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NON-FREE GROUPS GENERATED BY TWO 
2 X 2 MATRICES 

J. L. BRENNER, R. A. MACLEOD, AND D. D. OLESKY 

1. Introduction. Let m be any real or complex number, and let Gm be the 
group generated by the 2 X 2 matrices A = (1, m\ 0, 1) and B = (1, 0; m, 1), 
where we use the notation (en, Ci2; c2i, C22) to denote (by rows) the elements 
of a 2 X 2 matrix C. Thus, Gm is the set of all finite products (or words) of 
the form 

Ahiz)BH2)AH1\ 

where the h(i) are nonzero integers with h{\) possibly zero. If a non-trivial 
word of this form equals the identity / = (1, 0; 0, 1), then Gm is non-free; 
otherwise, Gm is free. Sanov [6] showed that Gm is free for m = 2, and Brenner 
[1] that Gm is free for \m\ è 2. As a consequence, algebraic numbers m such 
that Gm is free are dense in the complex plane (since Gm is free if m is an alge
braic number whose algebraic conjugate m* satisfies \m*\ ^ 2). As noted in 
[3], Gm is free for all transcendental m. Chang, Jennings, and Ree [2] and 
Lyndon and Ullman [4] provided successive weakening of the condition 
\m\ ^ 2. On the other hand, Ree [5] showed that the m for which Gm is non-free 
are dense in various regions in the complex plane, including the unit disc. 

Our attention in this paper will be directed to the question of whether or 
not Gm is free for rational numbers m such that — 2 < m < 2. No such m is 
known for which Gm is free, and it may be that none exists. Among other re
sults, we show that Gm is non-free for m = a/b and a = 1, 2, 3 or 4, provided 
\m\ < 2. However, obtaining further results along this line by similar methods 
would be costly, as we show in Section 3. 

We note that the group generated by the matrices (1, 2; 0, 1) and (1, 0; X, 1) 
is isomorphic to Gm if m2 = 2X. This notation is used in [2] and [5], and we 
shall use it in Section 3. 
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2. Some general results. Let W be a word in Gm with k exponents, each 
of which is nonzero. If W does not reduce, then the relation W = I will be 
called a relation with k terms. Note that if Gm is non-free, then, for some even 
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integer k, there exists a word in the canonical form 

W = AHk)Bh{lc~l) . . . Ah(2)Bh(1) 

such that W = I, where all h{i) are nonzero. 

THEOREM 2.1. Gm cannot have a relation with fewer than 6 terms. 

Proof. Clearly A* ^ I and Bx ^ / if x ^ 0. Regarding AXBV and AWBXAVBZ, 
the (1, 1)-element of the former and the (2, 2)-element of the latter are 
1 + xym2 9e 1. 

However, Gm may indeed have a six-term relation: ABVA~1BAVB~1 = / 
when m = 1 for any integer y. 

LEMMA 2.2.1. If AwBxAyBzAlBu = (sn, s12; s2u $22), then 

su = a + m2u(at + 6), 5i2 = m(a/ + fr), 
52l = m(cU + rf), 522 = C, 

where 

a = 1 + m2{wx -\- wz -{- yz) + mryzra4, & = w + 3/ + m2mry, 
c = 1 + m2(xt + 2/ + xy) + xyztm*, d = x + 2 + m2xyz. 

Proof. This is clear. 

LEMMA 2.2.2. AWBXAVBZA lBu = I with wxyztu 7^ 0 if and only if 

(1) mr = zt, 

(2) x + 2 + u + m2xyz = 0 

and 

(3) ww = yz. 

Proof. This is clear. 

THEOREM 2.2. If AwBxAvBzAlBu = J, with wxyztu ?± 0, /Aew 
(i) \m\ ^ \ / 3 ; 

(ii) 1/ m2 > 1, //̂ TZ- m2 = (n + 2)/n for some integer n ^ 1. 

Proof. The integer solutions of (1) can be parameterized by 

70 = Wi2e»2, X = X1X2, S = W1X2, t = W2Xi. 

Then, if wu = yz, it follows that w2u — x2y. All integer solutions to this are 
given by 

w2 — w<gw\, u = U1U2, X2 = WzU\, y = W\U2. 

Equation (2) may now be re-written as 
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Thus, m2 has a maximum value of 3. If one of W\, xi, 112 (say u%) is not ± 1 , 
then m2 is maximized by («2 + 2)/w2. If one of wi, w3 or se>4 is not ± 1 , then m2 

is at least halved. A consideration of a small number of cases (possible integer 
values of the six variables) completes part (ii). 

We now leave our study of relations with a fixed number of terms. Following 
[5], we call m free {non-free) if Gm is free (non-free). The following theorem 
indicates that certain real rational numbers are not free. 

THEOREM 2.3. Let a, b, r and r' be integers, 
(i) 1 is not free. 

(ii) If m is not free, then m/b is not free; 1/b is not free. 
(iii) If b = r(a2 — 1) + 1, then m = a/b is not free. 
(iv) If b = r' (a2 — 1) — 1, then m — a/b is not free. 

Proof, (i) If m = 1, then A~lBAB~lAB = I. 
(ii) To obtain Ab and Bh, replace m by bm. Thus, if W = / is a relation in A 

and B for m, by multiplying the exponents in W by b we obtain a relation in 
Gmlh. The second part follows from (i). 

(iii) B*A~bBr(AhyB-lAr* = J. 
(iv) Replace r by — r in (iii) and use the fact that if m is not free, then — m 

is not free. 

Our next theorem, which contains a necessary and sufficient condition for a 
group to be non-free, is the basis for a procedure given in Section 3 for obtaining 
a relation for non-free rational values of m. We note that the condition does not 
involve matrix multiplications. 

THEOREM 2.4 (See [4]). The group Gm is not free if and only if nonzero integers 
h(k) can be found such that the recursion 

(4) x(n + 2) = x(n) + mh(n + l)x(n + 1) 

eventually produces the value x(k + 1) = 0 from the starting values x(0) = 0 and 
x( l ) = 1, where k is odd. 

Proof. Let k be an odd integer. A simple induction argument shows that the 
matrix W* = A^B1**-» . . . Bh™Ah™ has the form (y(k),x(k + l);y(k - 1), 
x(k)) and the matrix Wk+1 = Bh<k+»Anw . . . Bh™Ah™ has the form (y(jfe), 
x{k + 1); y(k + 1), x(jk + 2)), where x(fl) = 0, x( l ) = 1 and x(n + 2) = 
x(n) + mh{n + l)x(n + 1) and y(0) = 0, y (I) = 1 and y{n + 2) = y(») + 
mft(» + 2)y(n + 1). If x(k + 1) = 0, then either WkBWk~

l or W^+iiWfc+i-1 

is commutative with B, and thus the group is not free. 
Interchanging the roles of A and B, the matrix Wk = Bn^k)Ah{-k"l) . . . 

AH2)BH1) h a g t h e f 0 r m ( X ^ ) ) yQ _ 1 ) ; X ( f c + ^ > y ( k ) ) 9 W h i l e ^ + 1 = 

AH*+i)BMk) m m t Ah(2)Bh(i) = (x(k + 2)9 y(k + l);x(k + 1), y{k))\ the com
muting elements are, respectively, WkAWk~

l and A, and Wk+iAWk^-i~1 and A. 

COROLLARY 2.4.1. If m = a/b, the group Gm is not free if and only if nonzero 
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integers h(k) can be found such that the recursion 

(5) z(n + 2) = b2z{n) + ah(n + l)z(n + 1) 

eventually produces the value z{k + 1) = 0 from the starting values z(0) = 0 and 
z{\) = 1, where k is odd. 

Proof. Put x(n) = z{n)/bn~l in Theorem 2.4. 

The difference between Corollary 2.4.1 and Theorem 2.4 is that only integers 
appear at each stage of the recursion (5). This is a decided advantage when 
using a computer to show that a group Gm is non-free. 

Remark. The "if" part of Theorem 2.4 remains true for k even. Thus, if the 
recursion (5) produces a value z(n + 2) equal to 0 for any w H , then the 
group Gm is non-free. 

COROLLARY 2.4.2. If a and r are integers and 

u _ / W 2 ± I if a is even 
\ra2 dt 1, in any case, 

then m = a/b is not free. 

Proof. For b = ra2 ± 1, take h(l) = 1, h(2) = - (a2r2 ± 2r), fc(3) = 
- (aV db l ) 2 . Then z(2) = a, z(3) = 1, and z(4) = 0. For a even, take A(1) = 
1, h(2) = - (\a2r2 ± r), A(3) = - ( |aV =fc l ) 2 . Then again z(2) = a, 2(3) = 1, 
and z(4) = 0. 

We note that this corollary generalizes and corrects a proof of a result in [4], 
and is used later to prove Theorem 3.1. 

COROLLARY 2.4.3. Gm is non-free for m = 2/b and b ^ 2. 

Proof. Let b = 2r + 1 and use Corollary 2.4.2 with a = 2. If 6 is even, the 
result follows from Theorem 2.3 (ii). 

Two sufficient conditions for a group Gm to be non-free are contained in the 
next theorem. 

THEOREM 2.5. Let {hi(i)} and {h2(i)} be two sequences of nonzero integers 
which determine sequences {x\{i)\ and {xi(i)), respectively, satisfying the recur
sion (4), and for which Xi(0) = x2(0) = 0 and # i ( l ) = x2(l) = 1. 

(a) / / there exist positive integers j and k, both of which are either odd or even, 
such that 

(6) X!(j)x2(k + 1) - *i(j + 1)*2(*) = 0 

and, in case j = k, there also exists an integer n S j such that h\(n) 9^ h2{n), 
then the group Gm is non-free. 

(b) If there exist integers j ^ 0 and k ^ 1, both of which are either odd or even, 
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such that 

(7) xi(j + l)x2(k) - xi(J + 2)x2(k + 1) = 0, 

then the group Gm is non-free. 

Proof, (a) If 7 and k are both odd, let 

Wi = AniU)BhlU~l) . . . Ahïil) and W2 = Ah2^)Bh^1c-l) . . . Ah2{l). 

Then the (1, 2)-element of Wr1W2 is 

xi(j)x2(k + 1) - xi(j + l)x2(k) 
det (Wi) 

which is 0 by (6). Thus, the group Gm is non-free by Theorem 2.4. (The re
quirement that there exist n ^ j such that h\(n) ^ h2(n) in case j = k ensures 
that T^i_1T^2 does not reduce to the trivial word / .) 

The case that j and k are both even is similar. Let 

Wi = BhlU)Ahl(j-1) . . . Ahl™ and W2 = B*12^^*2^-1) . . . A*^. 

(b) The proof of this part is similar to that of part (a). If j and k are both 
odd, let 

Wi = Bhl(i+1)AhlU) . . . Ahl(1) and W2 = Ah^k)Bh2^-1} . . . Ah2{1). 

If j and k are both even, let 

W\ = AhlU+1)BhlU) . . . Ahlil) and W2 = Bh2{1c)Ah2{]c-l) . . . Ah^l). 

Note that part (a) of this theorem remains true with the sequences {xi(i)\ 
and \x2(i)} replaced by sequences \zi(i)} and {z2(i)}} respectively, which 
satisfy the recursion (5) and for which Z\{i) = bi~1xi(i) and z2{i) = bi~1x2(i), 
i ^ 2. In part (b), however, (7) must be replaced by 

Wzxtj + l)z2(k) - Zl(j + 2)z2(k + 1) = 0. 

The following theorem says that, as soon as we know that Gm is not free 
for m = a/b, we know it is not free for an infinite set m = a/V', where V is 
any integer in an arithmetic progression kr ± b. This, as we show in Section 3, 
raises the results of a computer study from the status of a tabulation to that 
of a theorem. 

THEOREM 2.6. Let m = a/b. Suppose \h(i)} is a sequence of nonzero integers 
such that the recursion (5) leads to an I > 0 such that z(l) = 0. Then not only is 
Gm not free, but Gm> is not free for m' = a/(Mr ± 6 ) , where 

_ i\aL, if 2\a or 4|L 
\aL, otherwise, 

and L is the least common multiple of z(l), z(2), . . . , z(l — 1). 
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Proof. Let \h(i)} be a sequence which produces by (5) a sequence {z(j)\ 
such that z(l) = 0 for m = a/b and / > 0. Then the new sequence [hf(i)} 
defined by 

A'(l) = *(1), 

/ / / i i\ f k2z(n) 2 , 2kbz(n) ( *~| 
A'(» + 1) = - . n r ± , ' v r - A(» + 1) , 

\_az{n + 1) az(n + 1 ) J 
n "^ l,k arbitrary, r ^ 0, 

yields precisely the same sequence {2(7)} for m = a/(kr do b) (and hence, if 
a/b is non-free, so is a/(kr db b)). Calling this new sequence {z'(j)}, we have 
from (5) that 

z'(n + 2) = (kr ± b)2z(n) + ah'(n + l)z'(n + 1), 

2/(0) = 0,*'(1) = 1. 

If by induction s'Q') = z(j) ior j = 1, 2, . . . , n + 1, we have 

2 '(n + 2) = *VV(») ± 2kbrz'{n) + b2z'(n) 

+ az'in + 1 ) ( - 1 ) T - 4 ^ , 2 ± - ^ ^ r - h(n + 1)1 
Laz(?z + 1) az(w + 1) J 

= b2z(n) +az(n + l)h(n + 1) 

= zin + 2). 

Thus, since we require integers, we are left with the requirements 

(8) az(n + l)\k2z(n), n = 1, 2, . . . , / - 2 

and 
(9) az(n + l)\2kbz(n), n = 1, 2, . . . , / - 2. 

Since a and 6 are relatively prime, and z(n) and z(w + 1) may also be relatively 
prime, we replace (9) by the stronger condition 

(10) az(n + l)|2ife, n = 1, 2, . . . , / - 2. 

Condition (10) is satisfied if k = aL, where L is the least common multiple of 
the z(i), and k = aL would also satisfy (8). However, k = \aL would also 
satisfy (10) ; for k to be an integer, this would require a or L to be even. If a is 
even, k = \aL satisfies (8) also, but if a is odd, (8) becomes 

as(w + l)\\a2L2z(n) 
or 

and this is guaranteed if 4|L. 

COROLLARY 2.6.1. Gm is not free for m = S/b and b ^ 2. 
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Proof. Let r ^ 1. By Theorem 2.3 (ii), if m = 3/(fer ± /) is not free for 
(fe, /) = 1, then it is not free for any fe, /. By Corollary 2.4.2, m = 3/(9r ± 1) 
is not free. Working mod 18, this leaves the residue classes ± 5 and ± 7 . To 
prove that 3/5 is not free, the sequence h(i) = 1, —3, 12, 6, — 6, —11, —25 
yields the sequence z(i) = 0, 1, 3, —2, 3, 4, 3, 1, 0. Hence, using Theorem 2.6, 
we have L = —12, whence M = - 1 8 and 3/(18r ± 5) is not free. For 3/7, 
the sequence h(i) = 1, - 5 , - 1 2 , - 2 2 , 24, 11, - 4 9 yields z(i) = 0, 1, 3, 4, 3, 
- 2 , 3, 1, 0, so that 3/(18r ± 7) is not free. 

3. Numerical results. Based on Corollary 2.4.1, we have written a com
puter program using integer multiple precision arithmetic to search for a 
sequence of nonzero integers h(i) such that the recursion (5) eventually pro
duces a value z(n + 2) = 0 . We have closely followed the suggestion in [4] 
that the numbers h(i) be chosen so as to minimize \z(n + 2)| at each step. 
Thus, h(n + 1) is chosen to be the nonzero integer closest to 

k(n + 1) = ( > . . 
az(n + 1) 

More precisely, if 

sgn(x) = 1-i, *<o, 
then h(n + 1) is the integer part of 

fe(rc+ 1) + èsgn (k(n + 1)) 

unless \k(n + 1)1 < è, in which case /&(« + 1) is set to sgn (k{n + 1)). 
In particular, fe(l) = 0 so that fe(l) = 1. However, for certain values of m 

for which Gm is non-free this procedure does not yield a relation. Our modifica
tion is to let h (I) assume various starting values, with the remaining values 
h(i) chosen according to the above procedure. 

Our main numerical result is contained in the following theorem, which was 
obtained by using our computer program to determine a relation for a finite 
number of rational numbers of the form 4/fr and then applying Theorem 2.6. 
Only an outline of the proof is given as the numerical details are lengthy. 

THEOREM 3.1. Gm is not free for m = 4/6 and 6 ^ 3 . 

Outline of the proof. By Corollary 2.4.3, 4/6 is non-free if 6 is even. By 
Corollary 2.4.2, 4/6 is non-free if6 = 8 r ± l , r ^ l , and thus it follows from 
Theorem 2.3 (ii) that 4/6 is non-free for 6 = 24r ± 3. 

Using our program with various values of h(l) between 1 and 10 and apply
ing Theorem 2.6, we were able to show that all numbers of the form 4/6 are 
non-free except possibly those in the residue classes ±19 , ±59 , ±163, ±275, 
±283, ±347, ±397, ±467, ±499, ±541 , ±571 , ±611 , ±653, ±845, ±877 
and ±989 (mod 2016). 

https://doi.org/10.4153/CJM-1975-029-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1975-029-5


244 J. L. BRENNER, R. A. MACLEOD, AND D. D. OLESKY 

The next stage was to examine these residue classes mod 10,080. If b is an 
odd multiple of 5, then it is either of the form ± 5 (mod 40) or ± 1 5 (mod 40), 
and it follows from Theorem 2.3 (ii) and Corollary 2.4.2, respectively, that 
4/6 is non-free. On applying Theorem 2.6 for various numbers of the form 4/ft, 
we found that all numbers 4/b are non-free with the possible exception of those 
in the residue classes ±59 , ±499, ± 5 7 1 , ±1139, ±1669, ±1741, ±2291, 
±2299, ±2669, ±3379, ±3461, ±3749, ±4091, ±4379, ±4531 and ±4909 
(mod 10,080). 

On examining these residue classes mod 50,400 and applying Theorem 2.6, 
all residue classes were accounted for and thus the theorem was proven. 

We cannot decide whether there exists a rational number m such that 
\m\ < 2 and Gm is free. 

The following theorem contains a negative result regarding the utility of any 
procedure similar to the one we have used to prove that a group Gm is non-free. 
Simply stated, it says that if there exist non-free rational numbers arbitrarily 
close to 2, then either the number of terms in a non-trivial relation is un
bounded a s w - ^ 2~, or else the magnitude of the exponents in such a relation 
is unbounded. Stated another way, if there exist non-free rational numbers 
arbitrarily close to 2, then given any fixed finite time t, any procedure which 
searches for a relation will require time greater than / if m is a non-free rational 
number sufficiently close to 2. 

Note that the following lemmas and theorem use the notation mentioned in 
the introduction, where m2 = 2X. 

LEMMA 3.2.1. Let A = (1, 2; 0, 1), B = (1, 0; X, 1) and 

W = AHn)Bh{n~l) . . . AH2)BHl) 

where all h(i) are nonzero integers. Let w(\) = ^ = i \h(i)\ and let q(\) = 
SiLo 0<X* denote the (1, 2)-element of W, where m = (n — 2)/2. Let N = 
m + Zto \at\. 

If n and w(\) are bounded, then N is bounded. 

Proof. This is obvious. 

LEMMA 3.2.2. Let q(\) and N be defined as in Lemma 3.2.1. If q(k) = 0, then 
there exists a disc {X| |X — X| < r) in which non-free numbers are dense. More
over, r is a function of N, and if N is bounded, then r is bounded away from 0. 

Proof. 

X<Z(X) = X(<?(X) - <z(M) 
= X{a0(X -%) + ax(X

2 - X2) + . . . + a m ( X ^ - X-+1)} 

so that \\q(\)\ = |X| |X - %\R, where 

R = \a0 + ai(\ + X) + . . . + am(\m + . . . + \m)\. 
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Thus, if 

IA - X| < hTft' t h e n lX^^X)l < L 

By a theorem of Ree [5], non-free numbers are dense in the region {X| |Xç(X)| < 1}. 
Clearly, then, any number X for which |X — X| < l/|X|i? must be such that 
|X| < 2. If |X| < 2, then 1/\\\R > r, where 

1 
r ~ 2{|a0| + 4|ax| + 12|a2| + . . . + (m + 1)2>W |} ' 

so that if |X — X| < r, then |X — X| < 1/\\\R. Thus it follows from Ree's 
theorem that non-free numbers are dense in the disc {X| |X — X| < r}. Clearly 
r is bounded away from 0 if N is bounded. 

THEOREM 3.2. If there exists a sequence of non-free numbers {X*} such that 

lim Xt = 2 
i-X» 

and if Wi = I is a non-trivial nrterm relation in A = (1, 2; 0, 1) and Bt = 
(1, 0; \u 1), then at least one of the following is true: 

\imni = oo or lim w(\i) = oo . 

Proof. Suppose that lim*,^ nt and lim^0O^(X i) are both bounded. If, for each 
value of i, g(Xt) = ST=o a /^X/ denotes the (1, 2)-element of Wu then q(\t) = 
0 and it follows from Lemma 3.2.1 that Nt = mx + 237=o \aj(i)\ is bounded. 
From Lemma 3.2.2 it follows that there exists a disc {X| |X — \t\ < r^}, for 
each value of i, in which non-free numbers are dense, and since all Nt are 
bounded, there exists a uniform bound p such that \rt\ = p > 0. This gives 
rise to a contradiction, since all non-free numbers are known to be less than 
2 in modulus. 
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