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THE COMPOSITIONAL INVERSE OF A CLASS OF PERMUTATION
POLYNOMIALS OVER A FINITE FIELD

ROBERT S. COULTER AND MARIE HENDERSON

A new class of bilinear permutation polynomials was recently identified. In this note
we determine the class of permutation polynomials which represents the functional
inverse of the bilinear class.

1. INTRODUCTION AND MAIN RESULT

Throughout F , denotes the finite field of q = pe elements for some prime p and
positive integer e with F , [X] representing the ring of polynomials in the indeterminate
X over F, . For polynomials f,g € F,[A"], we write / o g = f(g{X)) for the functional
composition of / with g. A permutation polynomial over F , is a polynomial which,
under evaluation, induces a permutation of the elements of F, . Clearly, permutation
polynomials are the only polynomials which have a (functional) inverse with respect to
composition, id est for a permutation polynomial / € F,[X] there exists (a unique)
/ - 1 € F, such that f{rl{X)) = / " ' ( / ( X ) ) = X mod {X" - X). We call f'1 the
compositional inverse of / (or vice versa).

The problem of discovering new classes of permutation polynomials is non-trivial
and has generated much interest, see the surveys and open problems given in [3, 4, 6].
Discovering classes where the inverse polynomials can also be described seems to be even
more difficult: there are very few known classes of permutation polynomials for which
their compositional inverses are also known. To the authors knowledge, the classes with
explicit formulae for inverses are:

(1) The linear polynomials: X + a where o g F, is trivially a permutation
polynomial of F, with the inverse polynomial being X — a.

(2) The monomials: X" is a permutation polynomial over F , if and only if
(n, q — 1) = 1. In such cases, the compositional inverse of Xn is obviously
the monomial Xm where nm = 1 mod (q — 1).
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(3) The Dickson polynomials of the 1st kind: Dn(X, a) is a permutation poly-
nomial over Wq if and only if (n, q2 — 1) = 1, see [5, Chapter 3]. In such
cases, for a e {0, ±1} , the compositional inverse of Dn(X,a) is Dm(X, a)

where nm = 1 mod (q2 — 1), see (5, Chapter 3].

We note that there are classes for which inverses can be determined (for example linearised
and sub-linearised polynomials) but that no explicit formulas for the inverses are known.

Recently, a new class of permutation polynomials was introduced in [1], Here we

give a description for the compositional inverse of this class of permutation polynomials.

THEOREM 1 . Let q = 2k for some integer k. Let n be an odd positive integer and

set Q = qn•. Denote the trace mapping from WQ to Wq by

Tr(X)=X +X" + ---+Xqn~1.

For any a € Wq \ {0,1}, the polynomial

is a permutation polynomial over WQ. For a as above and for any integer i satisfying

1 ^ i ^ k — 1, define

• a + 1

Set
Aa(X) = Ck_1(X

2"k-1+a2

and
t - i / ( ) /

( 2flk'2-iBa{X) = Y,CiTr{X)2k-i-2k~1-'( £ (XTr(X)+X

The polynomial ga = Aa + Ba is the compositional inverse of fa over ¥Q .

The polynomials /„ were shown to be permutation polynomials in [1]. From Theorem 1
we have the following obvious corollary.

COROLLARY 2 . For a £ Wq\ {0,1}, t ie polynomials ga, as defined in Theorem

1, are permutation polynomials over F Q .

2. T H E PROOF OF THEOREM l

Our attention from this point is directed to establishing the remaining statements of
Theorem 1, which is to show that ga is the compositional inverse of fa. Our proof involves
establishing a set of sequential propositions, basically involving closer examination of
fa ° 9a-, primarily in terms of the two polynomials Aa and Ba. For n odd, we have
Tr(Tr(i)) = Tr(a;). This identity is used many times in the following propositions. We
begin by collecting some useful identities.
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PROPOSITION 3 . ForAa,Ba e VQ[X] and C, as defined in Theorem 1 we have

(i) C? = (a(2*-'-1) + l)/(a2 + l),

(ii) Al(X) = CJ_,(X + a-lrTr(X)) mod (X<> + X),

(iii) 7V(.4Q) = a2k~1-1Tr{X)2k-i mod (X«.+ X), and

(iv) Tr(Ba) = 0 mod (XQ + X).

PROOF: (i) Squaring Ct we obtain the identity:

2 _ a2t+2*~'-2 + l _ a*-''1 + 1
' ~ a2 + 1 ~ a2 + 1

(ii) Squaring Aa(X) gives C 2 ^ (X2"l+a2l-2Tr2t(X)) which reduced modulo (XQ+
X)\sCk_1(X + a-1).

(iii) Using the definition of Aa(X) given in Theorem 1,

+ a^"1-1)) mod {XQ + X)

-1 mod (X« + X).

(iv) This is immediate as Tr(XTr(A') + X2) = 0. D

The proof of the following result is tedious but seemingly necessary.

PROPOSITION 4 . Using the same notation as above then

fa(9o{X)) mod (X* + X)

where ca = (a*2'"'-1* + l) /(a + 1)
(

(1) S{(-X)=
0=1

PROOF: By expanding fa(X) o gQ(X) (with ga{X) = Aa(X) + BQ(X)) and using
Proposition 3 (iv),

fa(ga(X)) mod (XQ + X)

= (Aa(X) + Ba(X))Tt(Aa(X)) + (a + l)(A2
a(X) + B2

a(X)).

We split the terms of this sum so that fa(X) oga(X) = a(X)+b(X) mod (XQ+X) where
a(X) = Aa(X)Tr{Aa(X)) + (a+l)A2

a(X) andb(X) = Ba(X)TT(Aa(X)) + (a
Using Proposition 3 (ii) and (iii),

+ Cl^a + 1)(X + a-lrrr(X)) mod (XQ + X).
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From Proposition 3 (i), C |_ 1 = (a -I-1)"1 and as cQ = CQC^2*" '"1 ' + a" 1 then

a(X) = X + cQ(X2nk~lTr(X)2k~l + Tt(X)) mod (XQ + X).

Next put b^X) = Tr(AQ{X))BQ(X): Identically

t = i

Using aS2" '"' 'Cj = (a(2* '"l> + a(2* '~1))/(a + 1) and re-writing the sum in bi(X) then
we arrive at

(2) br(X) =
i=2

Finally, put b2(X) = {a + l)Bl(X). Then

k-l

b2(X) = (a

As Sf+l(X) = Si(X), from Proposition 3 (i) we have

(3)

So from Equations 2 and 3 we have

b(X) = h(X) + b2(X)
k-l

V^ «k2k^ caSk(X)
t = 2

The result now follows from calculating the sum a(X) + b(X).

PROPOSITION 5 . For p & F , then fa(ga(pX)) =/3fa(ga(X)).

PROOF: AS TT(/3X) = 0Ti{X), it is simple to see

{0Xfnk'X + Tv(pX)21"1 + TT(/3X) - PiX2""'1 +

For :3 € F,, from Equation 1
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and it follows

We then have, using Proposition 4 and these identities, that for /3 G F , , fa(9a(PX))

= Pfa{9a(X)) as required. D

P R O O F OF T H E O R E M 1: For x e WQ, if Tr(z) = 0 then from Proposition 4 it follows
directly that fa(ga(x)) — x. Suppose Tr(x) = 1 for x 6 WQ. Using Proposition 4

* (n-D/2

(»-l)/2 *

j=l i=0
(n-l)/2

nk-l _ \~~v o2j* o(2j-

+ 1 + 2 ^ x2 +x2

= a; + ca(l+Tr(x)).

As we have assumed that Tr(x) = 1 then again /Q(<7<i(x)) = x. Every element y 6 ¥Q

satisfying Tr(y) ^ 0 can be written in the form y — /3x where j3€F, , and Tr(x) = 1 for
some x G WQ. By Proposition 5, fa(ga{y)) = 0fa(ga(x)) = fix = y. Thus fa(ga(X))

= X mod (X" + X). D

The determination of the inverse class given in this article relied on using the
MAGMA algebra package [2] to generate examples for small fields. This result under-
lines that, in general, inverses for known permutation polynomial classes are not simple
to describe.
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