Canad. Math. Bull. Vol. 54 (1), 2011 pp. 21–27 doi:10.4153/CMB-2010-094-2 © Canadian Mathematical Society 2010

Generalized D-symmetric Operators II

S. Bouali and M. Ech-chad

Abstract. Let *H* be a separable, infinite-dimensional, complex Hilbert space and let $A, B \in \mathcal{L}(H)$, where $\mathcal{L}(H)$ is the algebra of all bounded linear operators on *H*. Let $\delta_{AB} \colon \mathcal{L}(H) \to \mathcal{L}(H)$ denote the generalized derivation $\delta_{AB}(X) = AX - XB$. This note will initiate a study on the class of pairs (A, B) such that $\overline{\mathcal{R}}(\delta_{AB}) = \overline{\mathcal{R}}(\delta_{A^*B^*})$.

1 Introduction

Let $\mathcal{L}(H)$ be the algebra of all bounded linear operators on an infinite dimensional complex Hilbert space *H*. For an operator *A* in $\mathcal{L}(H)$, the inner derivation on *A*, δ_A , is defined on $\mathcal{L}(H)$ by $\delta_A(X) = AX - XA$ for each *X* in $\mathcal{L}(H)$. The generalized derivation operator δ_{AB} associated with (A, B), defined on $\mathcal{L}(H)$ by $\delta_{AB}(X) = AX - XB$ has been much studied, and many of its spectral and metric properties are known (see [2, 6, 7, 9]).

J. G. Stampfli [8], J. H. Anderson, J. W. Bunce, J. A. Deddens, and J. P. Williams [1], and S. Bouali and J. Charles [4, 5] gave some properties and characterizations of Dsymmetric operators, the class of operators that induce derivations for which the norm closures of their ranges are self-adjoint. In order to generalize these results, we initiate the study of a more general class of D-symmetric operators, in other words, the class of pairs of operators $A, B \in \mathcal{L}(H)$ that have $\overline{\mathcal{R}}(\delta_{AB}) = \overline{\mathcal{R}}(\delta_{A^*B^*})$, where $\overline{\mathcal{R}}(\delta_{AB})$ is the norm closure of the range of δ_{AB} . We call such pairs D*-symmetric.

Notations

- (i) For $A \in \mathcal{L}(H)$, $\sigma(A)$ is the spectrum of A.
- (ii) Let $\mathcal{K}(H)$ be the ideal of all compact operators. For $A \in \mathcal{L}(H)$, let [A] denote the coset of A in the Calkin algebra $\mathcal{C}(H) = \mathcal{L}(H)/\mathcal{K}(H)$.
- (iii) $\mathcal{C}_1(H)$ is the ideal of trace class operators.
- (iv) For $A, B \in \mathcal{L}(H)$, $\overline{\mathcal{R}(\delta_{AB})}^U$ denotes the ultraweak closure of $\mathcal{R}(\delta_{AB})$, and $\mathcal{L}(H)^{\prime U}$ denotes the continuous linear forms in the ultraweak topology.
- (v) Let *M* be a subspace of $\mathcal{L}(H)$. We denote the orthogonal of *M* in the dual space of $\mathcal{L}(H)$, $\mathcal{L}(H)'$, by M^{o} .
- (vi) For g and ω two vectors in H, we define $g \otimes \omega \in \mathcal{L}(H)$ as follows:

$$g \otimes \omega(x) = \langle x, \omega \rangle g$$
 for all $x \in H$.

Received by the editors April 17, 2008; revised July 21, 2008.

Published electronically August 19, 2010.

AMS subject classification: 47B47, 47B10, 47A30.

Keywords: generalized derivation, adjoint, D-symmetric operator, normal operator.

2 D*-symmetric Pairs

Definition 2.1 Let $A, B \in \mathcal{L}(H)$. If $\overline{\mathcal{R}(\delta_{AB})} = \overline{\mathcal{R}(\delta_{A^*B^*})}$, we say that (A, B) is D*-symmetric.

Theorem 2.2 Let $A, B \in \mathcal{L}(H)$. If A and B are D-symmetric operators with disjoint spectra, then (A, B) is D*-symmetric.

Proof Let $X \in \overline{\mathcal{R}(\delta_{AB})}$. There exists a sequence $(X_n)_n \subset \mathcal{L}(H)$ such that $\|\delta_{AB}(X_n) - X\| \to 0$. Consider the operators on $H \oplus H$

$$M = \begin{pmatrix} 0 & X \\ 0 & 0 \end{pmatrix}, \quad M_n = \begin{pmatrix} 0 & X_n \\ 0 & 0 \end{pmatrix}, \text{ and } T = \begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix}.$$

It follows that

$$\delta_T(M_n) = \begin{pmatrix} 0 & \delta_{AB}(X_n) \\ 0 & 0 \end{pmatrix} \stackrel{\|\cdot\|}{\longrightarrow} \begin{pmatrix} 0 & X \\ 0 & 0 \end{pmatrix} = M.$$

Thus $M \in \overline{\mathcal{R}(\delta_T)}$. Since *A* and *B* are D-symmetric operators with disjoint spectra, then *T* is D-symmetric by J. G. Stampfli [8, p. 260]. Hence there exists a sequence $(N_n)_n \subset \mathcal{L}(H \oplus H)$ such that $\delta_{T^*}(N_n) \xrightarrow{\|\cdot\|} M$. A simple calculation proves that there exists a sequence $(Y_n)_n \subset \mathcal{L}(H)$, such that $\delta_{A^*B^*}(Y_n) \xrightarrow{\|\cdot\|} X$. Thus $\overline{\mathcal{R}(\delta_{AB})} \subset \overline{\mathcal{R}(\delta_{A^*B^*})}$. We obtain the reverse inclusion in the same way.

Remark 2.3 Let *A* and *B* be two cyclic subnormal operators with disjoint spectra. *A* and *B* are D-symmetric operators by [4, Thm. 2.5]. Since $\sigma(A) \cap \sigma(B) = \emptyset$, Theorem 2.2 implies that (A, B) is D*-symmetric.

Theorem 2.4 For A, B in $\mathcal{L}(H)$ the following are equivalent:

(i) (A, B) is D^* -symmetric;

(ii) $\delta_{A^*}(A)\mathcal{L}(H) + \mathcal{L}(H)\delta_{B^*}(B) \subseteq \overline{\mathcal{R}(\delta_{AB})} \cap \overline{\mathcal{R}(\delta_{A^*B^*})};$

(iii) $A^* \mathcal{R}(\delta_{AB}) + \mathcal{R}(\delta_{AB})B^* \subseteq \overline{\mathcal{R}(\delta_{AB})}$ and $A\mathcal{R}(\delta_{A^*B^*}) + \mathcal{R}(\delta_{A^*B^*})B \subseteq \overline{\mathcal{R}(\delta_{A^*B^*})}$.

Proof (i) \Rightarrow (ii). For all $X \in \mathcal{L}(H)$ we have

 $\delta_{A^*}(A)X = \delta_{A^*B^*}(AX) - A\delta_{A^*B^*}(X) \quad \text{and} \quad X\delta_{B^*}(B) = \delta_{AB}(X)B^* - \delta_{AB}(XB^*).$

Since $A\Re(\delta_{A^*B^*}) \subseteq A\overline{\Re(\delta_{AB})} \subseteq \overline{\Re(\delta_{AB})}$ and $\Re(\delta_{AB})B^* \subseteq \overline{\Re(\delta_{A^*B^*})}B^* \subseteq \overline{\Re(\delta_{AB})}$, it follows that

$$\delta_{A^*}(A)\mathcal{L}(H) + \mathcal{L}(H)\delta_{B^*}(B) \subseteq \mathcal{R}(\delta_{AB}).$$

The implication (ii) \Rightarrow (iii) is a consequence of the following identities. For all *X* and *Y* in $\mathcal{L}(H)$,

$$A^*\delta_{AB}(X) + \delta_{AB}(Y)B^* = \delta_{AB}(A^*X + YB^*) + \delta_{A^*}(A)X + Y\delta_{B^*}(B)$$

22

Generalized D-symmetric Operators II

and

$$A\delta_{A^*B^*}(X) + \delta_{A^*B^*}(Y)B = \delta_{A^*B^*}(AX + YB) - \delta_{A^*}(A)X - Y\delta_{B^*}(B).$$

(iii) \Rightarrow (i). Suppose that (iii) holds. Then $A^{*n}\mathcal{R}(\delta_{AB}) \subseteq \overline{\mathcal{R}(\delta_{AB})}$ for each *n* in \mathbb{N} . We always have the inclusion $A^m\mathcal{R}(\delta_{AB}) \subseteq \overline{\mathcal{R}(\delta_{AB})}$ for each *m* in \mathbb{N} .

We shall prove that $\Re(\delta_{AB})^o = \Re(\delta_{A^*B^*})^o$. Let $f \in \Re(\delta_{AB})^o$ and $X \in \mathcal{L}(H)$. Observe that

$$A^{*n}AX - AA^{*n}X = A^{*n}\delta_{AB}(X) - \delta_{AB}(A^{*n}X)$$

for each n in \mathbb{N} . Hence $A^{*n}AX - AA^{*n}X \in \overline{\mathcal{R}(\delta_{AB})}$ for each n in \mathbb{N} . A similar argument using mathematical induction on m shows that $A^{*n}A^mX - A^mA^{*n}X \in \overline{\mathcal{R}(\delta_{AB})}$ for each n and m in \mathbb{N} . Thus $f(A^{*n}A^mX) = f(A^mA^{*n}X)$ for each n and m in \mathbb{N} . It follows that $f(e^{\alpha A}e^{\beta A^*}X) = f(e^{\beta A^*}e^{\alpha A}X)$ for all complex numbers α and β .

An induction argument shows that

$$f((\alpha A + \beta A^*)^n X) = \sum_{k=0}^n \binom{n}{k} f((\alpha A)^k (\beta A^*)^{n-k} X)$$

for each *n* in \mathbb{N} and for all complex numbers α and β . Hence

$$f(e^{\alpha A + \beta A^*}X) = f(e^{\alpha A}e^{\beta A^*}X) = f(e^{\beta A^*}e^{\alpha A}X)$$

for each X in $\mathcal{L}(H)$ and for all complex numbers α and β . A similar argument using $\mathcal{R}(\delta_{AB})B^* \subseteq \overline{\mathcal{R}(\delta_{AB})}$ shows that

$$f(Xe^{\alpha B+\beta B^*}) = f(Xe^{\alpha B}e^{\beta B^*}) = f(Xe^{\beta B^*}e^{\alpha B})$$

for each *X* in $\mathcal{L}(H)$ and for all complex numbers α and β .

Since f(AX) = f(XB), it follows by induction that $f(A^nX) = f(XB^n)$ for all $n \in \mathbb{N}$, and hence $f(e^{\alpha A}X) = f(Xe^{\alpha B})$ or $f(e^{\alpha A}Xe^{-\alpha B}) = f(X)$ for all $\alpha \in \mathbb{C}$ and $X \in \mathcal{L}(H)$. These relations yield, for all $\lambda \in \mathbb{C}$, the equations

$$f(e^{i\lambda A^*}Xe^{-i\lambda B^*}) = f(e^{i\overline{\lambda}A}e^{i\lambda A^*}Xe^{-i\lambda B^*}e^{-i\overline{\lambda}B})$$
$$= f(e^{i(\overline{\lambda}A+\lambda A^*)}Xe^{-i(\lambda B^*+\overline{\lambda}B)}).$$

Define the function g on \mathbb{C} as follows:

$$g(\lambda) = f(e^{\iota \lambda A^*} X e^{-\iota \lambda B^*}).$$

Since $\overline{\lambda}A + \lambda A^*$ and $\lambda B^* + \overline{\lambda}B$ are self-adjoint operators, then $e^{i(\overline{\lambda}A + \lambda A^*)}$ and $e^{-i(\lambda B^* + \overline{\lambda}B)}$ are unitary operators. Thus for all $\lambda \in \mathbb{C}$,

$$|g(\lambda)| \le ||f|| ||X||.$$

By Liouville's theorem, the entire function g side must be constant. In particular, the derivative vanishes at $\lambda = 0$. This gives $f(A^*X - XB^*) = 0$ for all $X \in \mathcal{L}(H)$. Thus $\mathcal{R}(\delta_{AB})^o \subseteq \mathcal{R}(\delta_{A^*B^*})^o$. We obtain the reverse inclusion in the same way.

Corollary 2.5 If A and B are normal operators, then (A, B) is D^* -symmetric.

Corollary 2.6 Let U and V two isometries, then (U, V) is D^{*}-symmetric.

Proof Let $P = I - UU^*$. Then for all $X \in \mathcal{L}(H)$,

$$\delta_{U^*V^*}(X) = \delta_{UV}(-U^*XV^*) - PXV^*.$$

Hence, to prove that $\Re(\delta_{U^*V^*}) \subseteq \overline{\Re(\delta_{UV})}$, it suffices to show that $PX \in \overline{\Re(\delta_{UV})}$ for all $X \in \mathcal{L}(H)$. Let

$$T_n = \sum_{k=0}^{n-1} \left(\frac{k}{n} - 1\right) U^k P X V^{*k+1}, \quad n \in \mathbb{N}^*,$$

where $\mathbb{N}^* = \mathbb{N} \setminus \{0\}$. A simple calculation shows that

$$\delta_{UV}(T_n) - PX = -\frac{1}{n} \sum_{k=1}^n U^k PXV^{*k}.$$

Since $\langle U^j Px, U^k Py \rangle = 0$ for $j \neq k$ and x, y in H, then

(2.1)
$$\left\|\sum_{k=1}^{n} U^{k} P X V^{*k} x\right\|^{2} = \sum_{k=1}^{n} \|U^{k} P X V^{*k} x\|^{2} \le n \|P X\|^{2} \|x\|^{2}.$$

Thus $\|\delta_{UV}(T_n) - PX\| \le n^{-\frac{1}{2}} \|PX\|$, that is, $PX \in \overline{\mathcal{R}(\delta_{UV})}$.

For the reverse inclusion, first prove that if $Q = I - VV^*$, then $PX \in \overline{\mathcal{R}(\delta_{U^*V^*})}$ and $XQ \in \overline{\mathcal{R}(\delta_{U^*V^*})}$ for all $X \in \mathcal{L}(H)$. Let

$$S_n = \sum_{k=0}^{n-1} \left(\frac{k}{n} - 1\right) U^{k+1} P X V^{*k}, \quad n \in \mathbb{N}^*.$$

A simple calculation shows that

$$\delta_{U^*V^*}(S_n) + PX = \frac{1}{n} \sum_{k=1}^n U^k PXV^{*k}.$$

It follows from (2.1) that $\|\delta_{U^*V^*}(S_n) + PX\| \le n^{-\frac{1}{2}} \|PX\|$. Thus $PX \in \overline{\mathcal{R}}(\delta_{U^*V^*})$. Consider

$$R_n = \sum_{k=0}^{n-1} \left(\frac{k}{n} - 1\right) U^{k+1} X Q V^{*k}, \quad n \in \mathbb{N}^*.$$

Then

$$\delta_{U^*V^*}(R_n) + XQ = \frac{1}{n} \sum_{k=1}^n U^k XQV^{*k}.$$

Generalized D-symmetric Operators II

Hence

$$(\delta_{U^*V^*}(R_n) + XQ)^* = \frac{1}{n} \sum_{k=1}^n V^k Q X^* U^{*k}.$$

Thus $\|\delta_{U^*V^*}(R_n) + XQ\| \le n^{-\frac{1}{2}} \|QX^*\|$, and so $XQ \in \overline{\mathcal{R}(\delta_{U^*V^*})}$. Since

$$U\delta_{U^*V^*}(X) = \delta_{U^*V^*}(UX) - PX$$
 and $\delta_{U^*V^*}(X)V = \delta_{U^*V^*}(XV) - XQ$,

then

$$U\mathcal{R}(\delta_{U^*V^*}) + \mathcal{R}(\delta_{U^*V^*})V \subseteq \overline{\mathcal{R}(\delta_{U^*V^*})}.$$

It follows from the proof of Theorem 2.4 that $\overline{\mathcal{R}(\delta_{UV})} \subseteq \overline{\mathcal{R}(\delta_{U^*V^*})}$. Thus (U, V) is D*-symmetric.

Definition 2.7 ([3]) Let A, B be in $\mathcal{L}(H)$ and \mathcal{J} be a two sided ideal of $\mathcal{L}(H)$. The pair (A, B) is said to possess the Fuglede–Putnam property $(F, P)_{\mathcal{J}}$ if AT = TB and $T \in \mathcal{J}$ implies $A^*T = TB^*$.

Theorem 2.8 For $A, B \in \mathcal{L}(H)$, the following are equivalent:

- (i) (A, B) is D^* -symmetric;
- (ii) (a) ([A], [B]) is D^* -symmetric in $\mathcal{C}(H)$, and
- (b) (A, B) and (B, A) have the property $(F, P)_{\mathcal{C}_1}$;
- (iii) (a) ([A], [B]) is D^* -symmetric in $\mathbb{C}(H)$, and (b) $\overline{\mathcal{R}(\delta_{AB})}^U = \overline{\mathcal{R}(\delta_{A^*B^*})}^U$.

Proof Note that $\overline{\mathcal{R}(\delta_{AB})}^U = \overline{\mathcal{R}(\delta_{A^*B^*})}^U$ if and only if

$$\mathfrak{R}(\delta_{AB})^{o} \cap \left(\mathfrak{L}(H)\right)^{\prime U} = \mathfrak{R}(\delta_{A^{*}B^{*}})^{o} \cap \left(\mathfrak{L}(H)\right)^{\prime U}.$$

On the other hand

(2.2)
$$\Re(\delta_{AB})^o \simeq \Re(\delta_{AB})^o \cap \mathcal{K}(H)^o \oplus \ker(\delta_{BA}) \cap \mathcal{C}_1(H),$$

[10, Thm. 3]. In particular,

$$\mathfrak{R}(\delta_{AB})^0 \cap \mathfrak{L}(H)'^U \simeq \ker(\delta_{BA}) \cap \mathfrak{C}_1(H).$$

This proves that $\overline{\mathcal{R}(\delta_{AB})}^U = \overline{\mathcal{R}(\delta_{A^*B^*})}^U$ if and only if

$$\ker (\delta_{BA}) \cap \mathcal{C}_1(H) = \ker (\delta_{B^*A^*}) \cap \mathcal{C}_1(H).$$

Thus (ii) \Leftrightarrow (iii).

Clearly the above shows that (i) \Rightarrow (iii). Suppose that (iii) holds. Let $f \in \mathcal{R}(\delta_{AB})^0$. Then by (2.2), we have $f = f_0 + f_T$ such that $f_0 \in \mathcal{R}(\delta_{AB})^o \cap \mathcal{K}(H)^o$ and $T \in \ker(\delta_{BA}) \cap \mathcal{C}_1(H)$ (where $f_T(X) = tr(XT)$ for each X in $\mathcal{L}(H)$). Since $\overline{\mathcal{R}(\delta_{AB})}^U = \overline{\mathcal{R}(\delta_{A^*B^*})}^U$, it follows that $T \in \ker(\delta_{B^*A^*}) \cap \mathcal{C}_1(H)$. Let $Z \in \mathcal{R}(\delta_{A^*B^*})$. Then

25

 $[Z] \in \mathcal{R}(\delta_{[A^*][B^*]})$. Since ([A], [B]) is D*-symmetric in $\mathcal{C}(H)$, then $[Z] \in \overline{\mathcal{R}(\delta_{[A][B]})}$. There exists a sequence of operators $(X_n)_n$ in $\mathcal{L}(H)$ and a sequence $(K_n)_n$ of compact operators in $\mathcal{K}(H)$ such that $AX_n - X_nB + K_n \to Z$. But

$$f_0(AX_n - X_nB + K_n) = f_0(AX_n - X_nB) + f_0(K_n) = 0,$$

and thus $f_0(Z) = 0$. It follows that $f_0 \in \mathcal{R}(\delta_{A^*B^*})^o \cap \mathcal{K}(H)^o$, and hence $f \in \mathcal{R}(\delta_{A^*B^*})^o$. Therefore, $\mathcal{R}(\delta_{AB})^o \subseteq \mathcal{R}(\delta_{A^*B^*})^o$. We obtain the reverse inclusion using a similar argument.

Corollary 2.9 If U and V are two isometries, then (U, V) has the property $(F, P)_{C_1}$.

Proof (U, V) is D*-symmetric by Corollary 2.6. It follows from Theorem 2.8 that (U, V) has the property $(F, P)_{C_1}$.

Theorem 2.10 Let $A, B \in \mathcal{L}(H)$. If there exist two nonzero elements f and g in H, and $\lambda \in \mathbb{C}$, such that $B(f) = \lambda f$, $B^*(f) \neq \overline{\lambda} f$ and $A^*(g) = \overline{\lambda} g$, then (A, B) is not D^* -symmetric.

Proof Since for all $\lambda \in \mathbb{C}$, $\mathcal{R}(\delta_{AB}) = \mathcal{R}(\delta_{(A-\lambda)(B-\lambda)})$, we may assume without loss of generality that $\lambda = 0$. Note that $B^*f = \omega \neq 0$, where $\omega \perp f$. If $X = \|\omega\|^{-2}(g \otimes \omega)$ and $Y \in \mathcal{L}(H)$, then

$$\langle (A^*X - XB^*)f,g \rangle = \langle A^*X(f),g \rangle - \langle XB^*f,g \rangle$$

= $\langle 0,g \rangle - \langle X(\omega),g \rangle = -\langle g,g \rangle = -||g||^2$

and

$$\langle (AY - YB)f, g \rangle = \langle Yf, A^*g \rangle - \langle 0, g \rangle = 0.$$

Suppose that $A^*X - XB^* \in \overline{\mathcal{R}(\delta_{AB})}^U$. Then there exists a net $(Y_\alpha)_\alpha$ in $\mathcal{L}(H)$ such that for all *x* and *y* in *H*, we have:

$$\langle (AY_{\alpha} - Y_{\alpha}B)x, y \rangle \longrightarrow \langle (A^*X - XB^*)x, y \rangle,$$

so that

$$0 = \left\langle (AY_{\alpha} - Y_{\alpha}B)f, g \right\rangle \longrightarrow \left\langle (A^*X - XB^*)f, g \right\rangle = -\|g\|^2$$

It follows that g = 0. This proves that $A^*X - XB^* \notin \overline{\mathcal{R}(\delta_{AB})}^U$, that is, $\overline{\mathcal{R}(\delta_{AB})}^U \neq \overline{\mathcal{R}(\delta_{A^*B^*})}^U$. Consequently we obtain that (A, B) is not D*-symmetric by Theorem 2.8.

References

- J. Anderson, J. W. Bunce, J. A. Deddens, and J. P. Williams, C*-algebras and derivation ranges. Acta Sci. Math. (Szeged) 40(1978), no. 3–4, 211–227.
- [2] J. Anderson and C. Foias, *Properties which normal operators share with normal derivation and related operators*. Pacific J. Math. **61**(1975), no. 2, 313–325.

Generalized D-symmetric Operators II

- [3] M. Benlarbi, S. Bouali, and S. Cherki, Une remarque sur l'orthogonalité de l'image au noyau d'une dérivation généralisée. Proc. Amer. Math. Soc. 126(1998), no. 1, 167–171. doi:10.1090/S0002-9939-98-03996-3
- [4] S. Bouali and J. Charles, Extension de la notion d'opérateur D-symétrique. I. Acta Sci. Math. (Szeged) 58(1993), no. 1–4, 517–525.
- [5] ______, Extension de la notion d'opérateur D-symétrique. II. Linear Algebra Appl. 225(1995), 175-185. doi:10.1016/0024-3795(94)00003-V
- [6] D. A. Herrero, *Approximation of Hilbert space operators. Vol. I*, Research Notes in Mathematics, 72, Pitman (Advanced Publishing Program), Boston, MA, 1982.
- [7] M. Rosenblum, On the operator equation BX XA = Q. Duke Math. J. 23(1956), 263–269. doi:10.1215/S0012-7094-56-02324-9
- [8] J. G. Stampfli, On self-adjoint derivation ranges. Pacific J. Math. 82(1979), no. 1, 257–277.
- [9] J. P. Williams, Derivation ranges: open problems. In: Topics in modern operator theory, Operator Theory: Adv. Appl., 2, Birkhäuser, Basel-Boston, MA, 1981, pp. 319–328.
- [10] _____, On the range of a derivation. Pacific J. Math. **38**(1971), 273–279.

Department of Mathematics and Informatics, Faculty of Sciences Kénitra, B. P. 133 Kénitra, Morocco e-mail: said.bouali@yahoo.fr

Lycée mixte de Missour, 33250 Missour, Morocco e-mail: m.echchad@yahoo.fr