NOTE ON THE LINEAR SYMMETRIC CONGRUENCE IN \boldsymbol{n} VARIABLES

L. J. MORDELL

Introduction. Let $f=f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be a polynomial in $n>2$ variables with integer coefficients, and let p be a large prime. Very little appears to be known about estimates for the number N of solutions of the congruence

$$
\begin{equation*}
f \equiv 0(\bmod p) \tag{1}
\end{equation*}
$$

for general f. For the special case when

$$
f=a_{1} x_{1}{ }^{l_{1}}+\ldots+a_{n} x_{n}^{l_{n}}+a
$$

I showed [1, p. 207] in 1932, that when $a_{1} a_{2} \ldots a_{n} a \neq 0(\bmod p)$,

$$
N=p^{n-1}+O\left(p^{\frac{1}{2}(n-1)}\right)
$$

where the constants implied in O are independent of the a 's. Particular cases of (1^{\prime}) have been discussed by many writers even as far back as Gauss, and (1^{\prime}) has been the subject of numerous papers in recent years. But no other instances of (1) seem to have been considered and so it may be of interest to study the case when f is the general linear symmetric function of the x 's, say

$$
\begin{equation*}
f=a_{0}+a_{1} \sum x_{1}+a_{2} \sum x_{1} x_{2}+\ldots+a_{n} x_{1} x_{2} \ldots x_{n} \equiv 0 \tag{2}
\end{equation*}
$$

I have been led to the conjectured
Theorem. When $f \equiv 0$ is not derived from $x_{1} x_{2} \ldots x_{n} \equiv a$ by a linear substitution $x_{r}{ }^{\prime} \equiv\left(A x_{r}+B\right) /\left(C x_{r}+D\right)(r=1,2, \ldots, n)$, nor from any of

$$
\begin{gathered}
a x_{1} x_{2} \ldots x_{n}+b \sum x_{1} x_{2} \ldots x_{n-1} \equiv 0 \\
\sum x_{1} x_{2} \ldots x_{n-2} \equiv 0, \quad \sum x_{1} x_{2} \ldots x_{n-3} \equiv 0, \quad \ldots, \sum x_{1} x_{2} \equiv 0,
\end{gathered}
$$

by a linear substitution $x_{r}{ }^{\prime} \equiv A x_{r}+B(r=1,2, \ldots, n)$, then N, the number of solutions of (2), satisfies

$$
\begin{equation*}
N=p^{n-1}+O\left(p^{\frac{1}{2}(n-1)}\right) \tag{3}
\end{equation*}
$$

where the constant implied in O is independent of the a's.
The proofs for $n=2,3$ are trivial. For $n=4$, the result lies deep since it is practically equivalent to Hasse's result [2, p. 145] that the number of solutions of the congruence

$$
\begin{equation*}
y^{2} \equiv a x^{4}+b x^{3}+c x^{2}+d x+e \tag{4}
\end{equation*}
$$

Received December 30, 1952.
is $p+O\left(p^{\frac{1}{2}}\right)$ provided that the quartic is not congruent to a multiple of the square of a quadratic.

I know of no really worth while results for $n>4$.
Take the cases in turn.
$n=2$:

$$
\begin{equation*}
f=a_{0}+a_{1}\left(x_{1}+x_{2}\right)+a_{2} x_{1} x_{2} \equiv 0 \tag{5}
\end{equation*}
$$

It may be supposed that a_{1} and a_{2} are not both congruent to zero. Then obviously if $a_{2} \equiv 0, N=p$. If $a_{2} \neq 0$, two cases arise according as f is decomposable or indecomposable. In the first case $a_{1}{ }^{2}-a_{0} a_{2} \equiv 0$, and f becomes ($a_{1}+a_{2} x_{1}$) $\cdot\left(a_{1}+a_{2} x_{2}\right) \equiv 0$, and there are $2 p-1$ solutions. In the second $a_{1}{ }^{2}-a_{0} a_{2} \not \equiv 0$, and there are $p-1$ solutions since x_{1} may have any of the $p-1$ values for which $a_{2} x_{1}+a_{1} \not \equiv 0$, and then x_{2} is uniquely determined.
$n=3$:

$$
\begin{equation*}
f=a_{0}+a_{1}\left(x_{1}+x_{2}\right)+a_{2} x_{1} x_{2}+x_{3}\left(a_{1}+a_{2}\left(x_{1}+x_{2}\right)+a_{3} x_{1} x_{2} .\right. \tag{6}
\end{equation*}
$$

Let N^{\prime} be the number of solutions in x_{1}, x_{2} of

$$
\begin{equation*}
a_{1}+a_{2}\left(x_{1}+x_{2}\right)+a_{3} x_{1} x_{2} \equiv 0 \tag{7}
\end{equation*}
$$

Suppose first that this is reducible. Then $a_{3} \not \equiv 0$ and we can put $a_{1} \equiv t^{2} a_{3}$, $a_{2} \equiv t a_{3}$, and $N^{\prime}=2 p-1$. But then

$$
f=a_{0}-a_{3} t^{3}+a_{3}\left(x_{1}+t\right)\left(x_{2}+t\right)\left(x_{3}+t\right)
$$

and this is one of the excluded cases. Clearly $N=(p-1)^{2}$ if $a_{0}-a_{3} t^{3} \not \equiv 0$, but $N=3 p^{2}-3 p+1$ if $a_{0}-a_{3} t^{3} \equiv 0$.

Suppose then (7) is not reducible. Now $N^{\prime}=p-1$ or p, according as $a_{3} \not \equiv 0$ or $a_{3} \equiv 0$. For each of the remaining $p^{2}-N^{\prime}$ sets for x_{1}, x_{2} there is a unique value for x_{3}. For the N^{\prime} sets, there will be solutions for x_{3}, and then p solutions for x_{3}, if and only if

$$
\begin{align*}
& a_{1}+a_{2}\left(x_{1}+x_{2}\right)+a_{3} x_{1} x_{2} \equiv 0 \tag{8}\\
& a_{0}+a_{1}\left(x_{1}+x_{2}\right)+a_{2} x_{1} x_{2} \equiv 0
\end{align*}
$$

Suppose first that these congruences are essentially the same, say

$$
\frac{a_{1}}{a_{0}} \equiv \frac{a_{2}}{a_{1}} \equiv \frac{a_{3}}{a_{2}} \equiv t
$$

Then $f \equiv a_{0}\left(1+t x_{1}\right)\left(1+t x_{2}\right)\left(1+t x_{3}\right)$, and this is an excluded case. If we had had $a_{0} \equiv a_{1} \equiv a_{2} \equiv 0$, then $f \equiv a_{3} x_{1} x_{2} x_{3}$, an excluded case.

Apart from these cases, (8) determine $x_{1}+x_{2}$ and $x_{1} x_{2}$ uniquely and so there are $O(1)$ values for x_{1} and x_{2}. Hence

$$
N=p^{2}-p+\epsilon+O(p)=p^{2}+O(p), \quad \epsilon=0,1
$$

The work shows that there is no exception to the general result (3) except in the case $a\left(x_{1}+t\right)\left(x_{2}+t\right)\left(x_{3}+t\right) \equiv 0$.
$n=4$:
Here $f=g+h x_{4}$, where

$$
\begin{align*}
& g=a_{0}+a_{1}\left(x_{1}+x_{2}+x_{3}\right)+a_{2}\left(x_{2} x_{3}+x_{3} x_{1}+x_{1} x_{2}\right)+a_{3} x_{1} x_{2} x_{3}, \\
& h=a_{1}+a_{2}\left(x_{1}+x_{2}+x_{3}\right)+a_{3}\left(x_{2} x_{3}+x_{3} x_{1}+x_{1} x_{2}\right)+a_{4} x_{1} x_{2} x_{3} . \tag{9}
\end{align*}
$$

The number N^{\prime} of sets x_{1}, x_{2}, x_{3} for which $h \equiv 0$ is $p^{2}+O(p)$ except when $a_{3} \equiv t a_{4}, a_{2} \equiv t^{2} a_{4}, a_{1} \equiv t^{3} a_{4}, a_{4} \equiv 0$, and then f takes the excluded form

$$
a_{0}-a_{4} t^{4}+a_{4}\left(x_{1}+t\right)\left(x_{2}+t\right)\left(x_{3}+t\right)\left(x_{4}+t\right) .
$$

Hence for $p^{3}-p^{2}-O(p)$ sets of values for x_{1}, x_{2}, x_{3}, there is a unique value for x_{4}. When $h \equiv 0$, we have solutions for x_{4}, in fact p solutions, if and only if x_{1}, x_{2}, x_{3} satisfy both $g \equiv 0, h \equiv 0$, say for M solutions x_{1}, x_{2}, x_{3}. Then

$$
N=p^{3}-p^{2}-O(p)+p M=p^{3}+O\left(p^{3 / 2}\right)
$$

as it will be shown that $M=p+O\left(p^{\frac{1}{2}}\right)$.
Some of the exceptional cases arising are dealt with by the
Lemma. The functions g, h in (9) yield an identical congruence in x_{1}, x_{2}, x_{3} of the form

$$
\begin{equation*}
h+g \lambda \equiv \mu\left(x_{1}+k\right)\left(x_{2}+k\right)\left(x_{3}+k\right) \tag{10}
\end{equation*}
$$

for constants λ, μ, k, only in some of the exceptional cases.
For (10) gives

$$
\begin{array}{ll}
a_{4}+\lambda a_{3} \equiv \mu, & a_{3}+\lambda a_{2} \equiv \mu k \\
a_{2}+\lambda a_{1} \equiv \mu k^{2}, & a_{1}+\lambda a_{0} \equiv \mu k^{3}
\end{array}
$$

Then

$$
\begin{aligned}
& k a_{4}-a_{3}+\lambda\left(k a_{3}-a_{2}\right) \equiv 0, \\
& k a_{3}-a_{2}+\lambda\left(k a_{2}-a_{1}\right) \equiv 0, \\
& k a_{2}-a_{1}+\lambda\left(k a_{1}-a_{0}\right) \equiv 0 .
\end{aligned}
$$

Put $f^{\prime}=f\left(x_{1}, x_{2}, x_{3},-k\right)$. Then

$$
\begin{aligned}
f^{\prime}=g-k h & =\left(a_{3}-k a_{4}\right) x_{1} x_{2} x_{3}+\left(a_{2}-k a_{3}\right)\left(x_{2} x_{3}+x_{3} x_{1}+x_{1} x_{2}\right)+\ldots \\
& =\left(k a_{1}-a_{0}\right)\left(\lambda x_{1}-1\right)\left(\lambda x_{2}-1\right)\left(\lambda x_{3}-1\right) .
\end{aligned}
$$

Hence f can be written as

$$
f=\left(x_{4}+k\right) j+\left(k a_{1}-a_{0}\right)\left(\lambda x_{1}-1\right)\left(\lambda x_{2}-1\right)\left(\lambda x_{3}-1\right),
$$

where j is linear in each of x_{1}, x_{2}, x_{3}; and this expression for f must be symmetrical in $x_{1}, x_{2}, x_{3}, x_{4}$. Now $\lambda \equiv 0$ leads to an excluded form for f since if $k=0$, $j=a x_{1} x_{2} x_{3}$. When $\lambda \neq 0$, on replacing x_{1} by $\left(x_{1}+1\right) / \lambda$ etc., f can be written as, say, $f=\left(x_{4}+k^{\prime}\right) j^{\prime}+a x_{1} x_{2} x_{3}$. Put

$$
j^{\prime}=a^{\prime} x_{1} x_{2} x_{3}+b^{\prime} \sum_{1,2,3} x_{2} x_{3}+c^{\prime} \sum_{1,2,3} x_{1}+d^{\prime}
$$

Then

$$
\begin{aligned}
& f=a^{\prime} x_{1} x_{2} x_{3} x_{4}+\left(a^{\prime} k^{\prime}+a\right) x_{1} x_{2} x_{3}+b^{\prime}\left(x_{2} x_{3} x_{4}+x_{3} x_{1} x_{4}+x_{1} x_{2} x_{4}\right) \\
& +c^{\prime}\left(x_{1} x_{4}+x_{2} x_{4}+x_{3} x_{4}\right)+b^{\prime} k^{\prime}\left(x_{2} x_{3}+x_{3} x_{1}+x_{1} x_{2}\right) \\
& +c^{\prime} k^{\prime}\left(x_{1}+x_{2}+x_{3}\right)+d^{\prime} x_{4}+k^{\prime} d^{\prime}
\end{aligned}
$$

Since f is symmetrical in the x 's, we have $b^{\prime}=a^{\prime} k^{\prime}+a, c^{\prime}=b^{\prime} k^{\prime}, d^{\prime}=c^{\prime} k^{\prime}$, and so

$$
f=a^{\prime} x_{1} x_{2} x_{3} x_{4}+b^{\prime} \sum x_{1} x_{2} x_{3}+b^{\prime} k^{\prime} \sum x_{1} x_{2}+b^{\prime} k^{\prime 2} \sum x_{1}+b^{\prime} k^{\prime 3}
$$

If $k^{\prime} \equiv 0$, we have $f=a^{\prime} x_{1} x_{2} x_{3} x_{4}+b^{\prime} \sum x_{1} x_{2} x_{3}$.
If $k^{\prime} \not \equiv 0$, on multiplying f by k^{\prime}, we can clearly write f as

$$
k^{\prime} f=-a x_{1} x_{2} x_{3} x_{4}+b^{\prime}\left(x_{1}+k^{\prime}\right)\left(x_{2}+k^{\prime}\right)\left(x_{3}+k^{\prime}\right)\left(x_{4}+k^{\prime}\right)
$$

Both these are exceptional cases. This concludes the proof of the lemma.
We now find the number M of solutions of $g \equiv 0, h \equiv 0$. Suppose first $a_{4} \neq 0$. Then if in f we replace x_{1} by $x_{1}-a_{3} / a_{4}$, etc., we may suppose $a_{3} \equiv 0$, and so (9) takes for $h \equiv 0$ and $g \equiv 0$, the shape

$$
\begin{align*}
x_{1} x_{2} x_{3} & \equiv A \sum x_{1}+B \\
E \sum x_{1} x_{2} & \equiv C \sum x_{1}+D \tag{11}
\end{align*}
$$

If $E \equiv 0$, these can be written as

$$
\sum x_{1} \equiv F, \quad x_{1} x_{2} x_{3} \equiv G,
$$

where, by the lemma, $G \neq 0$. Then

$$
x_{1} x_{2}\left(F-x_{1}-x_{2}\right) \equiv G
$$

This cannot be a reducible congruence; and writing $x_{1}=X+Y, x_{2}=X-Y$, the number of solutions is as in Hasse's result on (3). Hence we can suppose $E=1$, and so, with $x_{1}-c$ for x_{1}, etc., the two congruences (11) can be written as

$$
\begin{align*}
x_{1} x_{2} x_{3} & \equiv A \sum x_{1}+B \\
\sum x_{1} x_{2} & \equiv D \tag{12}
\end{align*}
$$

Then

$$
\begin{aligned}
x_{3}\left(x_{1} x_{2}-A\right) & \equiv A\left(x_{1}+x_{2}\right)+B \\
x_{3}\left(x_{1}+x_{2}\right) & \equiv D-x_{1} x_{2}
\end{aligned}
$$

and so

$$
\begin{equation*}
\left(A\left(x_{1}+x_{2}\right)+B\right)\left(x_{1}+x_{2}\right)+\left(x_{1} x_{2}-A\right)\left(x_{1} x_{2}-D\right) \equiv 0 . \tag{13}
\end{equation*}
$$

If (13) is reducible, $x_{1}+x_{2}$ must be expressible linearly in terms of $x_{1} x_{2}$, and so $-A s^{2}-B s+\frac{1}{4}(A-D)^{2}$ must be congruent to a perfect square in s, and so $B^{2}+A(A-D)^{2} \equiv 0$. Hence

$$
A \equiv-A_{1}^{2}, \quad B \equiv A_{1}^{3}+D A_{1}
$$

say. Then (12) becomes

$$
\begin{aligned}
x_{1} x_{2} x_{3} & \equiv-{A_{1}}^{2} \sum x_{1}+{A_{1}}^{3}+D A_{1}, \\
\sum x_{1} x_{2} & \equiv D
\end{aligned}
$$

By addition, $\left(x_{1}-A_{1}\right)\left(x_{2}-A_{1}\right)\left(x_{3}-A_{1}\right) \equiv 0$, and this has been noted in the lemma and is dealt with in (14) below.

Write (13) as

$$
\left(x_{2}^{2}+A\right) x_{1}^{2}+\left(2 A x_{2}+B-(A+D) x_{2}\right) x_{1}+A x_{2}^{2}+B x_{2}+A D \equiv 0
$$

Hence $2\left(x_{2}{ }^{2}+A\right) x_{1}+2 A x_{2}+B-(A+D) x_{2}=Y$, where $Y^{2} \equiv R$ and R is a quartic in x_{2}. This quartic cannot be a perfect square since (13) is irreducible, and so the number of solutions is given by Hasse's result and (3) holds.

Suppose next $a_{4} \equiv 0$. If $a_{3} \neq 0$, on replacing x_{1} by $x_{1}+k$, etc., we may suppose $a_{2}=0$ in f. Then (9) becomes

$$
\begin{align*}
& g=a_{0}+a_{1}\left(x_{1}+x_{2}+x_{3}\right)+a_{3} x_{1} x_{2} x_{3} \equiv 0 \\
& h=a_{1}+a_{3}\left(x_{2} x_{3}+x_{3} x_{1}+x_{1} x_{2}\right) \equiv 0 \tag{14}
\end{align*}
$$

These are the same as (12) and so we have the same estimate as when $a_{4} \neq 0$, except possibly when $g \lambda+h$ is reducible. This occurs only when $a_{1} \equiv t^{2} a_{3}$ and $a_{0} \equiv 0$. Then

$$
\begin{aligned}
& g+t h \equiv a_{3}\left(x_{1}+t\right)\left(x_{2}+t\right)\left(x_{3}+t\right) \\
& g-t h \equiv a_{3}\left(x_{1}-t\right)\left(x_{2}-t\right)\left(x_{3}-t\right)
\end{aligned}
$$

and so the solutions of (14) are given by $x_{1} \equiv \pm t, x_{2} \equiv \mp t, x_{3}$ arbitrary etc. Then $f=0$ becomes

$$
\sum x_{1} x_{2} x_{3}+t^{2} \sum x_{1} \equiv 0
$$

When $t \equiv 0$, this is $\sum x_{1} x_{2} x_{3} \equiv 0$. When $t \not \equiv 0$, on replacing x_{1} by $t x_{1}$, etc., this becomes

$$
\sum x_{1}+\sum x_{1} x_{2} x_{3} \equiv 0
$$

Suppose finally that $a_{3} \equiv a_{4} \equiv 0$ so that (9) becomes

$$
\begin{align*}
a_{0}+a_{1} \sum x_{1}+a_{2} \sum x_{1} x_{2} & \equiv 0 \\
a_{1}+a_{2} \sum x_{1} & \equiv 0 \tag{15}
\end{align*}
$$

If $a_{2} \equiv 0, f$ becomes $a_{0}+a_{1}\left(x_{1}+x_{2}+x_{3}+x_{4}\right) \equiv 0$, and has p^{3} solutions.
If $a_{2} \not \equiv 0$, on replacing x_{1} by $x_{1}+c$, etc., in (15), we have

$$
x_{1}+x_{2}+x_{3}+A \equiv 0, \quad x_{2} x_{3}+x_{3} x_{1}+x_{1} x_{2}+B \equiv 0
$$

say, or

$$
x_{1} x_{2}+\left(x_{1}+x_{2}\right)\left(-A-x_{1}-x_{2}\right)+B \equiv 0
$$

Unless $A \equiv B \equiv 0$, this congruence is irreducible and has $p+O(1)$ solutions.
When $A \equiv B \equiv 0$, (15) is tantamount to $a_{1} \equiv a_{0} \equiv 0$, and $f=0$ becomes

$$
x_{4}\left(x_{1}+x_{2}+x_{3}\right)+x_{2} x_{3}+x_{3} x_{1}+x_{1} x_{2} \equiv 0
$$

This is an excluded case which has $p^{2}(p-1)+p M^{\prime}$ solutions, where M^{\prime} is the number of solutions of

$$
x_{1}+x_{2}+x_{3} \equiv 0, \quad x_{2} x_{3}+x_{3} x_{1}+x_{1} x_{2} \equiv 0
$$

and so of

$$
x_{2}{ }^{2}+x_{2} x_{3}+x_{3}^{2} \equiv 0
$$

References

1. L. J. Mordell, The number of solutions of some congruences in two variables, Math. Z., 87 (1933), 193-209.
2. H. Hasse, Vorlesungen über Zahlentheorie (Berlin, 1950), 145.

St. John's College, Cambridge

