Generalized D-symmetric Operators II

S. Bouali and M. Ech-chad

Abstract. Let H be a separable, infinite-dimensional, complex Hilbert space and let $A, B \in \mathcal{L}(H)$, where $\mathcal{L}(H)$ is the algebra of all bounded linear operators on H. Let $\delta_{A B}: \mathcal{L}(H) \rightarrow \mathcal{L}(H)$ denote the generalized derivation $\delta_{A B}(X)=A X-X B$. This note will initiate a study on the class of pairs (A, B) such that $\overline{\mathcal{R}\left(\delta_{A B}\right)}=\overline{\mathcal{R}\left(\delta_{A^{*} B^{*}}\right)}$.

1 Introduction

Let $\mathcal{L}(H)$ be the algebra of all bounded linear operators on an infinite dimensional complex Hilbert space H. For an operator A in $\mathcal{L}(H)$, the inner derivation on A, δ_{A}, is defined on $\mathcal{L}(H)$ by $\delta_{A}(X)=A X-X A$ for each X in $\mathcal{L}(H)$.The generalized derivation operator $\delta_{A B}$ associated with (A, B), defined on $\mathcal{L}(H)$ by $\delta_{A B}(X)=A X-X B$ has been much studied, and many of its spectral and metric properties are known (see [2,6, 7, 9]).
J. G. Stampfli [8], J. H. Anderson, J. W. Bunce, J. A. Deddens, and J. P. Williams [1], and S. Bouali and J. Charles $[4,5]$ gave some properties and characterizations of Dsymmetric operators, the class of operators that induce derivations for which the norm closures of their ranges are self-adjoint. In order to generalize these results, we initiate the study of a more general class of D-symmetric operators, in other words, the class of pairs of operators $A, B \in \mathcal{L}(H)$ that have $\overline{\mathcal{R}\left(\delta_{A B}\right)}=\overline{\mathcal{R}\left(\delta_{A^{*} B^{*}}\right)}$, where $\overline{\mathcal{R}}\left(\delta_{A B}\right)$ is the norm closure of the range of $\delta_{A B}$. We call such pairs D^{*}-symmetric.

Notations

(i) For $A \in \mathcal{L}(H), \sigma(A)$ is the spectrum of A.
(ii) Let $\mathcal{K}(H)$ be the ideal of all compact operators. For $A \in \mathcal{L}(H)$, let [A] denote the coset of A in the Calkin algebra $\mathcal{C}(H)=\mathcal{L}(H) / \mathcal{K}(H)$.
(iii) $\mathcal{C}_{1}(H)$ is the ideal of trace class operators.
(iv) For $A, B \in \mathcal{L}(H),{\overline{\mathcal{R}}\left(\delta_{A B}\right)}^{U}$ denotes the ultraweak closure of $\mathcal{R}\left(\delta_{A B}\right)$, and $\mathcal{L}(H)^{\prime U}$ denotes the continuous linear forms in the ultraweak topology.
(v) Let M be a subspace of $\mathcal{L}(H)$. We denote the orthogonal of M in the dual space of $\mathcal{L}(H), \mathcal{L}(H)^{\prime}$, by M^{0}.
(vi) For g and ω two vectors in H, we define $g \otimes \omega \in \mathcal{L}(H)$ as follows:

$$
g \otimes \omega(x)=\langle x, \omega\rangle g \text { for all } x \in H .
$$

[^0]
2 D*-symmetric Pairs

Definition 2.1 Let $A, B \in \mathcal{L}(H)$. If $\overline{\mathcal{R}\left(\delta_{A B}\right)}=\overline{\mathcal{R}\left(\delta_{A^{*} B^{*}}\right)}$, we say that (A, B) is D^{*}-symmetric.

Theorem 2.2 Let $A, B \in \mathcal{L}(H)$. If A and B are D-symmetric operators with disjoint spectra, then (A, B) is D^{*}-symmetric.

Proof Let $X \in \overline{\mathcal{R}\left(\delta_{A B}\right)}$. There exists a sequence $\left(X_{n}\right)_{n} \subset \mathcal{L}(H)$ such that $\left\|\delta_{A B}\left(X_{n}\right)-X\right\| \rightarrow 0$. Consider the operators on $H \oplus H$

$$
M=\left(\begin{array}{cc}
0 & X \\
0 & 0
\end{array}\right), \quad M_{n}=\left(\begin{array}{cc}
0 & X_{n} \\
0 & 0
\end{array}\right), \quad \text { and } \quad T=\left(\begin{array}{cc}
A & 0 \\
0 & B
\end{array}\right) .
$$

It follows that

$$
\delta_{T}\left(M_{n}\right)=\left(\begin{array}{cc}
0 & \delta_{A B}\left(X_{n}\right) \\
0 & 0
\end{array}\right) \xrightarrow{\|\cdot\|}\left(\begin{array}{cc}
0 & X \\
0 & 0
\end{array}\right)=M .
$$

Thus $M \in \overline{\mathcal{R}\left(\delta_{T}\right)}$. Since A and B are D -symmetric operators with disjoint spectra, then T is D-symmetric by J. G. Stampfli [8, p. 260]. Hence there exists a sequence $\left(N_{n}\right)_{n} \subset \mathcal{L}(H \oplus H)$ such that $\delta_{T^{*}}\left(N_{n}\right) \xrightarrow{\|\cdot\|} M$. A simple calculation proves that there exists a sequence $\left(Y_{n}\right)_{n} \subset \mathcal{L}(H)$, such that $\delta_{A^{*} B^{*}}\left(Y_{n}\right) \xrightarrow{\|\cdot\|} X$. Thus $\overline{\mathcal{R}\left(\delta_{A B}\right)} \subset \overline{\mathcal{R}\left(\delta_{A^{*} B^{*}}\right)}$. We obtain the reverse inclusion in the same way.

Remark 2.3 Let A and B be two cyclic subnormal operators with disjoint spectra. A and B are D-symmetric operators by [4, Thm. 2.5]. Since $\sigma(A) \cap \sigma(B)=\varnothing$, Theorem 2.2 implies that (A, B) is D^{*}-symmetric.

Theorem 2.4 For A, B in $\mathcal{L}(H)$ the following are equivalent:
(i) (A, B) is D^{*}-symmetric;
(ii) $\quad \delta_{A^{*}}(A) \mathcal{L}(H)+\mathcal{L}(H) \delta_{B^{*}}(B) \subseteq \overline{\mathcal{R}\left(\delta_{A B}\right)} \cap \overline{\mathcal{R}\left(\delta_{A^{*} B^{*}}\right)}$;
(iii) $A^{*} \mathcal{R}\left(\delta_{A B}\right)+\mathcal{R}\left(\delta_{A B}\right) B^{*} \subseteq \overline{\mathcal{R}\left(\delta_{A B}\right)}$ and $A \mathcal{R}\left(\delta_{A^{*} B^{*}}\right)+\mathcal{R}\left(\delta_{A^{*} B^{*}}\right) B \subseteq \overline{\mathcal{R}\left(\delta_{A^{*} B^{*}}\right)}$.

Proof (i) \Rightarrow (ii). For all $X \in \mathcal{L}(H)$ we have

$$
\delta_{A^{*}}(A) X=\delta_{A^{*} B^{*}}(A X)-A \delta_{A^{*} B^{*}}(X) \quad \text { and } \quad X \delta_{B^{*}}(B)=\delta_{A B}(X) B^{*}-\delta_{A B}\left(X B^{*}\right)
$$

Since $A \mathcal{R}\left(\delta_{A^{*} B^{*}}\right) \subseteq A \overline{\mathcal{R}\left(\delta_{A B}\right)} \subseteq \overline{\mathcal{R}\left(\delta_{A B}\right)}$ and $\mathcal{R}\left(\delta_{A B}\right) B^{*} \subseteq \overline{\mathcal{R}\left(\delta_{A^{*} B^{*}}\right)} B^{*} \subseteq \overline{\mathcal{R}\left(\delta_{A B}\right)}$, it follows that

$$
\delta_{A^{*}}(A) \mathcal{L}(H)+\mathcal{L}(H) \delta_{B^{*}}(B) \subseteq \overline{\mathcal{R}\left(\delta_{A B}\right)}
$$

The implication (ii) \Rightarrow (iii) is a consequence of the following identities. For all X and Y in $\mathcal{L}(H)$,

$$
A^{*} \delta_{A B}(X)+\delta_{A B}(Y) B^{*}=\delta_{A B}\left(A^{*} X+Y B^{*}\right)+\delta_{A^{*}}(A) X+Y \delta_{B^{*}}(B)
$$

and

$$
A \delta_{A^{*} B^{*}}(X)+\delta_{A^{*} B^{*}}(Y) B=\delta_{A^{*} B^{*}}(A X+Y B)-\delta_{A^{*}}(A) X-Y \delta_{B^{*}}(B) .
$$

(iii) \Rightarrow (i). Suppose that (iii) holds. Then $A^{* n} \mathcal{R}\left(\delta_{A B}\right) \subseteq \overline{\mathcal{R}\left(\delta_{A B}\right)}$ for each n in \mathbb{N}. We always have the inclusion $A^{m} \mathcal{R}\left(\delta_{A B}\right) \subseteq \overline{\mathcal{R}\left(\delta_{A B}\right)}$ for each m in \mathbb{N}.

We shall prove that $\mathcal{R}\left(\delta_{A B}\right)^{o}=\mathcal{R}\left(\delta_{A^{*} B^{*}}\right)^{o}$. Let $f \in \mathcal{R}\left(\delta_{A B}\right)^{o}$ and $X \in \mathcal{L}(H)$. Observe that

$$
A^{* n} A X-A A^{* n} X=A^{* n} \delta_{A B}(X)-\delta_{A B}\left(A^{* n} X\right)
$$

for each n in \mathbb{N}. Hence $A^{* n} A X-A A^{* n} X \in \overline{\mathcal{R}\left(\delta_{A B}\right)}$ for each n in \mathbb{N}. A similar argument using mathematical induction on m shows that $A^{* n} A^{m} X-A^{m} A^{* n} X \in \overline{\mathcal{R}\left(\delta_{A B}\right)}$ for each n and m in \mathbb{N}. Thus $f\left(A^{* n} A^{m} X\right)=f\left(A^{m} A^{* n} X\right)$ for each n and m in \mathbb{N}. It follows that $f\left(e^{\alpha A} e^{\beta A^{*}} X\right)=f\left(e^{\beta A^{*}} e^{\alpha A} X\right)$ for all complex numbers α and β.

An induction argument shows that

$$
f\left(\left(\alpha A+\beta A^{*}\right)^{n} X\right)=\sum_{k=0}^{n}\binom{n}{k} f\left((\alpha A)^{k}\left(\beta A^{*}\right)^{n-k} X\right)
$$

for each n in \mathbb{N} and for all complex numbers α and β. Hence

$$
f\left(e^{\alpha A+\beta A^{*}} X\right)=f\left(e^{\alpha A} e^{\beta A^{*}} X\right)=f\left(e^{\beta A^{*}} e^{\alpha A} X\right)
$$

for each X in $\mathcal{L}(H)$ and for all complex numbers α and β. A similar argument using $\mathcal{R}\left(\delta_{A B}\right) B^{*} \subseteq \overline{\mathcal{R}\left(\delta_{A B}\right)}$ shows that

$$
f\left(X e^{\alpha B+\beta B^{*}}\right)=f\left(X e^{\alpha B} e^{\beta B^{*}}\right)=f\left(X e^{\beta B^{*}} e^{\alpha B}\right)
$$

for each X in $\mathcal{L}(H)$ and for all complex numbers α and β.
Since $f(A X)=f(X B)$, it follows by induction that $f\left(A^{n} X\right)=f\left(X B^{n}\right)$ for all $n \in \mathbb{N}$, and hence $f\left(e^{\alpha A} X\right)=f\left(X e^{\alpha B}\right)$ or $f\left(e^{\alpha A} X e^{-\alpha B}\right)=f(X)$ for all $\alpha \in \mathbb{C}$ and $X \in \mathcal{L}(H)$. These relations yield, for all $\lambda \in \mathbb{C}$, the equations

$$
\begin{aligned}
f\left(e^{i \lambda A^{*}} X e^{-\imath \lambda B^{*}}\right) & =f\left(e^{i \bar{\lambda} A} e^{i \lambda A^{*}} X e^{-\imath \lambda B^{*}} e^{-i \overline{\lambda B}}\right) \\
& =f\left(e^{\imath\left(\bar{\lambda} A+\lambda A^{*}\right)} X e^{-\imath\left(\lambda B^{*}+\bar{\lambda} B\right)}\right) .
\end{aligned}
$$

Define the function g on \mathbb{C} as follows:

$$
g(\lambda)=f\left(e^{\imath \lambda A^{*}} X e^{-\imath \lambda B^{*}}\right)
$$

Since $\bar{\lambda} A+\lambda A^{*}$ and $\lambda B^{*}+\bar{\lambda} B$ are self-adjoint operators, then $e^{\imath\left(\bar{\lambda} A+\lambda A^{*}\right)}$ and $e^{-\imath\left(\lambda B^{*}+\bar{\lambda} B\right)}$ are unitary operators. Thus for all $\lambda \in \mathbb{C}$,

$$
|g(\lambda)| \leq\|f\|\|X\|
$$

By Liouville's theorem, the entire function g side must be constant. In particular, the derivative vanishes at $\lambda=0$. This gives $f\left(A^{*} X-X B^{*}\right)=0$ for all $X \in \mathcal{L}(H)$. Thus $\mathcal{R}\left(\delta_{A B}\right)^{o} \subseteq \mathcal{R}\left(\delta_{A^{*} B^{*}}\right)^{o}$. We obtain the reverse inclusion in the same way.

Corollary 2.5 If A and B are normal operators, then (A, B) is D^{*}-symmetric.
Corollary 2.6 Let U and V two isometries, then (U, V) is D^{*}-symmetric.
Proof Let $P=I-U U^{*}$. Then for all $X \in \mathcal{L}(H)$,

$$
\delta_{U^{*} V^{*}}(X)=\delta_{U V}\left(-U^{*} X V^{*}\right)-P X V^{*} .
$$

Hence, to prove that $\mathcal{R}\left(\delta_{U^{*} V^{*}}\right) \subseteq \overline{\mathcal{R}\left(\delta_{U V}\right)}$, it suffices to show that $P X \in \overline{\mathcal{R}\left(\delta_{U V}\right)}$ for all $X \in \mathcal{L}(H)$. Let

$$
T_{n}=\sum_{k=0}^{n-1}\left(\frac{k}{n}-1\right) U^{k} P X V^{* k+1}, \quad n \in \mathbb{N}^{*}
$$

where $\mathbb{N}^{*}=\mathbb{N} \backslash\{0\}$. A simple calculation shows that

$$
\delta_{U V}\left(T_{n}\right)-P X=-\frac{1}{n} \sum_{k=1}^{n} U^{k} P X V^{* k}
$$

Since $\left\langle U^{j} P x, U^{k} P y\right\rangle=0$ for $j \neq k$ and x, y in H, then

$$
\begin{equation*}
\left\|\sum_{k=1}^{n} U^{k} P X V^{* k} x\right\|^{2}=\sum_{k=1}^{n}\left\|U^{k} P X V^{* k} x\right\|^{2} \leq n\|P X\|^{2}\|x\|^{2} \tag{2.1}
\end{equation*}
$$

Thus $\left\|\delta_{U V}\left(T_{n}\right)-P X\right\| \leq n^{-\frac{1}{2}}\|P X\|$, that is, $P X \in \overline{\mathcal{R}\left(\delta_{U V}\right)}$.
For the reverse inclusion, first prove that if $Q=I-V V^{*}$, then $P X \in \overline{\mathcal{R}\left(\delta_{U^{*} V^{*}}\right)}$ and $X Q \in \overline{\mathcal{R}\left(\delta_{U * V^{*}}\right)}$ for all $X \in \mathcal{L}(H)$. Let

$$
S_{n}=\sum_{k=0}^{n-1}\left(\frac{k}{n}-1\right) U^{k+1} P X V^{* k}, \quad n \in \mathbb{N}^{*}
$$

A simple calculation shows that

$$
\delta_{U^{*} V^{*}}\left(S_{n}\right)+P X=\frac{1}{n} \sum_{k=1}^{n} U^{k} P X V^{* k}
$$

It follows from (2.1) that $\left\|\delta_{U^{*} V^{*}}\left(S_{n}\right)+P X\right\| \leq n^{-\frac{1}{2}}\|P X\|$. Thus $P X \in \overline{\mathcal{R}\left(\delta_{U^{*} V^{*}}\right)}$. Consider

$$
R_{n}=\sum_{k=0}^{n-1}\left(\frac{k}{n}-1\right) U^{k+1} X Q V^{* k}, \quad n \in \mathbb{N}^{*}
$$

Then

$$
\delta_{U^{*} V^{*}}\left(R_{n}\right)+X Q=\frac{1}{n} \sum_{k=1}^{n} U^{k} X Q V^{* k}
$$

Hence

$$
\left(\delta_{U^{*} V^{*}}\left(R_{n}\right)+X Q\right)^{*}=\frac{1}{n} \sum_{k=1}^{n} V^{k} Q X^{*} U^{* k}
$$

Thus $\left\|\delta_{U^{*} V^{*}}\left(R_{n}\right)+X Q\right\| \leq n^{-\frac{1}{2}}\left\|Q X^{*}\right\|$, and so $X Q \in \overline{\mathcal{R}\left(\delta_{U^{*} V^{*}}\right)}$. Since

$$
U \delta_{U^{*} V^{*}}(X)=\delta_{U^{*} V^{*}}(U X)-P X \quad \text { and } \quad \delta_{U^{*} V^{*}}(X) V=\delta_{U^{*} V^{*}}(X V)-X Q,
$$

then

$$
U \mathcal{R}\left(\delta_{U^{*} V^{*}}\right)+\mathcal{R}\left(\delta_{U^{*} V^{*}}\right) V \subseteq \overline{\mathcal{R}\left(\delta_{U^{*} V^{*}}\right)}
$$

It follows from the proof of Theorem 2.4 that $\overline{\mathcal{R}\left(\delta_{U V}\right)} \subseteq \overline{\mathcal{R}\left(\delta_{U^{*} V^{*}}\right)}$. Thus (U, V) is D^{\star}-symmetric.

Definition 2.7 ([3]) Let A, B be in $\mathcal{L}(H)$ and \mathcal{J} be a two sided ideal of $\mathcal{L}(H)$. The pair (A, B) is said to possess the Fuglede-Putnam property $(F, P)_{\mathcal{J}}$ if $A T=T B$ and $T \in \mathcal{J}$ implies $A^{*} T=T B^{*}$.

Theorem 2.8 For $A, B \in \mathcal{L}(H)$, the following are equivalent:
(i) (A, B) is D^{*}-symmetric;
(ii) (a) $([A],[B])$ is D^{*}-symmetric in $\mathcal{C}(H)$, and
(b) (A, B) and (B, A) have the property $(F, P)_{\mathcal{C}_{1}}$;
(iii) (a) $([A],[B])$ is D^{*}-symmetric in $\mathcal{C}(H)$, and
(b) ${\overline{\mathcal{R}}\left(\delta_{A B}\right)}_{U}^{U}={\overline{\mathcal{R}\left(\delta_{A^{*} B^{*}}\right)}}^{U}$.

Proof Note that ${\overline{\mathcal{R}\left(\delta_{A B}\right)}}^{U}={\overline{\mathcal{R}\left(\delta_{A^{*} B^{*}}\right)}}^{U}$ if and only if

$$
\mathcal{R}\left(\delta_{A B}\right)^{o} \cap(\mathcal{L}(H))^{U}=\mathcal{R}\left(\delta_{A^{*} B^{*}}\right)^{o} \cap(\mathcal{L}(H))^{U U}
$$

On the other hand

$$
\begin{equation*}
\mathcal{R}\left(\delta_{A B}\right)^{o} \simeq \mathcal{R}\left(\delta_{A B}\right)^{o} \cap \mathcal{K}(H)^{o} \oplus \operatorname{ker}\left(\delta_{B A}\right) \cap \mathcal{C}_{1}(H) \tag{2.2}
\end{equation*}
$$

[10, Thm. 3]. In particular,

$$
\mathcal{R}\left(\delta_{A B}\right)^{0} \cap \mathcal{L}(H)^{\prime U} \simeq \operatorname{ker}\left(\delta_{B A}\right) \cap \mathcal{C}_{1}(H)
$$

This proves that ${\overline{\mathcal{R}\left(\delta_{A B}\right)}}{ }^{U}={\overline{\mathcal{R}\left(\delta_{A^{*} B^{*}}\right)}}^{U}$ if and only if

$$
\operatorname{ker}\left(\delta_{B A}\right) \cap \mathcal{C}_{1}(H)=\operatorname{ker}\left(\delta_{B^{*} A^{*}}\right) \cap \mathcal{C}_{1}(H)
$$

Thus (ii) \Leftrightarrow (iii).
Clearly the above shows that (i) \Rightarrow (iii). Suppose that (iii) holds. Let $f \in \mathcal{R}\left(\delta_{A B}\right)^{0}$. Then by (2.2), we have $f=f_{0}+f_{T}$ such that $f_{0} \in \mathcal{R}\left(\delta_{A B}\right)^{o} \cap \mathcal{K}(H)^{o}$ and $T \in$ $\operatorname{ker}\left(\delta_{B A}\right) \cap \mathcal{C}_{1}(H)$ (where $f_{T}(X)=\operatorname{tr}(X T)$ for each X in $\mathcal{L}(H)$). Since $\overline{\mathcal{R}\left(\delta_{A B}\right)} U=$ $\overline{\mathcal{R}\left(\delta_{A^{*} B^{*}}\right)}{ }^{U}$, it follows that $T \in \operatorname{ker}\left(\delta_{B^{*} A^{*}}\right) \cap \mathfrak{C}_{1}(H)$. Let $Z \in \mathcal{R}\left(\delta_{A^{*} B^{*}}\right)$. Then
$[Z] \in \mathcal{R}\left(\delta_{\left[A^{*}\right]\left[B^{*}\right]}\right)$. Since $([A],[B])$ is D^{*}-symmetric in $\mathcal{C}(H)$, then $[Z] \in \overline{\mathcal{R}\left(\delta_{[A][B]}\right)}$. There exists a sequence of operators $\left(X_{n}\right)_{n}$ in $\mathcal{L}(H)$ and a sequence $\left(K_{n}\right)_{n}$ of compact operators in $\mathcal{K}(H)$ such that $A X_{n}-X_{n} B+K_{n} \rightarrow Z$. But

$$
f_{0}\left(A X_{n}-X_{n} B+K_{n}\right)=f_{0}\left(A X_{n}-X_{n} B\right)+f_{0}\left(K_{n}\right)=0
$$

and thus $f_{0}(Z)=0$. It follows that $f_{0} \in \mathcal{R}\left(\delta_{A^{*} B^{*}}\right)^{o} \cap \mathcal{K}(H)^{o}$, and hence $f \in$ $\mathcal{R}\left(\delta_{A^{*} B^{*}}\right)^{o}$. Therefore, $\mathcal{R}\left(\delta_{A B}\right)^{o} \subseteq \mathcal{R}\left(\delta_{A^{*} B^{*}}\right)^{o}$. We obtain the reverse inclusion using a similar argument.

Corollary 2.9 If U and V are two isometries, then (U, V) has the property $(F, P)_{\mathcal{C}_{1}}$.
Proof (U, V) is D^{\star}-symmetric by Corollary 2.6. It follows from Theorem 2.8 that (U, V) has the property $(F, P)_{\mathcal{C}_{1}}$.

Theorem 2.10 Let $A, B \in \mathcal{L}(H)$. If there exist two nonzero elements f and g in H, and $\lambda \in \mathbb{C}$, such that $B(f)=\lambda f, B^{*}(f) \neq \bar{\lambda} f$ and $A^{*}(g)=\bar{\lambda} g$, then (A, B) is not D^{\star}-symmetric.

Proof Since for all $\lambda \in \mathbb{C}, \mathcal{R}\left(\delta_{A B}\right)=\mathcal{R}\left(\delta_{(A-\lambda)(B-\lambda)}\right)$, we may assume without loss of generality that $\lambda=0$. Note that $B^{*} f=\omega \neq 0$, where $\omega \perp f$. If $X=\|\omega\|^{-2}(g \otimes \omega)$ and $Y \in \mathcal{L}(H)$, then

$$
\begin{aligned}
\left\langle\left(A^{*} X-X B^{*}\right) f, g\right\rangle & =\left\langle A^{*} X(f), g\right\rangle-\left\langle X B^{*} f, g\right\rangle \\
& =\langle 0, g\rangle-\langle X(\omega), g\rangle=-\langle g, g\rangle=-\|g\|^{2}
\end{aligned}
$$

and

$$
\langle(A Y-Y B) f, g\rangle=\left\langle Y f, A^{*} g\right\rangle-\langle 0, g\rangle=0
$$

Suppose that $A^{*} X-X B^{*} \in{\overline{\mathcal{R}\left(\delta_{A B}\right)}}^{U}$. Then there exists a net $\left(Y_{\alpha}\right)_{\alpha}$ in $\mathcal{L}(H)$ such that for all x and y in H, we have:

$$
\left\langle\left(A Y_{\alpha}-Y_{\alpha} B\right) x, y\right\rangle \longrightarrow\left\langle\left(A^{*} X-X B^{*}\right) x, y\right\rangle,
$$

so that

$$
0=\left\langle\left(A Y_{\alpha}-Y_{\alpha} B\right) f, g\right\rangle \longrightarrow\left\langle\left(A^{*} X-X B^{*}\right) f, g\right\rangle=-\|g\|^{2}
$$

It follows that $g=0$. This proves that $A^{*} X-X B^{*} \notin{\overline{\mathcal{R}\left(\delta_{A B}\right)}}^{U}$, that is, $\overline{\mathcal{R}\left(\delta_{A B}\right)}{ }^{U} \neq$ $\left.\overline{\mathcal{R}\left(\delta_{A^{*} B^{*}}\right.}\right)^{U}$. Consequently we obtain that (A, B) is not D^{*}-symmetric by Theorem 2.8,

References

[1] J. Anderson, J. W. Bunce, J. A. Deddens, and J. P. Williams, C^{*}-algebras and derivation ranges. Acta Sci. Math. (Szeged) 40(1978), no. 3-4, 211-227.
[2] J. Anderson and C. Foias, Properties which normal operators share with normal derivation and related operators. Pacific J. Math. 61(1975), no. 2, 313-325.
[3] M. Benlarbi, S. Bouali, and S. Cherki, Une remarque sur l'orthogonalité de l'image au noyau d'une dérivation généralisée. Proc. Amer. Math. Soc. 126(1998), no. 1, 167-171.
doi:10.1090/S0002-9939-98-03996-3
[4] S. Bouali and J. Charles, Extension de la notion d'opérateur D-symétrique. I. Acta Sci. Math. (Szeged) 58(1993), no. 1-4, 517-525.
[5] , Extension de la notion d'opérateur D-symétrique. II. Linear Algebra Appl. 225(1995), 175-185. doi:10.1016/0024-3795(94)00003-V
[6] D. A. Herrero, Approximation of Hilbert space operators. Vol. I, Research Notes in Mathematics, 72, Pitman (Advanced Publishing Program), Boston, MA, 1982.
[7] M. Rosenblum, On the operator equation $B X-X A=Q$. Duke Math. J. 23(1956), 263-269. doi:10.1215/S0012-7094-56-02324-9
[8] J. G. Stampfli, On self-adjoint derivation ranges. Pacific J. Math. 82(1979), no. 1, 257-277.
[9] J. P. Williams, Derivation ranges: open problems. In: Topics in modern operator theory, Operator Theory: Adv. Appl., 2, Birkhäuser, Basel-Boston, MA, 1981, pp. 319-328.
[10] \longrightarrow, On the range of a derivation. Pacific J. Math. 38(1971), 273-279.

Department of Mathematics and Informatics, Faculty of Sciences Kénitra, B. P. 133 Kénitra, Morocco e-mail: said.bouali@yahoo.fr

Lycée mixte de Missour, 33250 Missour, Morocco
e-mail: m.echchad@yahoo.fr

[^0]: Received by the editors April 17, 2008; revised July 21, 2008.
 Published electronically August 19, 2010.
 AMS subject classification: 47B47, 47B10, 47A30.
 Keywords: generalized derivation, adjoint, D-symmetric operator, normal operator.

