ON THE VALUE DISTRIBUTION OF $\boldsymbol{f}^{\mathbf{2}} \boldsymbol{f}^{(\boldsymbol{k})}$

XIAOJUN HUANG and YONGXING GU

(Received 13 November 2002; revised 4 September 2003)

Communicated by P. C. Fenton

Abstract

In this paper, we prove that for a transcendental meromorphic function $f(z)$ on the complex plane, the inequality $T(r, f)<6 N\left(r, 1 /\left(f^{2} f^{(k)}-1\right)\right)+S(r, f)$ holds, where k is a positive integer. Moreover, we prove the following normality criterion: Let \mathscr{F} be a family of meromorphic functions on a domain D and let k be a positive integer. If for each $f \in \mathscr{F}$, all zeros of f are of multiplicity at least k, and $f^{2} f^{(k)} \neq 1$ for $z \in D$, then \mathscr{F} is normal in the domain D. At the same time we also show that the condition on multiple zeros of f in the normality criterion is necessary.

2000 Mathematics subject classification: primary 30D35.
Keywords and phrases: meromorphic function, normal family.

1. Introduction

In 1979 Mues [1] proved that for a transcendental meromorphic function $f(z)$ in the open plane, $f^{2} f^{\prime}-1$ has infinitely many zeros. This is a qualitative result. Later, Zhang [2] obtained a quantitative result, proving that the inequality $T(r, f)<$ $6 N\left(r, 1 /\left(f^{2} f^{\prime}-1\right)\right)+S(r, f)$ holds. Naturally, we ask whether the above inequality is still true when $N\left(r, 1 /\left(f^{2} f^{\prime}-1\right)\right)$ is replaced by $N\left(r, 1 /\left(f^{2} f^{(k)}-1\right)\right)$. In this paper, we solve this problem and obtain

Theorem 1. Let $f(z)$ be a transcendental function in the complex plane and let k be a positive integer. Then

$$
T(r, f)<6 N\left(r, \frac{1}{f^{2} f^{(k)}-1}\right)+S(r, f)
$$

The second author's research was supported by NNSF of China No. 19971097.
(c) 2005 Australian Mathematical Society $1446-7887 / 05 \$$ A $2.00+0.00$

From Theorem 1, we have at once:
COROLLARY. Let $f(z)$ be a transcendental meromorphic function and let k be a positive integer. Then $f^{2} f^{(k)}-1$ assumes every non-zero finite value infinitely often.

Using Mues' result, Pang [2] proved:
THEOREM A ([2]). Let \mathscr{F} be a family of meromorphic function on a domain D. If each $f \in \mathscr{F}$ satisfies $f^{2} f^{\prime} \neq 1$, then \mathscr{F} is normal on domain D.

Now, utilizing Theorem 1 we also can obtain the following theorem:
THEOREM 2. Let \mathscr{F} be a family of meromorphic functions on a domain D and let k be a positive integer. If for each $f \in \mathscr{F}, f$ has only zeros of multiplicity at least k and $f^{2} f^{(k)} \neq 1$, then \mathscr{F} is normal on domain D.

The following example shows that the condition on multiple zeros of f in Theorem 2 is necessary.

Example. Let $k \geq 2$ be a positive integer and $\mathscr{F}=\left\{n z^{k-1}: n=1,2, \ldots\right\}$. So, each $f \in \mathscr{F}$ satisfies $f^{2} f^{(k)} \neq 1$. But \mathscr{F} is not normal at the origin.

2. Some lemmas

Lemma 1. Let $f(z)$ be a transcendental function. Then $f^{2} f^{(k)}$ is not identically constant.

Proof. Suppose that $f^{2} f^{(k)} \equiv C$. Obviously, $C \neq 0$. So $f \neq 0$ and $1 / f^{3}=$ $C^{-1} f^{(k)} / f$. Hence we obtain

$$
3 T(r, f)=m\left(r, \frac{1}{f^{3}}\right)+O(1)=O(1)\left\{m\left(r, \frac{f^{(k)}}{f}\right)+1\right\}=S(r, f)
$$

This contradicts the assumption that $f(z)$ is a transcendental function.
LEMMA 2. Let $f(z)$ be a transcendental meromorphic function, $g(z)=f^{2} f^{(k)}-1$ and $h(z)=g^{\prime} / f=f f^{(k+1)}+2 f^{\prime} f^{(k)}$. Then

$$
\begin{align*}
& 3 T(r, f)<\bar{N}(r, f)+2 N\left(r, \frac{1}{f}\right)+N\left(r, \frac{1}{g}\right)-N\left(r, \frac{1}{h}\right)+S(r, f) \tag{2.1}\\
& {[N(r, f)-\bar{N}(r, f)]+m(r, f)+2 m\left(r, \frac{1}{f}\right)+N\left(r, \frac{1}{h}\right) } \tag{2.2}\\
&<N\left(r, \frac{1}{g}\right)+S(r, f)
\end{align*}
$$

Proof. By Lemma 1 , we know $g \not \equiv C$ and $h \not \equiv 0$. Set

$$
\frac{1}{f^{3}}=\frac{f^{2} f^{(k)}}{f^{3}}-\frac{g^{\prime}}{f^{3}} \frac{g}{g^{\prime}}
$$

so

$$
\begin{aligned}
3 m(r, f) & <m\left(r, \frac{g}{g^{\prime}}\right)+S(r, f)<N\left(r, \frac{g^{\prime}}{g}\right)-N\left(r, \frac{g}{g^{\prime}}\right)+S(r, f) \\
& =\bar{N}(r, g)+N\left(r, \frac{1}{g}\right)-N\left(r, \frac{1}{g^{\prime}}\right)+S(r, f) \\
& =\bar{N}(r, g)+N\left(r, \frac{1}{g}\right)-N\left(r, \frac{1}{f h}\right)+S(r, f) \\
& =\bar{N}(r, g)+N\left(r, \frac{1}{g}\right)-N\left(r, \frac{1}{f}\right)-N\left(r, \frac{1}{h}\right)+S(r, f)
\end{aligned}
$$

Hence

$$
\begin{aligned}
3 T(r, f) & =3 m\left(r, \frac{1}{f}\right)+3 N\left(r, \frac{1}{f}\right)+O(1) \\
& <\bar{N}(r, f)+2 N\left(r, \frac{1}{f}\right)+N\left(r, \frac{1}{g}\right)-N\left(r, \frac{1}{h}\right)+S(r, f)
\end{aligned}
$$

Thus the inequality (2.1) is proved. Since

$$
3 T(r, f)=m(r, f)+N(r, f)+2 m\left(r, \frac{1}{f}\right)+2 N\left(r, \frac{1}{f}\right)+O(1)
$$

the inequality (2.2) can be obtained.
Lemma 3. Let $f(z), g(z), h(z)(k \geq 2)$ be as stated above and let

$$
\begin{array}{ll}
a_{1}=2(k+1)^{2}-\frac{(3 k+7)\left(k^{2}-4 k-29\right)}{(k+3)}, & a_{3}=2(k+2)(k+3)(k+5) \\
a_{2}=-(k+5)\left(k^{2}-4 k-29\right), & a_{4}=-4(k+3)(k+1) \\
a_{5}=4\left(k^{2}-4 k-29\right)
\end{array}
$$

and

$$
\begin{align*}
F(z)= & a_{1}\left(\frac{g^{\prime}(z)}{g(z)}\right)^{2}+a_{2}\left(\frac{g^{\prime}(z)}{g(z)}\right)^{\prime}+a_{3}\left(\frac{h^{\prime}(z)}{h(z)}\right)^{\prime} \tag{2.3}\\
& +a_{4}\left(\frac{h^{\prime}(z)}{h(z)}\right)^{2}+a_{5}\left(\frac{g^{\prime}(z)}{g(z)} \frac{h^{\prime}(z)}{h(z)}\right)
\end{align*}
$$

Then $F \not \equiv 0$.
Proof. Suppose that $F(z) \equiv 0$, we claim that
(i) $g(z) \neq 0$;
(ii) $h(z) \neq 0$;
(iii) all zeros of $f(z)$ are simple.

Suppose first that z_{1} is a zero of $g(z)$ of multiplicity $l(l \geq 1)$. From $g\left(z_{1}\right)=0$ and $g=f^{2} f^{(k)}-1$ we can get $f\left(z_{1}\right) \neq 0, \infty$. Since z_{1} is a zero of order $(l-1)$ of $g^{\prime}=f h$ we have that z_{1} be a zero of $h(z)$ of multiplicity $l-1$. Using the Laurent series of $F(z)$ at the point z_{1}, we can get the coefficient of $\left(z-z_{1}\right)^{-2}$:

$$
A(l)=\left(a_{1}+a_{4}+z_{5}\right) l^{2}-\left(a_{2}+a_{3}+2 a_{4}+a_{5}\right) l+\left(a_{3}+a_{4}\right)
$$

From the definition of $a_{i}, i=1, \ldots, 5$, we have

$$
A(l)=-\frac{(k+5)^{2}(k+7)}{k+3} l^{2}-(k+1)(k+5)(k+7) l+2(k+1)^{2}(k+3)
$$

Obviously, $A(l) \neq 0$ for all positive integers l. So the point z_{1} is a pole of $F(z)$ which contradicts $F(z) \equiv 0$. Hence conclusion (i) $g(z) \neq 0$ holds.

Suppose next that z_{2} is a zero of $h(z)$ of order $l(l \geq 1)$. By (i) we have $g\left(z_{2}\right) \neq 0, \infty$. Using the Laurent series of $F(z)$ at the point z_{2}, we can get the coefficient of $\left(z-z_{2}\right)^{-2}$ as $B(l)=-a_{3} l+a_{4} l^{2}$. From the definition of $a_{i}, i=1, \ldots, 5$, we have

$$
B(l)=-2(k+1)(k+3)(k+5) l-4(k+1)(k+3) l^{2}<0
$$

so that the point z_{2} is a pole of $F(z)$ which contradicts $F(z) \equiv 0$. Hence conclusion (ii) $h(z) \neq 0$ holds.

Using $h(z)=f f^{(k+1)}+2 f^{\prime} f^{(k)}$ and (ii) $(h(z) \neq 0)$, we can get (iii).
Set $\phi(z)=h(z) / g(z)$, we can deduce that $\phi(z)$ is an entire function, all zeros of $\phi(z)$ can occur only at multiple poles of $f(z)$ and the following expressions hold:

$$
\frac{g^{\prime}}{g}=\frac{f h}{g}=f \phi, \quad \frac{h^{\prime}}{h}=\frac{g^{\prime}}{g}+\frac{\phi^{\prime}}{\phi}=f \phi+\frac{\phi^{\prime}}{\phi}
$$

Substituting the above two equalities in the expression (2.3) for $F(z)$, we get

$$
\begin{align*}
& \left(a_{1}+a_{4}+a_{5}\right) f^{2} \phi^{2}+\left(a_{2}+a_{3}+2 a_{4}+a_{5}\right) f \phi^{\prime} \tag{2.4}\\
& \quad+\left[a_{3}\left(\frac{\phi^{\prime}}{\phi}\right)^{\prime}+a_{4}\left(\frac{\phi^{\prime}}{\phi}\right)^{2}\right]+\left(a_{2}+a_{3}\right) f^{\prime} \phi \equiv 0 .
\end{align*}
$$

Obviously, $a_{2}+a_{3}=(k+5)^{2}(k+7) \neq 0$ and $\phi \not \equiv 0$, otherwise $g^{\prime} / g=f \phi \equiv 0$, that is, $g \equiv C$ which contradicts the result of Lemma 1 .

Thus, by the equality (2.4), we have

$$
\begin{equation*}
f^{\prime} \equiv \frac{1}{\phi} l_{11}(z)+f l_{12}(z)+f^{2} \phi l_{13}(z) \tag{2.5}
\end{equation*}
$$

where $l_{1 i}(z)(i=1,2,3)$ are differential monomials of (ϕ^{\prime} / ϕ). Differentiating both sides of (2.5), we have

$$
\begin{aligned}
f^{\prime \prime}= & -\frac{1}{\phi} \frac{\phi^{\prime}}{\phi} l_{11}(z)+\frac{1}{\phi} l_{11}^{\prime}(z)+f^{\prime} l_{12}(z)+f l_{12}^{\prime}(z)+2 f f^{\prime} \phi l_{13}(z) \\
& +f^{2} \phi\left[\frac{\phi^{\prime}}{\phi} l_{13}(z)+l_{13}^{\prime}(z)\right] .
\end{aligned}
$$

Using the above equality and (2.5), we get

$$
f^{\prime \prime}=\frac{1}{\phi} l_{21}(z)+f l_{22}(z)+f^{2} \phi l_{23}(z)+f^{3} \phi^{2} l_{24}(z)
$$

where $l_{2 i}(z)(i=1, \ldots, 4)$ are differential monomials of $\left(\phi^{\prime} / \phi\right)$. Continuing the above process we obtain

$$
\begin{equation*}
f^{(k)}=\frac{1}{\phi} l_{k 1}(z)+f l_{k 2}(z)+f^{2} \phi l_{k 3}(z)+\cdots+f^{k+1} \phi^{k} l_{k k+2}(z) \tag{2.6}
\end{equation*}
$$

where $l_{k i}(z)(i=1, \ldots, k=2)$ are differential monomials of $\left(\phi^{\prime} / \phi\right)$.
Now, suppose z_{3} is a zero of f. Combining (2.5), (2.6) and $\phi\left(z_{3}\right) \neq 0, \infty$, we have

$$
f^{\prime}\left(z_{3}\right)=\frac{1}{\phi\left(z_{3}\right)} l_{11}\left(z_{3}\right), \quad f^{(k)}\left(z_{3}\right)=\frac{1}{\phi\left(z_{3}\right)} l_{k 1}\left(z_{3}\right)
$$

Further, by the above two equalities and the expression for $g(z)$ and $h(z)$ in Lemma 2, we have

$$
g\left(z_{3}\right)=-1, \quad h\left(z_{3}\right)=2 f^{\prime}\left(z_{3}\right) f^{(k)}\left(z_{3}\right)=\frac{2}{\phi^{2}\left(z_{3}\right)} l_{11}\left(z_{3}\right) l_{k 1}\left(z_{3}\right)
$$

Substituting the above equality in the expression for $\phi(z)=h(z) / g(z)$ we have

$$
\begin{equation*}
\phi^{3}\left(z_{3}\right)=-2 l_{11}\left(z_{3}\right) l_{k 1}\left(z_{3}\right) \tag{2.7}
\end{equation*}
$$

Set $G(z)=\phi^{3}(z)+2 l_{11}(z) l_{k 1}(z)$. We distinguish two cases.
Case 1. $G(z) \neq 0$. By (2.7) and (iii) we have
(2.8) $N\left(r, \frac{1}{f}\right)=\bar{N}\left(r, \frac{1}{f}\right) \leq N\left(r, \frac{1}{G}\right)<T(r, G)+O(1)$

$$
<O\{T(r, \phi)\}+O(1)
$$

$$
\begin{equation*}
T(r, \phi)=m(r, \phi)=m\left(r, \frac{h}{g}\right)=m\left(r, \frac{g^{\prime}}{g} \frac{1}{f}\right) \leq m\left(r, \frac{1}{f}\right)+S(r, f) \tag{2.9}
\end{equation*}
$$

Applying (2.2) of Lemma 2, and combining with $N(r, 1 / G)=0$ we have

$$
\begin{equation*}
m(r, 1 / f)=S(r, f) \tag{2.10}
\end{equation*}
$$

By (2.10), (2.9) and (2.8), we have

$$
\begin{equation*}
N(r, 1 / f)=S(r, f) \tag{2.11}
\end{equation*}
$$

Combining (2.10) and (2.11) we get $T(r, f)=T(r, 1 / f)+O(1)=S(r, f)$. This gives a contradiction, since f is a transcendental meromorphic function.

Case 2. $G(z) \equiv 0$. Using the expression for $G(z)$, and noting that $l_{11}(z), l_{k 1}(z)$ are differential monomials of $\left(\phi^{\prime} / \phi\right)$ we deduce that

$$
\begin{equation*}
T(r, \phi)=m(r, \phi)=S(r, \phi) \tag{2.12}
\end{equation*}
$$

Again, using the expression for $G(z)$ and the fact that $G(z) \equiv 0$ we have

$$
\begin{equation*}
\phi^{3} \equiv-2 l_{11}(z) l_{k 1}(z) \tag{2.13}
\end{equation*}
$$

From (2.12), we deduce that $\phi(z)$ is a polynomial or a constant. If ϕ is a polynomial, then the right-hand side of (2.13) is a constant or rational function and the left-hand side of (2.13) is a polynomial, and this gives a contradiction. So ϕ is a constant. If $\phi \equiv 0$, using $g^{\prime} / g=f \phi \equiv 0$, we deduce that g is a constant, which contradicts Lemma 1.

Hence, $\phi(z) \equiv C$, where $C \neq 0$. Substituting this equality in (2.4), we have

$$
\left(a_{1}+a_{4}+a_{5}\right) C^{2} f^{2}+\left(a_{2}+a_{3}\right) C f^{\prime} \equiv 0
$$

so $f^{\prime}=C_{1} f^{2}$, that is, $(1 / f)^{\prime} \equiv-C_{1}$, where $C_{1} \neq 0$ is a constant. Then we deduce that $f(z)$ is a rational function, but this is impossible. This completes the proof.

Lemma 4. Let $f(z), g(z), h(z), k \geq 2, F(z)$ be stated as above. Then all simple poles of $f(z)$ are zeros of $F(z)$.

Proof. Suppose z_{0} is a simple pole of $f(z)$, then

$$
f(z)=\frac{a}{\left(z-z_{0}\right)}\left\{1+b_{0}\left(z-z_{0}\right)+b_{1}\left(z-z_{0}\right)^{2}+O\left(\left(z-z_{0}\right)^{3}\right)\right\}
$$

where $a \neq 0, b_{0}, b_{1}$ are constants. Since $k \geq 2$, we have

$$
\begin{aligned}
g(z) & =f^{2} f^{(k)}-1 \\
& =\frac{(-1)^{k} k!a^{3}}{\left(z-z_{0}\right)^{k+3}}\left\{1+2 b_{0}\left(z-z_{0}\right)+\left(b_{0}^{2}+2 b_{1}\right)\left(z-z_{0}\right)^{2}+O\left(\left(z-z_{0}\right)^{3}\right)\right\},
\end{aligned}
$$

$$
\begin{aligned}
h(z)=\frac{g^{\prime}}{f}= & \frac{(-1)^{k+1} k!a^{2}}{\left(z-z_{0}\right)^{k+3}}\left\{(k+3)+(k+1) b_{0}\left(z-z_{0}\right)+(k-1) b_{1}\left(z-z_{0}\right)^{2}\right. \\
& \left.+O\left(\left(z-z_{0}\right)^{3}\right)\right\}
\end{aligned}
$$

Hence, we have

$$
\begin{aligned}
\frac{g^{\prime}}{g}= & \frac{(-1)}{\left(z-z_{0}\right)}\left\{(k+3)-2 b_{0}\left(z-z_{0}\right)+\left(2 b_{0}^{2}-4 b_{1}\right)\left(z-z_{0}\right)^{2}+O\left(\left(z-z_{0}\right)^{3}\right)\right\}, \\
\frac{h^{\prime}}{h}= & \frac{(-1)}{\left(z-z_{0}\right)} \frac{1}{k+3}\left\{(k+3)^{2}-(k+1) b_{0}\left(z-z_{0}\right)\right. \\
& \left.+\left[\frac{(k+1)^{2}}{k+3} b_{0}^{2}-2(k-1) b_{1}\right]\left(z-z_{0}\right)^{2}+O\left(\left(z-z_{0}\right)^{3}\right)\right\}, \\
\left(\frac{g^{\prime}}{g}\right)^{2}= & \frac{1}{\left(z-z_{0}\right)^{2}}\left\{(k+3)^{2}-4(k+3) b_{0}\left(z-z_{0}\right)\right. \\
& \left.+\left[4(k+4) b_{0}^{2}-8(k+3) b_{1}\right]\left(z-z_{0}\right)^{2}+O\left(\left(z-z_{0}\right)^{3}\right)\right\}, \\
\left(\frac{g^{\prime}}{g}\right)^{\prime}= & \frac{1}{\left(z-z_{0}\right)^{2}}\left\{(k+3)-\left(2 b_{0}^{2}-4 b_{1}\right)\left(z-z_{0}\right)^{2}+O\left(\left(z-z_{0}\right)^{3}\right)\right\}, \\
\left(\frac{h^{\prime}}{h}\right)^{\prime}= & \frac{1}{\left(z-z_{0}\right)^{2}} \frac{1}{k+3}\left\{(k+3)^{2}-\left[\frac{(k+1)^{2}}{k+3} b_{0}^{2}-2(k-1) b_{1}\right]\left(z-z_{0}\right)^{2}\right. \\
& \left.+O\left(\left(z-z_{0}\right)^{3}\right)\right\}, \\
\left(\frac{h^{\prime}}{h}\right)^{2}= & \frac{1}{\left(z-z_{0}\right)^{2}} \frac{1}{(k+3)^{2}}\left\{(k+3)^{4}-2(k+1)(k+3)^{2} b_{0}\left(z-z_{0}\right)\right. \\
& \left.+\left[(k+1)^{2}(2 k+7) b_{0}^{2}-4(k-1)(k+3)^{2} b_{1}\right]\left(z-z_{0}\right)^{2}+O\left(\left(z-z_{0}\right)^{3}\right)\right\}, \\
\frac{g^{\prime}}{g} \frac{h^{\prime}}{h}= & \frac{1}{\left(z-z_{0}\right)^{2}}\left\{(k+3)^{2}-(3 k+7) b_{0}\left(z-z_{0}\right)\right. \\
& \left.+\left[(3 k+7) b_{0}^{2}-2(3 k+5) b_{1}\right]\left(z-z_{0}\right)^{2}+O\left(\left(z-z_{0}\right)^{3}\right)\right\} .
\end{aligned}
$$

By substituting all of the above equalities in the expression (2.3) of $F(z)$ and performing some easy calculations we obtain that $F(z)=O\left(\left(z-z_{0}\right)\right)$. So, z_{0} is the zero of $F(z)$. This completes the proof.

LEMMA 5 ([3]). Let \mathscr{F} be a family of meromorphic functions on the unit disc Δ such that all zeros of functions in \mathscr{F} have multiplicity at least k. Let α be a real number satisfying $0 \leq \alpha<k$. Then \mathscr{F} is not normal in any neighbourhood of $z_{0} \in \Delta$ if and only if there exist
(i) points $z_{k} \in \Delta, z_{k} \rightarrow z_{0}$;
(ii) positive numbers $\rho_{k}, \rho_{k} \rightarrow 0$; and
(iii) functions $f_{k} \in \mathscr{F}$
such that $\rho_{k}^{-\alpha} f_{k}\left(z_{k}+\rho_{k} \xi\right) \rightarrow g(\xi)$ spherically uniformly on compact subsets of \mathbb{C}, where g is a nonconstant meromorphic function.

3. Proof of theorems

Proof of Theorem 1. When $k=1$, this is the result of Zhang [4]. So we assume that $k \geq 2$. By Lemma $3, F(z) \not \equiv 0$. Thus by Lemma 4 we have

$$
\begin{equation*}
N_{1}(r, f) \leq N(r, 1 / F) \leq T(r, F)+O(1) \tag{3.1}
\end{equation*}
$$

where in $N_{1}(r, f)$ only simple poles of $f(z)$ are to be considered. By (2.3), we know that the poles of $F(z)$ can occur only at multiple poles of $f(z)$ or zeros of $g(z)$, or zeros of $h(z)$, and all poles of $F(z)$ are of multiplicity at most 2 . So

$$
\begin{equation*}
N(r, F) \leq 2 \bar{N}_{(2}(r, f)+2 N(r, 1 / g)+2 N(r, 1 / h)+S(r, f) \tag{3.2}
\end{equation*}
$$

where in $\bar{N}_{(2}(r, f)$ only multiple poles of $f(z)$ are to be considered, and each pole is counted only once. Obviously, we have

$$
\begin{equation*}
m(r, F)=S(r, f) \tag{3.3}
\end{equation*}
$$

By (3.1), (3.2) and (3.3), we have

$$
\begin{equation*}
N_{1}(r, f) \leq 2 \bar{N}_{(2}(r, f)+2 N(r, 1 / g)+2 N(r, 1 / h)+S(r, f) \tag{3.4}
\end{equation*}
$$

Combining Lemma 2, (2.1) and (3.4) gives

$$
\begin{equation*}
3 T(r, f)<3 \bar{N}_{2}(r, f)+2 N(r, 1 / f)+3 N(r, 1 / g)+N(r, 1 / h)+S(r, f) \tag{3.5}
\end{equation*}
$$

On the other hand, using Lemma 2 and (2.2), we have

$$
\begin{align*}
3 \bar{N}_{(2}(r, f)+N(r, 1 / h) & \leq 3[N(r, f)-\bar{N}(r, f)]+N(r, 1 / h) \tag{3.6}\\
& <3 N(r, 1 / g)+S(r, f)
\end{align*}
$$

Thus, by (3.5) and (3.6), we obtain

$$
\begin{aligned}
3 T(r, f) & <6 N(r, 1 / g)+2 N(r, 1 / f)+S(r, f) \\
& <6 N(r, 1 / g)+2 T(r, f)+S(r, f)
\end{aligned}
$$

that is, $T(r, f)<6 N(r, 1 / g)+S(r, f)$. This completes the proof of Theorem 1 .

Proof of Theorem 2. We may assume that $D=\Delta$. Suppose that \mathscr{F} is not normal on Δ. Then, taking $\alpha=k / 3$ and applying Lemma 5 , we can find $f_{n} \in \mathscr{F}, z_{n} \in \Delta$ and $\rho_{n} \rightarrow 0+$ such that

$$
\frac{f_{n}\left(z_{n}+\rho_{n} \xi\right)}{\rho_{n}^{\alpha}}=g_{n}(\xi) \rightarrow g(\xi)
$$

locally uniformly with respect to the spherical metric, where g is a nonconstant meromorphic function on \mathbb{C}. By the assumption,

$$
\begin{aligned}
g_{n}^{2}(\xi)\left(g_{n}(\xi)\right)^{(k)}-1 & =\rho_{n}^{k-3 \alpha} f_{n}^{2}\left(z_{n}+\rho_{n} \xi\right) f_{n}^{(k)}\left(z_{n}+\rho_{n} \xi\right)-1 \\
& =f_{n}^{2}\left(z_{n}+\rho_{n} \xi\right) f_{n}^{(k)}\left(z_{n}+\rho_{n} \xi\right)-1 \\
& \neq 0
\end{aligned}
$$

So

$$
\begin{equation*}
g^{2}(\xi) g^{(k)}(\xi)-1 \neq 0 \quad \text { or } \quad g^{2}(\xi) g^{(k)}(\xi)-1 \equiv 0 \tag{3.7}
\end{equation*}
$$

By Hurwitz's theorem, all zeros of $g(\xi)$ are of multiplicity at least k and it is easy to see that $g^{2}(\xi) g^{(k)}(\xi) \not \equiv 0$. Hence, $g^{2}(\xi) g^{(k)}(\xi)-1 \neq 0$. According to Mues's result ($k=1$) and Theorem $1(k \geq 2)$ we find that $g(\xi)$ is not a transcendental meromorphic function. If $g(\xi)$ is a polynomial, then its degree is at most $k-1$ which contradicts the fact that the zeros of $g(\xi)$ are of multiplicity at least k. If $g(\xi)$ is a nonconstant rational function, we set $g(\xi)=Q(\xi) / P(\xi)$, where $Q(\xi)$ and $P(\xi)$ are two prime polynomials and set $p=\operatorname{deg}(P)$ and $q=\operatorname{deg}(Q)$. From (3.7) we deduce that there exists a polynomial $h(\xi)$ such that

$$
\begin{equation*}
g^{2}(\xi) g^{(k)}(\xi)=\frac{h(\xi)+1}{h(\xi)} \tag{3.8}
\end{equation*}
$$

It is easy to verify that the difference between the degree of the numerator of $g^{2}(\xi) g^{(k)}(\xi)$ and the degree of the denominator of $g^{2}(\xi) g^{(k)}(\xi)$ is $3(q-p)-k$. It follows from (3.8) that $k=3(q-p)$ and $(q-p) \geq 1$.

We set $n=(q-p)$ and $g(\xi)=a_{0} \xi^{n}+\cdots+a_{n}+R(\xi) / P(\xi)$, where $R(\xi)$ and $P(\xi)$ are two prime polynomials and $\operatorname{deg}(P)-\operatorname{deg}(R)>0$. Noting that $g^{(k)}(\xi)=$ $(R(\xi) / P(\xi))^{(k)}$, it follows from (3.8) that $\operatorname{deg}(P)-\operatorname{deg}(R)=-n$, which contradicts $\operatorname{deg}(P)-\operatorname{deg}(R)>0$. Thus, we obtain our result.

References

[1] E. Mues, 'Über ein Problem von Hayman', Math. Z. 164 (1979), 239-259.
[2] X. C. Pang, 'Bloch's principle and normal criterion', Sci. China Ser. A 33 (1989), 782-791.
[3] J. Schiff, Normal families (Springer, New York, 1993).
[4] Q. D. Zhang, 'A growth theorem for meromorphic function', J. Chengdu Inst. Meteor. 20 (1992), 12-20.

Mathematics College
Sichuan University
Chengdu, Sichuan 610064
China
e-mail: hx_jun@163.com

Department of Mathematics
Chongqing University
Chongqing 400044
China
e-mail: yxgu@cqu.edu.cn

