NON-FREE GROUPS GENERATED BY TWO 2×2 MATRICES

J. L. BRENNER, R. A. MACLEOD, AND D. D. OLESKY

1. Introduction. Let m be any real or complex number, and let G_{m} be the group generated by the 2×2 matrices $A=(1, m ; 0,1)$ and $B=(1,0 ; m, 1)$, where we use the notation ($c_{11}, c_{12} ; c_{21}, c_{22}$) to denote (by rows) the elements of a 2×2 matrix C. Thus, G_{m} is the set of all finite products (or words) of the form

$$
\ldots A^{h(3)} B^{h(2)} A^{h(1)}
$$

where the $h(i)$ are nonzero integers with $h(1)$ possibly zero. If a non-trivial word of this form equals the identity $I=(1,0 ; 0,1)$, then G_{m} is non-free; otherwise, G_{m} is free. Sanov [6] showed that G_{m} is free for $m=2$, and Brenner [1] that G_{m} is free for $|m| \geqq 2$. As a consequence, algebraic numbers m such that G_{m} is free are dense in the complex plane (since G_{m} is free if m is an algebraic number whose algebraic conjugate m^{*} satisfies $\left|m^{*}\right| \geqq 2$). As noted in [3], G_{m} is free for all transcendental m. Chang, Jennings, and Ree [2] and Lyndon and Ullman [4] provided successive weakening of the condition $|m| \geqq 2$. On the other hand, Ree [5] showed that the m for which G_{m} is non-free are dense in various regions in the complex plane, including the unit disc.

Our attention in this paper will be directed to the question of whether or not G_{m} is free for rational numbers m such that $-2<m<2$. No such m is known for which G_{m} is free, and it may be that none exists. Among other results, we show that G_{m} is non-free for $m=a / b$ and $a=1,2,3$ or 4 , provided $|m|<2$. However, obtaining further results along this line by similar methods would be costly, as we show in Section 3.

We note that the group generated by the matrices $(1,2 ; 0,1)$ and $(1,0 ; \lambda, 1)$ is isomorphic to G_{m} if $m^{2}=2 \lambda$. This notation is used in [2] and [5], and we shall use it in Section 3.

Acknowledgements. We gratefully acknowledge the programming assistance provided by C. Chan, J. C. Hallyburton and R. Rivest.
2. Some general results. Let W be a word in G_{m} with k exponents, each of which is nonzero. If W does not reduce, then the relation $W=I$ will be called a relation with k terms. Note that if G_{m} is non-free, then, for some even

Received June 28, 1973 and in revised form, November 14, 1974. This research was supported by NSF Grant GP-32527 and NRC Grants A-5264 and A-8214.
integer k, there exists a word in the canonical form

$$
W=A^{h(k)} B^{h(k-1)} \ldots A^{h(2)} B^{h(1)}
$$

such that $W=I$, where all $h(i)$ are nonzero.
Theorem 2.1. G_{m} cannot have a relation with fewer than 6 terms.
Proof. Clearly $A^{x} \neq I$ and $B^{x} \neq I$ if $x \neq 0$. Regarding $A^{x} B^{y}$ and $A^{w} B^{x} A^{y} B^{z}$, the $(1,1)$-element of the former and the $(2,2)$-element of the latter are $1+x y m^{2} \neq 1$.

However, G_{m} may indeed have a six-term relation: $A B^{y} A^{-1} B A^{y} B^{-1}=I$ when $m=1$ for any integer y.

Lemma 2.2.1. If $A^{w} B^{x} A^{y} B^{z} A^{t} B^{u}=\left(s_{11}, s_{12} ; s_{21}, s_{22}\right)$, then

$$
\begin{array}{ll}
s_{11}=a+m^{2} u(a t+b), & s_{12}=m(a t+b), \\
s_{21}=m(c u+d), & s_{22}=c,
\end{array}
$$

where

$$
\begin{array}{ll}
a=1+m^{2}(w x+w z+y z)+w x y z m^{4}, & b=w+y+m^{2} w x y, \\
c=1+m^{2}(x t+z t+x y)+x y z t m^{4}, & d=x+z+m^{2} x y z .
\end{array}
$$

Proof. This is clear.
Lemma 2.2.2. $A^{w} B^{x} A^{y} B^{z} A^{t} B^{u}=I$ with wxyztu $\neq 0$ if and only if

$$
\begin{gather*}
w x=z t, \tag{1}\\
x+z+u+m^{2} x y z=0 \tag{2}
\end{gather*}
$$

and
(3)

$$
w u=y z .
$$

Proof. This is clear.
Theorem 2.2. If $A^{w} B^{x} A^{y} B^{z} A^{t} B^{u}=I$, with wxyztu $\neq 0$, then
(i) $|m| \leqq \sqrt{ } 3$;
(ii) if $m^{2}>1$, then $m^{2}=(n+2) / n$ for some integer $n \geqq 1$.

Proof. The integer solutions of (1) can be parameterized by

$$
w=w_{1} w_{2}, \quad x=x_{1} x_{2}, \quad z=w_{1} x_{2}, \quad t=w_{2} x_{1} .
$$

Then, if $w u=y z$, it follows that $w_{2} u=x_{2} y$. All integer solutions to this are given by

$$
w_{2}=w_{3} w_{4}, \quad u=u_{1} u_{2}, \quad x_{2}=w_{3} u_{1}, \quad y=w_{4} u_{2} .
$$

Equation (2) may now be re-written as

$$
m^{2}=-\frac{1}{u_{1} w_{3} w_{4}}\left[\frac{1}{w_{1} u_{2}}+\frac{1}{x_{1} u_{2}}+\frac{1}{x_{1} w_{1} w_{3}}\right] .
$$

Thus, m^{2} has a maximum value of 3 . If one of w_{1}, x_{1}, u_{2} (say u_{2}) is not ± 1, then m^{2} is maximized by $\left(u_{2}+2\right) / u_{2}$. If one of u_{1}, w_{3} or w_{4} is not ± 1, then m^{2} is at least halved. A consideration of a small number of cases (possible integer values of the six variables) completes part (ii).

We now leave our study of relations with a fixed number of terms. Following [5], we call m free (non-free) if G_{m} is free (non-free). The following theorem indicates that certain real rational numbers are not free.

Theorem 2.3. Let a, b, r and r^{\prime} be integers.
(i) 1 is not free.
(ii) If m is not free, then m / b is not free; $1 / b$ is not free.
(iii) If $b=r\left(a^{2}-1\right)+1$, then $m=a / b$ is not free.
(iv) If $b=r^{\prime}\left(a^{2}-1\right)-1$, then $m=a / b$ is not free.

Proof. (i) If $m=1$, then $A^{-1} B A B^{-1} A B=I$.
(ii) To obtain A^{b} and B^{b}, replace m by $b m$. Thus, if $W=I$ is a relation in A and B for m, by multiplying the exponents in W by b we obtain a relation in $G_{m / b}$. The second part follows from (i).
(iii) $B^{b} A^{-b} B^{r}\left(A^{b}\right)^{b} B^{-1} A^{r b}=I$.
(iv) Replace r by $-r$ in (iii) and use the fact that if m is not free, then $-m$ is not free.

Our next theorem, which contains a necessary and sufficient condition for a group to be non-free, is the basis for a procedure given in Section 3 for obtaining a relation for non-free rational values of m. We note that the condition does not involve matrix multiplications.

Theorem 2.4 (See [4]). The group G_{m} is not free if and only if nonzero integers $h(k)$ can be found such that the recursion
(4) $\quad x(n+2)=x(n)+\operatorname{mh}(n+1) x(n+1)$
eventually produces the value $x(k+1)=0$ from the starting values $x(0)=0$ and $x(1)=1$, where k is odd.

Proof. Let k be an odd integer. A simple induction argument shows that the matrix $W_{k}=A^{h(k)} B^{h(k-1)} \ldots B^{h(2)} A^{h(1)}$ has the form $(y(k), x(k+1) ; y(k-1)$, $x(k)$) and the matrix $W_{k+1}=B^{h(k+1)} A^{h(k)} \ldots B^{h(2)} A^{h(1)}$ has the form ($y(k)$, $x(k+1) ; y(k+1), x(k+2))$, where $x(0)=0, x(1)=1$ and $x(n+2)=$ $x(n)+m h(n+1) x(n+1)$ and $y(0)=0, y(1)=1$ and $y(n+2)=y(n)+$ $m h(n+2) y(n+1)$. If $x(k+1)=0$, then either $W_{k} B W_{k}^{-1}$ or $W_{k+1} B W_{k+1}^{-1}$ is commutative with B, and thus the group is not free.

Interchanging the roles of A and B, the matrix $\hat{W}_{k}=B^{h(k)} A^{h(k-1)} \ldots$ $A^{h(2)} B^{h(1)}$ has the form $(x(k), y(k-1) ; x(k+1), y(k))$, while $\hat{W}_{k+1}=$ $A^{h(k+1)} B^{h(k)} \ldots A^{h(2)} B^{h(1)}=(x(k+2), y(k+1) ; x(k+1), y(k))$; the commuting elements are, respectively, $\hat{W}_{k} A \hat{W}_{k}^{-1}$ and A, and $\hat{W}_{k+1} A \hat{W}_{k+1}^{-1}$ and A.

Corollary 2.4.1. If $m=a / b$, the group G_{m} is not free if and only if nonzero
integers $h(k)$ can be found such that the recursion
(5) $z(n+2)=b^{2} z(n)+a h(n+1) z(n+1)$
eventually produces the value $z(k+1)=0$ from the starting values $z(0)=0$ and $z(1)=1$, where k is odd.

Proof. Put $x(n)=z(n) / b^{n-1}$ in Theorem 2.4.
The difference between Corollary 2.4.1 and Theorem 2.4 is that only integers appear at each stage of the recursion (5). This is a decided advantage when using a computer to show that a group G_{m} is non-free.

Remark. The "if" part of Theorem 2.4 remains true for k even. Thus, if the recursion (5) produces a value $z(n+2)$ equal to 0 for any $n \geqq 0$, then the group G_{m} is non-free.

Corollary 2.4.2. If a and r are integers and

$$
b=\left\{\begin{array}{l}
\frac{1}{2} r a^{2} \pm 1, \text { if } a \text { is even } \\
r a^{2} \pm 1, \text { in any case },
\end{array}\right.
$$

then $m=a / b$ is not free.
Proof. For $b=r a^{2} \pm 1$, take $h(1)=1, h(2)=-\left(a^{2} r^{2} \pm 2 r\right), h(3)=$ $-\left(a^{2} r \pm 1\right)^{2}$. Then $z(2)=a, z(3)=1$, and $z(4)=0$. For a even, take $h(1)=$ $1, h(2)=-\left(\frac{1}{4} a^{2} r^{2} \pm r\right), h(3)=-\left(\frac{1}{2} a^{2} r \pm 1\right)^{2}$. Then again $z(2)=a, z(3)=1$, and $z(4)=0$.

We note that this corollary generalizes and corrects a proof of a result in [4], and is used later to prove Theorem 3.1.

Corollary 2.4.3. G_{m} is non-free for $m=2 / b$ and $b \geqq 2$.
Proof. Let $b=2 r+1$ and use Corollary 2.4 .2 with $a=2$. If b is even, the result follows from Theorem 2.3(ii).

Two sufficient conditions for a group G_{m} to be non-free are contained in the next theorem.

Theorem 2.5. Let $\left\{h_{1}(i)\right\}$ and $\left\{h_{2}(i)\right\}$ be two sequences of nonzero integers which determine sequences $\left\{x_{1}(i)\right\}$ and $\left\{x_{2}(i)\right\}$, respectively, satisfying the recursion (4), and for which $x_{1}(0)=x_{2}(0)=0$ and $x_{1}(1)=x_{2}(1)=1$.
(a) If there exist positive integers j and k, both of which are either odd or even, such that
(6) $\quad x_{1}(j) x_{2}(k+1)-x_{1}(j+1) x_{2}(k)=0$
and, in case $j=k$, there also exists an integer $n \leqq j$ such that $h_{1}(n) \neq h_{2}(n)$, then the group G_{m} is non-free.
(b) If there exist integers $j \geqq 0$ and $k \geqq 1$, both of which are either odd or even,
such that
(7) $\quad x_{1}(j+1) x_{2}(k)-x_{1}(j+2) x_{2}(k+1)=0$,
then the group G_{m} is non-free.
Proof. (a) If j and k are both odd, let

$$
W_{1}=A^{h_{1}(j)} B^{h_{1}(j-1)} \ldots A^{h_{1}(1)} \quad \text { and } \quad W_{2}=A^{h_{2}(k)} B^{h_{2}(k-1)} \ldots A^{h_{2}(1)} .
$$

Then the (1,2)-element of $W_{1}^{-1} W_{2}$ is

$$
\frac{x_{1}(j) x_{2}(k+1)-x_{1}(j+1) x_{2}(k)}{\operatorname{det}\left(W_{1}\right)}
$$

which is 0 by (6). Thus, the group G_{m} is non-free by Theorem 2.4. (The requirement that there exist $n \leqq j$ such that $h_{1}(n) \neq h_{2}(n)$ in case $j=k$ ensures that $W_{1}{ }^{-1} W_{2}$ does not reduce to the trivial word I.)

The case that j and k are both even is similar. Let

$$
W_{1}=B^{h_{1}(j)} A^{h_{1}(j-1)} \ldots A^{h_{1}(1)} \quad \text { and } \quad W_{2}=B^{h_{2}(k)} A^{h_{2}(k-1)} \ldots A^{h_{2}(1)} .
$$

(b) The proof of this part is similar to that of part (a). If j and k are both odd, let

$$
W_{1}=B^{h_{1}(j+1)} A^{h_{1}(j)} \ldots A^{h_{1}(1)} \quad \text { and } \quad W_{2}=A^{h_{2}(k)} B^{h_{2}(k-1)} \ldots A^{h_{2}(1)}
$$

If j and k are both even, let

$$
W_{1}=A^{h_{1}(j+1)} B^{h_{1}(j)} \ldots A^{h_{1}(1)} \quad \text { and } \quad W_{2}=B^{h_{2}(k)} A^{h_{2}(k-1)} \ldots A^{h_{2}(1)}
$$

Note that part (a) of this theorem remains true with the sequences $\left\{x_{1}(i)\right\}$ and $\left\{x_{2}(i)\right\}$ replaced by sequences $\left\{z_{1}(i)\right\}$ and $\left\{z_{2}(i)\right\}$, respectively, which satisfy the recursion (5) and for which $z_{1}(i)=b^{i-1} x_{1}(i)$ and $z_{2}(i)=b^{i-1} x_{2}(i)$, $i \geqq 2$. In part (b), however, (7) must be replaced by

$$
b^{2} z_{1}(j+1) z_{2}(k)-z_{1}(j+2) z_{2}(k+1)=0 .
$$

The following theorem says that, as soon as we know that G_{m} is not free for $m=a / b$, we know it is not free for an infinite set $m=a / b^{\prime}$, where b^{\prime} is any integer in an arithmetic progression $k r \pm b$. This, as we show in Section 3, raises the results of a computer study from the status of a tabulation to that of a theorem.

Theorem 2.6. Let $m=a / b$. Suppose $\{h(i)\}$ is a sequence of nonzero integers such that the recursion (5) leads to an $l>0$ such that $z(l)=0$. Then not only is G_{m} not free, but $G_{m^{\prime}}$ is not free for $m^{\prime}=a /(M r \pm b)$, where

$$
M=\left\{\begin{array}{l}
\frac{1}{2} a L, \text { if } 2 \mid a \text { or } 4 \mid L \\
a L, \text { otherwise },
\end{array}\right.
$$

and L is the least common multiple of $z(1), z(2), \ldots, z(l-1)$.

Proof. Let $\{h(i)\}$ be a sequence which produces by (5) a sequence $\{z(j)\}$ such that $z(l)=0$ for $m=a / b$ and $l>0$. Then the new sequence $\left\{h^{\prime}(i)\right\}$ defined by

$$
\begin{aligned}
& h^{\prime}(1)=h(1), \\
& h^{\prime}(n+1)=-\left[\frac{k^{2} z(n)}{a z(n+1)} r^{2} \pm \frac{2 k b z(n)}{a z(n+1)} r-h(n+1)\right] \\
& \\
& n \geqq 1, k \text { arbitrary, } r \geqq 0,
\end{aligned}
$$

yields precisely the same sequence $\{z(j)\}$ for $m=a /(k r \pm b)$ (and hence, if a / b is non-free, so is $a /(k r \pm b))$. Calling this new sequence $\left\{z^{\prime}(j)\right\}$, we have from (5) that

$$
\begin{aligned}
& z^{\prime}(n+2)=(k r \pm b)^{2} z(n)+a h^{\prime}(n+1) z^{\prime}(n+1) \\
& z^{\prime}(0)=0, z^{\prime}(1)=1
\end{aligned}
$$

If by induction $z^{\prime}(j)=z(j)$ for $j=1,2, \ldots, n+1$, we have

$$
\begin{aligned}
z^{\prime}(n+2) & =k^{2} r^{2} z^{\prime}(n) \pm 2 k b r z^{\prime}(n)+b^{2} z^{\prime}(n) \\
& +a z^{\prime}(n+1)(-1)\left[\frac{k^{2} z(n)}{a z(n+1)} r^{2} \pm \frac{2 k b z(n)}{a z(n+1)} r-h(n+1)\right] \\
& =b^{2} z(n)+a z(n+1) h(n+1) \\
& =z(n+2)
\end{aligned}
$$

Thus, since we require integers, we are left with the requirements

$$
\begin{equation*}
a z(n+1) \mid k^{2} z(n), \quad n=1,2, \ldots, l-2 \tag{8}
\end{equation*}
$$

and
(9) $\quad a z(n+1) \mid 2 k b z(n), \quad n=1,2, \ldots, l-2$.

Since a and b are relatively prime, and $z(n)$ and $z(n+1)$ may also be relatively prime, we replace (9) by the stronger condition
(10) $a z(n+1) \mid 2 k, \quad n=1,2, \ldots, l-2$.

Condition (10) is satisfied if $k=a L$, where L is the least common multiple of the $z(i)$, and $k=a L$ would also satisfy (8). However, $k=\frac{1}{2} a L$ would also satisfy (10); for k to be an integer, this would require a or L to be even. If a is even, $k=\frac{1}{2} a L$ satisfies (8) also, but if a is odd, (8) becomes

$$
a z(n+1) \left\lvert\, \frac{1}{4} a^{2} L^{2} z(n)\right.
$$

or

$$
4 \left\lvert\, a L \frac{L}{z(n+1)} z(n)\right.
$$

and this is guaranteed if $4 \mid L$.
Corollary 2.6.1. G_{m} is not free for $m=3 / b$ and $b \geqq 2$.

Proof. Let $r \geqq 1$. By Theorem 2.3 (ii), if $m=3 /(k r \pm l)$ is not free for $(k, l)=1$, then it is not free for any k, l. By Corollary $2.4 .2, m=3 /(9 r \pm 1)$ is not free. Working mod 18 , this leaves the residue classes ± 5 and ± 7. To prove that $3 / 5$ is not free, the sequence $h(i)=1,-3,12,6,-6,-11,-25$ yields the sequence $z(i)=0,1,3,-2,3,4,3,1,0$. Hence, using Theorem 2.6, we have $L=-12$, whence $M=-18$ and $3 /(18 r \pm 5)$ is not free. For $3 / 7$, the sequence $h(i)=1,-5,-12,-22,24,11,-49$ yields $z(i)=0,1,3,4,3$, $-2,3,1,0$, so that $3 /(18 r \pm 7)$ is not free.
3. Numerical results. Based on Corollary 2.4.1, we have written a computer program using integer multiple precision arithmetic to search for a sequence of nonzero integers $h(i)$ such that the recursion (5) eventually produces a value $z(n+2)=0$. We have closely followed the suggestion in [4] that the numbers $h(i)$ be chosen so as to minimize $|z(n+2)|$ at each step. Thus, $h(n+1)$ is chosen to be the nonzero integer closest to

$$
k(n+1)=\frac{-b^{2} z(n)}{a z(n+1)}
$$

More precisely, if

$$
\operatorname{sgn}(x)= \begin{cases}1, & x \geqq 0 \\ -1, & x<0\end{cases}
$$

then $h(n+1)$ is the integer part of

$$
k(n+1)+\frac{1}{2} \operatorname{sgn}(k(n+1))
$$

unless $|k(n+1)|<\frac{1}{2}$, in which case $h(n+1)$ is set to sgn $(k(n+1))$.
In particular, $k(1)=0$ so that $h(1)=1$. However, for certain values of m for which G_{m} is non-free this procedure does not yield a relation. Our modification is to let $h(1)$ assume various starting values, with the remaining values $h(i)$ chosen according to the above procedure.

Our main numerical result is contained in the following theorem, which was obtained by using our computer program to determine a relation for a finite number of rational numbers of the form $4 / b$ and then applying Theorem 2.6. Only an outline of the proof is given as the numerical details are lengthy.

Theorem 3.1. G_{m} is not free for $m=4 / b$ and $b \geqq 3$.
Outline of the proof. By Corollary 2.4.3, $4 / b$ is non-free if b is even. By Corollary 2.4.2, $4 / b$ is non-free if $b=8 r \pm 1, r \geqq 1$, and thus it follows from Theorem 2.3 (ii) that $4 / b$ is non-free for $b=24 r \pm 3$.

Using our program with various values of $h(1)$ between 1 and 10 and applying Theorem 2.6, we were able to show that all numbers of the form $4 / b$ are non-free except possibly those in the residue classes $\pm 19, \pm 59, \pm 163, \pm 275$, $\pm 283, \pm 347, \pm 397, \pm 467, \pm 499, \pm 541, \pm 571, \pm 611, \pm 653, \pm 845, \pm 877$ and $\pm 989(\bmod 2016)$.

The next stage was to examine these residue classes mod 10,080 . If b is an odd multiple of 5 , then it is either of the form $\pm 5(\bmod 40)$ or $\pm 15(\bmod 40)$, and it follows from Theorem 2.3 (ii) and Corollary 2.4.2, respectively, that $4 / b$ is non-free. On applying Theorem 2.6 for various numbers of the form $4 / b$, we found that all numbers $4 / b$ are non-free with the possible exception of those in the residue classes $\pm 59, \pm 499, \pm 571, \pm 1139, \pm 1669, \pm 1741, \pm 2291$, $\pm 2299, \pm 2669, \pm 3379, \pm 3461, \pm 3749, \pm 4091, \pm 4379, \pm 4531$ and ± 4909 $(\bmod 10,080)$.
On examining these residue classes mod 50,400 and applying Theorem 2.6, all residue classes were accounted for and thus the theorem was proven.

We cannot decide whether there exists a rational number m such that $|m|<2$ and G_{m} is free.

The following theorem contains a negative result regarding the utility of any procedure similar to the one we have used to prove that a group G_{m} is non-free. Simply stated, it says that if there exist non-free rational numbers arbitrarily close to 2 , then either the number of terms in a non-trivial relation is unbounded as $m \rightarrow 2^{-}$, or else the magnitude of the exponents in such a relation is unbounded. Stated another way, if there exist non-free rational numbers arbitrarily close to 2 , then given any fixed finite time t, any procedure which searches for a relation will require time greater than t if m is a non-free rational number sufficiently close to 2 .

Note that the following lemmas and theorem use the notation mentioned in the introduction, where $m^{2}=2 \lambda$.

Lemma 3.2.1. Let $A=(1,2 ; 0,1), B=(1,0 ; \lambda, 1)$ and

$$
W=A^{h(n)} B^{h(n-1)} \ldots A^{h(2)} B^{h(1)}
$$

where all $h(i)$ are nonzero integers. Let $w(\lambda)=\sum_{i=1}^{n}|h(i)|$ and let $q(\lambda)=$ $\sum_{i=0}^{m} a_{i} \lambda^{i}$ denote the $(1,2)$-element of W, where $m=(n-2) / 2$. Let $N=$ $m+\sum_{i=0}^{m}\left|a_{i}\right|$.

If n and $w(\lambda)$ are bounded, then N is bounded.
Proof. This is obvious.
Lemma 3.2.2. Let $q(\lambda)$ and N be defined as in Lemma 3.2.1. If $q(\hat{\lambda})=0$, then there exists a disc $\{\lambda||\lambda-\hat{\lambda}|<r\}$ in which non-free numbers are dense. Moreover, r is a function of N, and if N is bounded, then r is bounded away from 0.

Proof.

$$
\begin{aligned}
\lambda q(\lambda) & =\lambda(q(\lambda)-q(\hat{\lambda})) \\
& =\lambda\left\{a_{0}(\lambda-\hat{\lambda})+a_{1}\left(\lambda^{2}-\hat{\lambda}^{2}\right)+\ldots+a_{m}\left(\lambda^{m+1}-\hat{\lambda}^{m+1}\right)\right\}
\end{aligned}
$$

so that $|\lambda q(\lambda)|=|\lambda||\lambda-\hat{\lambda}| R$, where

$$
R=\left|a_{0}+a_{1}(\lambda+\hat{\lambda})+\ldots+a_{m}\left(\lambda^{m}+\ldots+\hat{\lambda}^{m}\right)\right| .
$$

Thus, if

$$
|\lambda-\hat{\lambda}|<\frac{1}{|\lambda| R}, \quad \text { then } \quad|\lambda q(\lambda)|<1
$$

By a theorem of Ree [5], non-free numbers are dense in the region $\{\lambda||\lambda q(\lambda)|<1\}$. Clearly, then, any number λ for which $|\lambda-\hat{\lambda}|<1 /|\lambda| R$ must be such that $|\lambda|<2$. If $|\lambda|<2$, then $1 /|\lambda| R>r$, where

$$
r=\frac{1}{2\left\{\left|a_{0}\right|+4\left|a_{1}\right|+12\left|a_{2}\right|+\ldots+(m+1) 2^{m}\left|a_{m}\right|\right\}},
$$

so that if $|\lambda-\hat{\lambda}|<r$, then $|\lambda-\hat{\lambda}|<1 /|\lambda| R$. Thus it follows from Ree's theorem that non-free numbers are dense in the disc $\{\lambda||\lambda-\hat{\lambda}|<r\}$. Clearly r is bounded away from 0 if N is bounded.

Theorem 3.2. If there exists a sequence of non-free numbers $\left\{\lambda_{i}\right\}$ such that

$$
\lim _{\hbar \rightarrow \infty} \lambda_{i}=2
$$

and if $W_{i}=I$ is a non-trivial n_{i}-term relation in $A=(1,2 ; 0,1)$ and $B_{i}=$ $\left(1,0 ; \lambda_{i}, 1\right)$, then at least one of the following is true:

$$
\lim _{i \rightarrow \infty} n_{i}=\infty \quad \text { or } \quad \lim _{i \rightarrow \infty} w\left(\lambda_{i}\right)=\infty
$$

Proof. Suppose that $\lim _{i \rightarrow \infty} n_{i}$ and $\lim _{i \rightarrow \infty} w\left(\lambda_{i}\right)$ are both bounded. If, for each value of $i, q\left(\lambda_{i}\right)=\sum_{j=0}^{m} a_{j}{ }^{(i)} \lambda_{i}{ }^{j}$ denotes the (1,2)-element of W_{i}, then $q\left(\lambda_{i}\right)=$ 0 and it follows from Lemma 3.2.1 that $N_{i}=m_{i}+\sum_{j=0}^{m_{i}}\left|a_{j}^{(i)}\right|$ is bounded. From Lemma 3.2.2 it follows that there exists a disc $\left\{\lambda\left|\left|\lambda-\lambda_{i}\right|<r_{i}\right\}\right.$, for each value of i, in which non-free numbers are dense, and since all N_{i} are bounded, there exists a uniform bound ρ such that $\left|r_{i}\right| \geqq \rho>0$. This gives rise to a contradiction, since all non-free numbers are known to be less than 2 in modulus.

References

1. J. L. Brenner, Quelques groupes libres de matrices, C. R. Acad. Sci. Paris Sér. A-B. 241 (1955), 1689-1691.
2. B. Chang, S. A. Jennings, and R. Ree, On certain matrices which generate free groups, Can. J. Math. 10 (1958), 279-284.
3. D. J. Fuchs-Rabinowitsch, On a certain representation of a free group, Leningrad State University Annals (Uchenye Zapiski), Math. Ser. 10 (1940), 154-157.
4. R. C. Lyndon and J. L. Ullman, Groups generated by two parabolic linear fractional transformations, Can. J. Math. 21 (1969), 1388-1403.
5. R. Ree, On certain pairs of matrices which do not generate a free group, Can. Math. Bull. 4 (1961), 49-52.
6. I. N. Sanov, A property of a representation of a free group, Dokl. Akad. Nauk SSSR 57 (1947), 657-659.

10 Phillips Road, Palo Alto, California;
University of Victoria,
Victoria, British Columbia.

