointly supported elements and 1-complemented.

In particular, it follows from Theorems 6.1 and 6.3 that in “most” Orlicz and Lorentz
spaces the only 1-complemented disjointly supported subspaces are those spanned by a
block basis with constant coefficients (of some permutation of the original basis).

THEOREM 6.1. Let ¢, be a (real or complex) Orlicz space and let x.y € (,, be
disoint elements such that |||, = ||y, = 1 and span{x. y} is 1-complementedin ..

Then one of three possibilities holds:

(1) card(suppx) < oco and || = || for all i,j € suppx; or

(2) thereexistsp, 1 < p < oo, such that ¢ (t) = Ct* for all t < ||X||.; Or
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(3) thereexistsp, 1 < p < oo, and constants C;, C,, Y > 0 such that CotP < p(t) <
CytP for all t < ||x||~ and such that, for all j € suppx,

) =D Xl
for somek(j) € Z.

For the proof of the theorem we will need the following (well-known?) lemma, whose
proof isoutlined in [Z]. For the convenience of the reader we provide its proof below.

LEMMA 6.2. Leta > 0and supposethat ¢: [0,a] — R isan increasingdifferentiable
function with ¢(0) = 0. Suppose that thereexista < «, 8 < 1 so that, for all u < a,

(6.1) p(au) = B (U).
Thenthereexist p > 0and C;, C, > 0 such that, for all u < a,
ColP < p(u) < CuUP.

Moreover, if o(u) # C - WP, there exists ¥ > 0 such that (6.1) is satisfied (with the
corresponding 3) if and only if o = 7% for somek € Z.

PrROOF OF THEOREM 6.1. Letz € (. By [GH] the norming functional z* of zisgiven
by:
_1 (1l Izl
where C is a constant depending on z. By Proposmon 2.4, for adl b € C there exist

constants K1, K, such that
(X + by)* = KixX* + Kyy*.

Since x and y are digjoint, there exists a constant K = K(b) so that for al i € suppx

sgn(x) e’ <“XJL|'D|y” >=K~sgn(>€)¢’(lml)-

Now for all 0 < t < 1thereexistsb € € sothat ||x+byl||, = t~1. Thus, forall 0 < t < 1,
there exists C; > 0 so that for all i € suppx

o' (1% - t) = Cip’(Ixi]).-
Hencefor ali.j € suppxandforalt <1

(%l -t) _ (1%l )
e'(Ixl)  e(xl)

https://doi.org/10.4153/CJM-1997-061-2 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1997-061-2

1-COMPLEMENTED SUBSPACES OF SPACESWITH 1-UNCONDITIONAL BASES 1259

In this notation we have
¢’ (au) = B¢’ (u)
for all usuchthat 0 < u < |x]|. Thus

p(au) = Bap(u)

for all usuchthat 0 < u < [x].
Letj e suppxbesuchthat x| = ||X||. If thereexistsi € suppxwith x| # [%]| = ||X]|co
then, by Lemma 6.2, condition (2) or (3) holds. ]

PROOF OF LEMMA 6.2. Let p = log, (). Let my € Z be the smallest integer with
a™ < a.
If ™ < u<awehave

) < p@) < 2D p
and o
) > pam™) > 20D
If ™1 < u< o™ for somem < my we have
Moy Moy

p(U) < p(a™) = Bp(@™ ) = - = g (™) = %(OJ’)W1 < % WP

and
Moy Moy
() = p(a™) = Bp(@™ = ... = fT (™) = *;fﬁf_l) ()" > “;(rfif_l) .

Set C; = max{p(a)/a™P, p(a™)/3™1} and C; = min{p(a™)/aP, p(a™) /BT 1},
Then
ColP < (u) < CuuP
foral uwitho <u<a.
Further defineafunction h,: (—oo,Ina] — R by

.0 = & (In((e))

Then, by (6.1), h,, (t + In(a)) =h,(t) for all t <Ina. Thus, since o # 1, either
o h, isconstant, that is, there exists a constant K so that ¢ (u) = K - uP for all u < a,
or
e h, isperiodic, that is, there exists w, with minimal |w|, so that h,(t + w) = h.(t)
foralt<lIna.
Thus there exists Y > 0 (namely ¥ = €") andk € Z such that o = 7. .

st

Our next theorem describes disjointly supported 1-complemented subspaces of (rea
or complex) Lorentz sequence spaces.
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THEOREM 6.3. Let {yp, With 1 < p < oo, be areal or complex Lorentz sequence
space. Supposethat {x; }ici are mutually disjoint elements of ¢y, such that card(l) > 2
and F = span{x }ic| is 1-complemented in (. Suppose, moreover, that w, # O for all
v < Z=Ye card(suppx;) (< 00).

Then

(@ w, =1foralv <%,
or

(b) || = || for alli € 1 and all k.| € suppx.

Proor. With each element z € (,,, we associate a decreasing sequence of positive
numbers ()9 and “level sets” A;(2) defined inductively as follows:
za=ldle  A@={ieN:|z=2}
% =max{|z] :j € N\ A(2)}. Ao ={j eN: |zl =2}

and so on. Note that I(2) is the largest integer such that Z; > 0 and suppz = U:(:Zi A(2).
For i <I(2) introduce also

$9=0 3= cad(A().
2
L@ ={s1@+1....s@} CN,

and let 6;: A(2) — Li(2) be abijection.

Finally, for any set A C N denote by P (A) the set of all permutations of A.

In this notation we can easily describe norming functionals ZN for z. Namely, for each
jwith1 <j < (2, there exists a family of coefficients {\, },cp(L,(9) Such that A, > 0,
YoeP () Ae = 1and

5\
<|ZE|)kEAj(Z) = (H) Z )‘(T(WU((Sj(k)))kEAj(Z)'

aeP(L(2)
In particular, we can compute the £1-norm of ZN restricted to alevel set Aj(2)

neLi(2

(6-2) H (|ZE |)keA,(z)

1

Notice that the right hand side of (6.2) does not depend on the choice of the norming
functional 2\ for z

Now assumethat I(x;) > 1. We will show that w, = 1 for all natural numbersv < Z,
where X = ¥, card(supp x;) as defined above.

If v < Z, thereexistsn < I1(x;) such that

v — (%) < Z — card(suppxq).
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Further, thereexist n € Nand {ji}/., C N suchthat jj <I(x)fori=2,..., w and
7
2500 =M > v —sy(x).
i=2

Choose {& }/.; C R+ suchthat, for all i with2 <i <,

a1(X1)1 > (%), > au(X1)2

and a; (X1)n > & (%); for al j > ji.
To shorten the notation, set x = >°IL; a;x;. Then

(6.3) (X)) =% and Ag(X) = Ag(xe).
Moreover, there exists k € N with 2 < k < 1+ 3iL, ji such that, for al « satisfying
2<a<n,
(6.4) A(X)a = RKr(0-20  Akra—2(¥) = Ax(X1),
and
S-1(X) = s1(x1) + M.

Thus

(6.5) Li(9) = La(xa) = {1..... s1(x1) -

and, foral awith2 <o <n,

(6.6) Lire-2)(0) = M+ Lo(x1) = (M +5,1(x1) + L.... .M +5,(xa) .
By Proposition 2.4 there exist norming functionalsx for x and xN for x;, and constants
Ki, wherei =1, ..., u, such that
7
XN =S K
i=1

Thus, by (6.2) and (6.3),

%1 )pl _ (6110(1)1)FH
= w =Ky - W.
(7 Py bl ) o™
Hence, by (6.5),

(6.7) Ky - ( M) L

[
Moreover, by (6.2) and (6.4), for all a with 2 < o < nwe get:

(y(kf(a_z))pl 5 v\/j=K1'(a1()zl)a)pl S w.

j€ELKkta—2)(X) HXl” j€La(x1)
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Hence, by (6.7) and (6.6),

So(X1) So(X1)
| W = 0 W
j=so—1(x0)+1 J=Sa—1(xa)+1

Since {w; } is adecreasing sequence of numberswe immediately concludethat, for all «
with2 < o <n,

Ws,_1(x)+1 = Ws,(x)+M
SinceM > 1 we get
(6.8) Wsi0)+1 = Wey()+M = Wey(q)+1 = Weg)+M = **+ = We () +M -
Finally, choose {b; }.; C R+ in suchaway that, for all i with2 <i <,
bi(X);; > ba(X1)1.

Now sety = 3/ bix. Thenthereexistst € N, with 1 <t <1+ YL, jj, such that for all
awithl < o < nwehave

(6.9) b1(X1)a = Vis(a—1);  Asa(X1) = Axia—1)(¥).

Similarly, as before,
Str(e-1)(Y) = SulX1) + M

and
(6.10) Lis(e—1)(Y) = M+ Lo(x1) = {M +Sp-1(X) +1,... .M+ S(x(xl)}'
Adgain, by Proposition 2.4 there exist norming functionals yN for y and X for x;, and
constants K/, wherei = 1,.... w, such that
N _ - 1 N
y' = Zl Kix
=

Thus, by (6.2) and (6.9) we get, for all o with1 < o < n,

~ p—1 v p—1
(yt+(o(71)) . Z ij - Ki (( 1)0:) . Z VVJ
Iyl ieLian(y) (1] W)

Hence, by (6.10),

1\P 1 s , 1\P1 s0q)
om () ke ()L
y =81 (x)+1 =81 (x)+1

If o = 2, by (6.8) we conclude that

) = ()

https://doi.org/10.4153/CJM-1997-061-2 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1997-061-2

1-COMPLEMENTED SUBSPACES OF SPACESWITH 1-UNCONDITIONAL BASES 1263

Thus, when o = 1, (6.11) becomes

S1(X1) S1(X1)
D0 WM = D0 W
j=1 j=1

Thus

W1 = W) (x)+M

and sinceM > 1, by (6.8) we get

W1 = We,(x;)+M-

Sincer < $,(X1) + M we conclude that

1=w=w,,

which ends the proof. ]
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