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ON THE VALUE DISTRIBUTION OF f2f(k)
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Abstract

In this paper, we prove that for a transcendental meromorphic function / (z) on the complex plane, the
inequality T(r,f) < 6N(r, l/(f2f(k) — 1)) + S(r,f) holds, where k is a positive integer. Moreover, we
prove the following normality criterion: Let & be a family of meromorphic functions on a domain D and
let k be a positive integer. If for each / e &, all zeros of/ are of multiplicity at least k, and / 2f{k) ^ 1
for i € D, then & is normal in the domain D. At the same time we also show that the condition on
multiple zeros of/ in the normality criterion is necessary.
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1. Introduction

In 1979 Mues [1] proved that for a transcendental meromorphic function f (z) in

the open plane, f2f— 1 has infinitely many zeros. This is a qualitative result.

Later, Zhang [2] obtained a quantitative result, proving that the inequality T(r, f)<

6N(r, l/(f2f — 1)) + S(r,f) holds. Naturally, we ask whether the above inequality

is still true when N(r, l / ( / 2 / ' - 1)) is replaced by N(r, l . / ( / 2 / W - !))• In this

paper, we solve this problem and obtain

THEOREM 1. Let f (z) be a transcendental function in the complex plane and let k

be a positive integer. Then
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From Theorem 1, we have at once:

COROLLARY. Let f (z) be a transcendental meromorphic function and let k be a
positive integer. Then f 2f{k) — 1 assumes every non-zero finite value infinitely often.

Using Mues' result, Pang [2] proved:

THEOREM A ([2]). Let & be a family of meromorphic function on a domain D. If
each f e & satisfies f2f'j^^, then & is normal on domain D.

Now, utilizing Theorem 1 we also can obtain the following theorem:

THEOREM 2. Let & be a family of meromorphic functions on a domain D and let
k be a positive integer. If for each f 6 3', f has only zeros of multiplicity at least k
and f2f(t) ^ 1, then JF is normal on domain D.

The following example shows that the condition on multiple zeros of/ in Theorem 2
is necessary.

EXAMPLE. Let k > 2 be a positive integer and & = [nzk~l : n = 1, 2 , . . . } . So,
each / e & satisfies f2f<k) ^ 1. But & is not normal at the origin.

2. Some lemmas

LEMMA 1. Let f (z) be a transcendental function. Then f2fik) is not identically
constant.

PROOF. Suppose that/2/**1 = C. Obviously, C ^ 0. S o / ^ 0 and I / / 3 =
C"1/ <*>//. Hence we obtain

ITirJ) = m (r, -p\ + 0(1) = 0(1) \m (r, y^) + l) = S(r,f).

This contradicts the assumption that/ (z) is a transcendental function. •

LEMMA 2. Let f (z) be a transcendental meromorphic function, g(z) = f2f>k) — 1
andh(z) = g'If = ff(k+]) +2f'f(k\ Then

(2.1) 3T(r,f) < N(r,f) + 2/V (r, y\ + N (r, -} - N (r, ^\ + S(r,f)

(2.2)
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PROOF. By Lemma 1, we know g ^ C and h # 0. Set

1 _ / 2 / W g' g

/3 /3 / V
so

3m(r,/) < m (r, - ) + S(r,f) <N(r,^-)-N (r, l ) + 5(r,/)
V g) \ 8/ \ g'J

= N(r, g) + N (r, -) - N (r, i ) + S(r,f)
\ gJ V g )

= N(r, g) + N (r, -) - N (r, -J-) + S(r,f)
\ g) \ fhj

= N(r, g) + N (r, -) - N (r, ±\ - N (r, y) + S(r,f).
\ g) \ fj \ hj

Hence

3T(r,f) = 3m (r, y) + 3N (r, j \ + 0(1)

< N{r,f) + 2N (r, -J-) + N (r, - ) -N Ir, y) + S(r,f).
\ fj V g) \ hj

Thus the inequality (2.1) is proved. Since

3T(r,f) = m(r,f) + N(rJ) + 2m (r, y} + 2N (r, y} + 0(1),

the inequality (2.2) can be obtained. •

LEMMA 3. Let f (z), g(z), h(z) (k > 2) be as stated above and let

(3k + l)(k2 -4k- 29) a3 = 2(Jfc + 2)(k + 3)(k + 5),
= Z(K + I ) ,

(* + 3) a4 = -4(>t + 3)(A: + 1),
a2 = -(k + 5)(k2 -4k- 29), a5 = 4(k2 -4k- 29),

and

(2.3) F(z) = ax —— I + a2 I ——• I + a3 I —— 1

\g(z)J \g(z)J \h(z)J
' \ {z)h'{

Then F ̂  0.

PROOF. Suppose that F(z) = 0, we claim that

0)
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(ii)
(iii) all zeros of/ (z) are simple.

Suppose first that Z\ is a zero of g{z) of multiplicity I (I > 1). From g{z\) = 0
and g = / 2 / m - 1 we can g e t / (zi) / 0, oo. Since zi is a zero of order (/ — 1) of
g' = / h we have that zj be a zero of h(z) of multiplicity / — 1. Using the Laurent
series of F(z) at the point z\, we can get the coefficient of (z — Z\)~2'-

A(l) = (a, + a4 + z5)/2 - (a2 + a3 + 2a, + a5)l + (a3 + a4).

From the definition of a,, / = 1, . . . , 5, we have

(^ + 5) (k + 7)

/: + 3
+ 5){k + + 2 ( j t + 1)2(jfc +

Obviously, A (/) ^ 0 for all positive integers /. So the point z\ is a pole of F(z) which
contradicts F(z) s 0. Hence conclusion (i) g(z) ^ 0 holds.

Suppose next that zi is a zero of /z(z) of order /( / > 1). By (i)wehaveg(z2) ^ 0, oo.
Using the Laurent series of F(z) at the point zi, we can get the coefficient of (z — Z2)"2

as B(l) = —a3/ + a4l
2. From the definition of a,, i = 1 , . . . , 5, we have

3)(* + 5)/ - 4(jk + l)( t + 3)/2 < 0,

so that the point zi is a pole of F{z) which contradicts F(z) = 0. Hence conclusion (ii)
h(z) ^ 0 holds.

Using h(z) = ff (*+1) + 2 / ' / w and (ii) (/i(z) ^ 0), we can get (iii).
Set <p(z) = h(z)/g(z), we can deduce that <p{z) is an entire function, all zeros

of 4>(z) can occur only at multiple poles of/ (z) and the following expressions hold:

g' fh h! g ' V . . * '
— = =f<p, — = — + — =f<P + ~T-
g g h g <t> <t>

Substituting the above two equalities in the expression (2.3) for F(z), we get

(2.4) (a, + a4 + a5)f
 2<p2 + (a2 + a3 + 2a4 + a5)f <p'

Obviously, a2 + a3 = (k + 5)2(k + 7) ^ 0 and <f> # 0, otherwise g'/g = f <t> = 0, that
is, g = C which contradicts the result of Lemma 1.

Thus, by the equality (2.4), we have

(2.5) / ' = i/,,(z 2
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where lu(z) (i = 1, 2, 3) are differential monomials of (<j>'/<p)- Differentiating both
sides of (2.5), we have

1 A\' 1

/ " = ~ TT'n(z) + -ll.fe) +f'ln(z) + f l[2(z) + 2ff'4>lu{z)<p <p <p

Using the above equality and (2.5), we get

/ " = ~hi(z) + f hiiz) +f2<t>hi(z

where I2i(z) (i = 1 , . . . , 4) are differential monomials of {<j>'/(f>). Continuing the
above process we obtain

(2 .6) /<*> = - U , ( z ) +flk2(z) +f2<Ph3(z) + ••• +fM<j>khM{z),
<P

where hi(z) (/ = 1,... ,k = 2) are differential monomials of (<f>'/<p).
Now, suppose Z3 is a zero off. Combining (2.5), (2.6) and 0fe) ^ 0, oo, we have

Further, by the above two equalities and the expression for g(z) and h(z) in Lemma 2,
we have

= - 1 ,

Substituting the above equality in the expression for <j>{z) = h(z)/g(z) we have

(2.7) 3

Set G(z) = 4>3(z) + 2lu(z)h\(z). We distinguish two cases.
Case 1. G(z) # 0. By (2.7) and (iii) we have

(2.8) N (r, j)=

<

(2.9) T(r, 4>) = m{r, 4>) = m (r, -}=m(r,^j\<m (r, y\ + S{rJ).
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Applying (2.2) of Lemma 2, and combining with N(r, 1/ G) = 0 we have

(2.10) m(r , l / / ) = 5(r , /) .

By (2.10), (2.9) and (2.8), we have

(2.11) N(r,l/f) = S(r,f).

Combining (2.10) and (2.11) we get T(r,f) ~ T(r, 1//) + 0(1) = S(r,f). This
gives a contradiction, since/ is a transcendental meromorphic function.

Case 2. G(z) = 0. Using the expression for G(z), and noting that l\\(z), 4i(z) are
differential monomials of (<p'/<p) we deduce that

(2.12) T(r,<t>)=m(r,4>) = S(r,<P).

Again, using the expression for G(z) and the fact that G(z) = 0 we have

(2.13) 0 3 = - 2 /

From (2.12), we deduce that </>(z) is a polynomial or a constant. If 0 is a polynomial,
then the right-hand side of (2.13) is a constant or rational function and the left-hand
side of (2.13) is a polynomial, and this gives a contradiction. So 0 is a constant. If
<p = 0, using g'Ig = f <p = 0, we deduce that g is a constant, which contradicts
Lemma 1.

Hence, <j>{z) = C, where C ^ 0. Substituting this equality in (2.4), we have

(a, + a4 + a5)C
2f2 + (a2 + a3)C/' EE 0,

s o / ' = Ci/2, that is, (1//) ' = —Q, where Ci ^ 0 is a constant. Then we deduce
that / (z) is a rational function, but this is impossible. This completes the proof. •

LEMMA 4. Let f (z), g(z), h(z), k > 2, F(z) be stated as above. Then all simple
poles off (z) are zeros of F(z).

PROOF. Suppose zo is a simple pole of/ (z), then

/(z) = - f l + bo(z — Zo) + bi(z - Zo)2 + 0((z - Zo)3)},
(z -zo)

where a ^ 0, b0, b\ are constants. Since k > 2, we have

g ( z ) = / 2 / a ) - l

{l + 2io(z — Zo) + (bl + 2b\){z — Zo)2 + O((z — Zo)3)},
(z - zo) ; + 3
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e' (—l)k+lk\a2

h(z) = 7- = N." . { ( * + 3 ) + (k + l ) f c o ( z - Zo) + ( k - l ) f c , ( z - Zo)2

f (z-Zo)k+i

+ O((z-z0)3)}.

Hence, we have

8 (~1 } {(* + 3)
g (z-zo)
h' (-1)

(jfc + 3)2 - (A + l)fco(z - zo)
(z - Zo) k + 3

— — — b\ — 2(k — l)bi (z — Zo)2 + O((z — zo)3)

1

(z-zo)21'
+ [4(k + 4)b2 - 8(k + 3)bx](z - zo)2 + O((z - z0)

3)},

= -{(k + 3)-(2bl-4bl)(z-

h'\' 1 1
hj (z-zo)

2k + 3

+ O((z - zo)3)

2 I

(k + 3)2 - [ ^ ^ * o 2 - 2(* - l)ft,] (z - zo)

(z -zo)2 (k I 3 ^ + 3)

+ [(k + l)2(2k + l)b2
0 - 4(k - l)(k + 3)2fe,](z - zo)2 + O((z - zo)3)},

1 \^ + 3>2 (M
(z - Zo)2

+ [(3* + l)b2
0 - 2(3* + 5)fc,](z - zo)2 + O((z - zo)3)}.

By substituting all of the above equalities in the expression (2.3) of F(z) and per-
forming some easy calculations we obtain that F(z) — 0{(z — Zo))- So, z0 is the zero
of F(z). This completes the proof. •

LEMMA 5 ([3]). Let & be a family of meromorphic functions on the unit disc A
such that all zeros of functions in & have multiplicity at least k. Let a be a real
number satisfying 0 < a < k. Then ^ is not normal in any neighbourhood ofzo e A
if and only if there exist

(i) points Zk e A, z* -> Zo;

(ii) positive numbers pk, pk -> 0; and
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(iii) functions fk e &

such that p^afk{Zk + PkH) —> g(£) spherically uniformly on compact subsets ofC,
where g is a nonconstant meromorphic function.

3. Proof of theorems

PROOF OF THEOREM 1. When k = \, this is the result of Zhang [4]. So we assume
that k > 2. By Lemma 3, F(z) ̂  0. Thus by Lemma 4 we have

(3.1) #,(!•,/) < N (r, 1/F) < T(r, F) + 0(1),

where in Â i (r, / ) only simple poles of/ (z) are to be considered. By (2.3), we know
that the poles of F(z) can occur only at multiple poles of/ (z) or zeros of g(z), or
zeros of h(z), and all poles of F(z) are of multiplicity at most 2. So

(3.2) N(r, F) < 2Na(r,f) + 2N(r, \/g) + 2N{r, \/h) + S(r,f),

where in N^(r, f) only multiple poles of/ (z) are to be considered, and each pole is
counted only once. Obviously, we have

(3.3) m(r,F) = S(r,f).

By (3.1), (3.2) and (3.3), we have

(3.4) Ni(r,f)<2Na(r,f) + 2N(r,l/g) + 2N(r,l/h) + S(rJ).

Combining Lemma 2, (2.1) and (3.4) gives

(3.5) 3T(r,f) < 3Na(r,f) + 2N(r, 1//) + 3N(r, l/g) + N(r, l/h) + S(r,f).

On the other hand, using Lemma 2 and (2.2), we have

(3.6) 3Na(r,f) + N(r,l/h)<3[N(r,f)-N(r,f)] + N(r,l/h)

<3N(r,l/g) + S(r,f).

Thus, by (3.5) and (3.6), we obtain

3T{rJ) <6N(r, l/g) + 2N(r, 1//) + S(r,f)

<6N(r,l/g)+2T(r,f) + S(r,f),

that is, T(r,f) < 6N (r, l/g) + S(r,f). This completes the proof of Theorem 1. •

https://doi.org/10.1017/S1446788700015536 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700015536


[9] On the value distribution of / 2 / (*> 25

PROOF OF THEOREM 2. We may assume that D = A. Suppose that & is not normal
on A. Then, taking a = k/3 and applying Lemma 5, we can find/,, e &, zn e A
and pn -> 0+ such that

locally uniformly with respect to the spherical metric, where g is a nonconstant
meromorphic function on C. By the assumption,

So

(3.7) g2G)glk)G) ~ 1 t 0 or

By Hurwitz's theorem, all zeros of g(£) are of multiplicity at least k and it is easy to
see that g2(£)g(i)(£) ^ 0. Hence, g2(%)g(k)(£) - 1 ^ 0 . According to Mues's result
(k — 1) and Theorem 1 (k > 2) we find that g(£) is not a transcendental meromorphic
function. If g(t-) is a polynomial, then its degree is at most k — 1 which contradicts
the fact that the zeros of g(£) are of multiplicity at least k. If g(£) is a nonconstant
rational function, we set g(£) = Q{%)/P{%), where Q{%) and P(%) are two prime
polynomials and set p = deg(P) and q = d e g ( 0 . From (3.7) we deduce that there
exists a polynomial h(%) such that

(3.8) i

It is easy to verify that the difference between the degree of the numerator of
g2(£)g(i)(£) and the degree of the denominator of g2(£)g(t)(£) is 3(<y — p) — k.
It follows from (3.8) that k = 3(q - p) and (q - p) > 1.

We set n = (q - p) and g(£) = ao£n H \- an + R(tj)/P(%), where /?(£) and
are two prime polynomials and deg(P) — deg(R) > 0. Noting that g{k)(%) =

', it follows from (3.8) that deg(Z') — deg(R) = —n, which contradicts
deg(Z') — deg(R) > 0. Thus, we obtain our result. •
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