A Generalization of Minimal Varieties

By J. G. Freeman

(Received 14th October, 1946. Read lst November, 1946.)

1. Formulae for the first variation of the volume integral.

I consider an n-dimensional generalized metric space ${ }^{1} S_{n}$ with coordinates $x^{i}(h, i, j, k \ldots$ run from 1 to n throughout), with each point of which is associated a contravariant vector-density with components u^{i} and weight p, called the element of support. The unit vector in the direction of the element of support has components denoted by l^{i}.

Let S_{ν} be a ν-space in S_{n} with coordinates $t^{a}(\alpha, \beta, \gamma \ldots$ run from 1 to ν throughout), and let S_{v+1} be any ($\nu+1$)-space containing S_{v}, defined by equations of the form

$$
x^{i}=x^{i}\left(t^{1}, t^{2}, \ldots, t^{\nu}, v\right),
$$

at each point of which the element of support is defined by equations of the form

$$
u^{i}=u^{i}\left(t^{1}, \mathrm{t}^{2}, \ldots t^{\nu}, v\right)
$$

the coordinates t^{a}, v in $S_{\nu+1}$ being chosen so that S_{ν} is the surface $v=v_{0}$. Let B_{v-1} be a given closed hypersurface of S_{v}, bounding a region R. If points of R are displaced in S_{v+1} by variation of v from v_{0} to $v_{0}+\delta v$, the region formed by the displaced points will be denoted by R^{\prime}.

If the first fundamental form of S_{v} is denoted by $g_{a \beta} d t^{a} d t^{\beta}$, the volume of R is given by

$$
V=\int_{R} \sqrt{ } g(d t)^{v}
$$

where g is the determinant $\left|g_{a \beta}\right|$ and $(d t)^{\nu}$ is an abbreviation for $d t^{1} d t^{2} \ldots . d t^{\nu}$. The volume of R^{\prime} is similarly given by
so that

$$
V^{\prime}=\int_{R}\left\{\sqrt{ } g+\delta v \frac{\partial \sqrt{ } g}{\partial v}+O\left(\delta v^{2}\right)\right\}(d t)^{v}
$$

where

$$
V^{\prime}-V=\delta V+O\left(\delta v^{2}\right)
$$

$$
\delta V=\delta v \int_{R} \frac{\partial \sqrt{g}}{\partial v}(d t)^{v},
$$

[^0]the first variation of the volume integral.
For brevity 1 shall put ${ }^{1}$
$$
\left.\partial x^{i} / \hat{c} t^{a}=\lambda_{a}\right)^{i}, \quad \partial x^{i} / \bar{C} v=\mu^{i}, \quad g^{\alpha \beta} \lambda_{a)}{ }^{i}=\lambda^{\beta) i}, \quad \vee g \lambda^{\beta) i}=\zeta^{\beta) i}
$$
calling μ^{i} the displacement vector.
To evaluate δV we have
\[

d \sqrt{ } g=$$
\begin{gathered}
1 \\
2 \sqrt{ } g
\end{gathered}
$$ d g=\frac{\sqrt{ } g}{2} g^{a \beta} d g_{a \beta}
\]

If D indicates absolute differentiation in $S_{n}, d g_{\alpha \beta}=D g_{\alpha \beta}$ since the $g_{a \beta}=g_{i j} \lambda_{a)}{ }^{i} \lambda_{\beta}{ }^{j}$ are scalar in S_{n}; hence
i.e.

$$
\begin{align*}
& d \sqrt{ } g=\sqrt{ } g g^{\alpha \beta} \lambda_{\beta)}{ }^{i} D \lambda_{a)} \\
& d \sqrt{ } g=D \lambda_{a}{ }^{i\left(\xi^{a}\right)} \tag{1.1}
\end{align*}
$$

Defining ν torsion vectors ${ }^{2} \Omega_{a}{ }^{i}$ by

$$
\begin{equation*}
\left.\frac{D}{\partial v}\left(\frac{\partial x^{i}}{\partial t^{a}}\right)-\frac{D}{\partial t^{a}}\left(\frac{\partial x^{i}}{\partial v}\right)=\Omega_{a}\right)^{i} \tag{1.2}
\end{equation*}
$$

so that

$$
\begin{equation*}
\frac{D \lambda_{a)}{ }^{i}}{\partial v}-\frac{D \mu^{i}}{\partial t^{a}}=\left(\lambda_{a)}{ }^{j} \frac{\frac{\sigma}{}^{k}}{\partial v}-\mu^{j} \frac{\Phi^{k}}{\partial t^{a}}\right) A_{j}{ }^{i} k=\Omega_{a}{ }^{i} \tag{1.3}
\end{equation*}
$$

we obtain from (1.1), (1.3)

$$
\begin{equation*}
\frac{\partial \sqrt{ } g}{\hat{c} v}=\frac{D \lambda_{a)^{i}}}{\partial v} \zeta^{a}{ }_{i}=\left(\frac{D \mu^{i}}{\partial t^{a}}+\Omega_{a)^{i}}\right) \zeta^{(a)}{ }_{i} . \tag{1.4}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\delta V=\delta v \int_{R}\left(\frac{D \mu_{i}}{\partial t^{a}}+\Omega_{a)^{i}}^{i}\right) \zeta_{i}^{a)}(d t)^{\nu} \tag{1.5}
\end{equation*}
$$

Now

$$
\begin{aligned}
& \left.\frac{\partial}{\partial t^{a}}\left(\mu^{i} \underline{(}_{i}\right)_{i}\right)=\frac{D}{\partial t^{a}}\left(\mu^{i \zeta^{a}}{ }_{i}\right) \\
& =\frac{D \mu^{i}}{\partial t^{a}} \zeta_{i}^{(a)}+\mu^{i} \frac{D}{\partial t^{a}}{ }_{i}^{(a)}
\end{aligned}
$$

From (1.5) we now obtain
$\delta V=\delta v \int_{R} \frac{\partial}{\partial t^{a}}\left(\mu^{i} \zeta^{a}{ }_{i}\right)(d t)^{\nu}-\delta v \int_{R}\left(\mu^{i} \frac{\left.D \zeta^{a}\right)_{i}}{\partial t^{a}}-\Omega_{\mathrm{a})}{ }^{i} \zeta^{a}{ }_{i}\right)(d t)^{\nu}$.
On integrating $\frac{\hat{\partial}}{\hat{\partial} t^{a}}\left(\mu^{\left.i \zeta^{a}\right)_{i}}\right)$, we obtain from (1.6)
${ }^{1}$ In subspace theory it is customary to write B_{a}^{i} for $\hat{\partial} x^{i} / \hat{c} t^{\boldsymbol{a}}$; I have written $\lambda_{a)}{ }^{i}$ instead, in order to emphasise the similarity between the equations given herein for a minimal varicty and those given in (2) for an extremal curve.
: A geometrical interpretation of a torsion vector is given in (2), § 2.
$\delta V=\delta v \int_{B} \mu_{\nu-1}^{i \zeta^{a}}{ }_{i}(d t)_{a}^{\nu}-\delta v \int_{R}\left(\mu^{i} \frac{D \zeta^{a}{ }_{i}}{\partial t^{a}}-\Omega_{\alpha)^{i} \zeta^{a}{ }_{i}}^{i}\right)(d t)^{v}$
where $(d t)_{a}^{\nu}$ stands for $(d t)^{\nu}$ with the term $d t^{a}$ omitted. ${ }^{1}$
2. Conditions for a minimal variety.

The ν-space S_{ν} will be said to be a minimal variety in S_{n} if, for any given $B_{v-1}, \delta V=0$ for arbitrary displacement of points of S_{v} and the element of support within B_{v-1}, and for $\mu^{i}=0$ on B_{v-1}. From (1.3) and (1.7), when $\mu^{i}=0$ on $B_{\nu-1}$
$\delta V=-\delta v \int_{R}\left\{\mu^{i}\left(\frac{D \zeta^{(\alpha)}}{\partial t^{a}}+\zeta^{\alpha)} j \frac{\sigma^{k}}{\partial t^{\alpha}} A_{i j k}\right)-\frac{\pi^{k}}{\partial v} \zeta^{\alpha) i} \lambda_{\alpha}{ }^{j} A_{i j k}\right\}(d t)^{\nu}$.
The conditions that $\delta V=0$, for values of μ^{i} and $\frac{\sigma^{k}}{\partial u}$ arbitrary save for the latter satisfying $\frac{\sigma^{k}}{\partial v} l_{k}=0$, are given by equating to zero the coefficients of $\mu^{i}, \frac{\varpi^{k}}{\partial v}$ in (2.1), since $l^{k} A_{i j k}=0$. Hence
S_{ν} is a minimal variety in S_{n} if and only if

$$
\begin{align*}
& \text { (i) } \frac{D \zeta^{\alpha}{ }_{i}}{\partial t^{\alpha}}+\zeta^{\alpha) j} \frac{\Phi^{k}}{\partial t^{\alpha}} A_{i j k}=0 \tag{2.2}\\
& \text { (ii) } \lambda^{\alpha)} \lambda_{\alpha}{ }^{j} A_{i j k}=0
\end{align*} \quad \text { over } S_{\nu v}
$$

In the particular case in which $\nu=1$, these equations reduce to those defining an extremal curve. ${ }^{2}$ As a further special case we may consider that in which S_{n} is a Finsler space, $\nu=2$, and the element of support is tangential to S_{v}. If m^{i} are the components of the unit vector orthogonal to the element of support and tangential to S_{ν}, the $\lambda_{a}{ }^{i}$ are of the form $\lambda_{a}{ }^{i}=a_{a} l^{i}+b_{a} m^{i}$. Then condition (2.2) (ii) becomes

$$
\begin{equation*}
g^{\alpha \beta} b_{a} b_{\beta} m^{i} m^{j} A_{i j k}=0 \tag{2.3}
\end{equation*}
$$

Now $g^{\alpha \beta} b_{a} b_{\beta}$ does not vanish unless the b_{a} all vanish, and in this case the two vectors $\lambda_{a}{ }^{i}$ are in the same direction. In general, however, they are not, and (2.3) leads to ${ }^{\circ}$

$$
\begin{equation*}
m^{i} m^{j} A_{i j k}=0 \tag{2.4}
\end{equation*}
$$

Now ${ }^{3}$ equations of the form $\xi^{i} \xi^{j} A_{i j k}=0$, where ξ^{i} is a unit vector,

[^1]are satisfied only by $\xi^{i}= \pm l^{i}$, unless a restriction is placed on the $A_{i j k}$. Hence

Theorem 1. A Finsler S_{n} can possess a two-dimensional minimal variety S_{2} with tangential element of support only in the restricted case in which the equations $\xi^{i} \xi^{j} A_{i j k}=0$ have a solution other than $\xi^{i}= \pm l^{i}$ at points of S_{2}.

Returning to the general conditions (2.2) and putting

$$
\lambda^{a}{ }_{i} \lambda_{\alpha)}{ }^{j}=B_{i}{ }^{j},
$$

we may write condition (2.2) (ii)

$$
\begin{equation*}
B_{j}^{i} A_{i}{ }^{j} k=0 \tag{2.6}
\end{equation*}
$$

To evaluate $\left.\frac{D}{\partial t^{a}}\left(\sqrt{ } g \lambda^{a}\right)_{i}\right)$ in (2.2) (i) we have

$$
\begin{equation*}
\frac{D}{\partial t^{a}} g^{a \beta}=-g^{a \rho} g^{\beta \sigma} \frac{D}{\partial t^{a}} g_{\rho \sigma}=-g^{\alpha \rho} g^{\beta \sigma}\left(\lambda_{\rho) i} \frac{D \lambda_{\sigma}{ }^{i}}{\partial t^{\alpha}}+\lambda_{\sigma) i} \frac{D \lambda_{\rho}{ }^{i}}{\partial t^{a}}\right) . \tag{2.7}
\end{equation*}
$$

Therefore $\frac{D}{\partial t^{\alpha}} g^{\alpha \beta}=-g^{\beta \sigma} \lambda^{\alpha}{ }_{h} \frac{D \lambda_{\sigma}{ }^{h}}{\partial t^{a}}-g^{\alpha \rho} \lambda^{\beta)} \frac{D \lambda_{\rho}{ }^{h}}{\partial t^{\alpha}}$.
Thus from (1.1) and (2.7)

$$
\begin{aligned}
& \frac{D}{\partial t^{a}}\left(\sqrt{ } g g^{a \beta} \lambda_{\beta \lambda i}\right) \\
& =\frac{D \sqrt{ } g}{\partial t^{a}} g^{\alpha \beta} \lambda_{\beta) i}+\sqrt{ } g \frac{D g^{\alpha \beta}}{\partial t^{\alpha}} \lambda_{\beta) i}+\sqrt{ } g g^{\alpha \beta} \frac{D \lambda_{\beta) i}}{\partial t^{\alpha}} \\
& =\sqrt{ } g \lambda^{\gamma)}{ }_{j} \frac{D \lambda_{\gamma)^{j}}}{\partial t^{a}} g^{\alpha \beta} \lambda_{\beta) i}-\sqrt{ } g\left\{\lambda^{\sigma)_{i}} \lambda^{\alpha)}{ }_{h} \frac{D \lambda_{\sigma)}{ }^{h}}{\partial t^{\alpha}}+g^{\alpha \rho} B_{i}^{h} \frac{D \lambda_{\rho) h}}{\partial t^{\alpha}}\right\}+\sqrt{ } g g^{\alpha \beta} \frac{D \lambda_{\beta) i}}{\partial t^{\alpha}} \\
& =\sqrt{ } g g^{\alpha \beta} C_{i}{ }^{h} \frac{D \lambda_{\beta) h}}{\partial t^{a}}+\sqrt{ } g \lambda^{\alpha)}{ }_{i} \lambda_{\cdot}^{\beta)}{ }_{h}\left(\lambda_{\beta)}{ }^{j} \frac{\sigma^{k}}{\partial t^{\alpha}}-\lambda_{a)}{ }^{j} \frac{\frac{\sigma}{}_{k}^{\partial t}}{\partial t^{\beta}}\right) A_{j}{ }^{h}{ }_{k},
\end{aligned}
$$

writing

$$
\begin{equation*}
\delta_{i}^{h}-B_{i}^{h}=C_{i}^{h} \tag{2.8}
\end{equation*}
$$

and using $\quad \frac{D \lambda_{\beta}{ }^{h}{ }^{\dot{ }}}{\partial t^{\alpha}}-\frac{D \lambda_{\alpha}{ }^{h}}{\partial t^{\beta}}=\left(\lambda_{\beta)}{ }^{j} \frac{\sigma^{k}}{\partial t^{a}}-\lambda_{\alpha)}{ }^{j} \frac{\sigma^{k}}{\partial t^{\beta}}\right) \dot{A}_{j}{ }^{h}{ }_{k}$.
Now (2.2) (i) may be written
$\sqrt{ } g g^{\alpha \beta} C_{i}{ }_{i} \frac{D \lambda_{\beta) h}}{\partial t^{\alpha}}+\sqrt{ } g \lambda^{\alpha)}{ }_{i} B_{h}{ }^{j} \frac{\sigma^{k}}{\partial t^{\alpha}} A_{j}{ }_{k}+\sqrt{ } g \lambda^{\beta)}{ }_{h} C_{i}^{j} \frac{\sigma^{k}}{\partial t^{\beta}} A_{j}{ }^{h}{ }_{k}=0$,
in which the middle term vanishes on account of (2.6). Finally (2.2) becomes

Theorem 2. S_{ν} is a minimal variety in S_{n} if and only if

$$
\left.\begin{array}{l}
\text { (i) } g^{a \beta} C_{i}^{h}\left(\frac{D \lambda_{\beta) h}}{\partial t^{a}}+\lambda_{a) j} \frac{\varpi^{k}}{\partial t^{\beta}} A_{h^{j} k}\right)=0 \\
\text { (ii) } B_{i}^{h} A_{h^{i} k}=0
\end{array}\right\} \text { over } S_{\nu} .
$$

3. Mean curvature of a minimal variety.

Let C be a curve on any subspace S_{v} (not necessarily a minimal variety of S_{n}), with unit tangent vector at a given point P having S_{n}, S_{ν} components $d x^{i} / d s=\xi^{i}, d x^{a} / d s=\xi^{a}$ respectively, s being the arclength of C.

If ρ is the radius of first curvature of C in S_{n} at $P, \rho D \xi^{i} / d s$ is the unit vector in the direction of its principal normal in S_{n}; hence if θ is the angle between this principal normal and any unit vector X^{i} normal to S_{v} at P,

$$
\cos \theta=\rho \frac{D \xi^{i}}{d s} X_{i}
$$

Writing $1 / R$ for $(\cos \theta) / p$, we have

$$
\frac{1}{R}=\frac{D \xi^{i}}{d s} X_{i}
$$

I call $1 / R$ the normal curvature of S_{v} for the normal X^{i} corresponding to the. curve C. Now since $\xi^{i}=\lambda_{\alpha)}{ }^{i} \xi^{a}$,

$$
\frac{D \xi^{i}}{d s}=\frac{D \lambda_{a}{ }^{i}}{d s} \xi^{a}+\lambda_{a)} \frac{d \xi^{a}}{d s}
$$

and

$$
\frac{1}{\tilde{R}}=\frac{D \lambda_{a)^{i}}^{i}}{d s} X^{i} \xi^{a} \quad \text { for } \quad \lambda_{a)}^{i} X_{i}=0
$$

Since

$$
\begin{aligned}
\frac{D \lambda_{a)}{ }^{i}}{d s} & =\frac{d \lambda_{a)}{ }^{i}}{d s}+\lambda_{a)}{ }^{j} \frac{d x^{k}}{d s} \Gamma_{j}{ }^{i}{ }_{k}+\lambda_{a)}{ }^{j} \frac{d u^{k}}{d s} C_{j}{ }^{i}{ }_{k} \\
& =\left(\frac{\partial \lambda_{a)}{ }^{i}}{\partial t^{\beta}}+\lambda_{a)}{ }^{j} \lambda_{\beta)}{ }^{k} \Gamma_{j}{ }^{i}{ }_{k}\right) \xi^{\beta}+\lambda_{a)}{ }^{j} \frac{d u^{k}}{d s} C_{j}{ }^{i}{ }_{k}
\end{aligned}
$$

it follows that $1 / R$ depends not only on ξ^{a} but also on $d u^{k} / d s$ and will therefore, in general, have different values corresponding to different curves having the same tangent at P. If, however, S_{ν} is a. minimal variety in S_{n}, the u^{k} are supposed functions of the t^{β} and $d u^{\kappa} / d s=\xi^{\beta} \partial u^{k} / \hat{c} t^{\beta}$; then $D \lambda_{a)}{ }^{i} / d s=\xi^{\beta} D \lambda_{a)}{ }^{i} / \hat{\sigma} t^{\beta}$ and $1 / R$ is now of the. form

$$
\begin{equation*}
\frac{1}{R}=\dot{X_{a \beta}} \xi^{a} \xi^{\beta} \tag{3.1}
\end{equation*}
$$

where

$$
\begin{equation*}
X_{\alpha \beta}=\frac{1}{2}\left(\frac{\left.D \lambda_{a)^{i}}^{\partial t^{\beta}}+\frac{\left.D \lambda_{\beta}\right)^{i}}{\partial t^{a}}\right) X_{i}, ~ . ~}{\text {, }}\right. \tag{3.2}
\end{equation*}
$$

which is symmetrical in α, β.
Defining then the mean curvature of $S_{i v}$ for the normal X^{i} as the sum of the values of $1 / R$ stationary for variation of ξ^{a}, we have for this mean curvature

$$
\begin{equation*}
K_{m}(X)=g^{\alpha \beta} X_{a \beta} \tag{3.3}
\end{equation*}
$$

If we multiply equation (i) of Theorem 2 by X^{i}, and use
we obtain

$$
\begin{gathered}
X^{i} C_{i}^{h}=X^{i}\left(\delta_{i}^{k}-B_{i}^{h}\right)=X^{h} \\
K_{m}(X)+\lambda^{\beta)} X^{h} \frac{\mathfrak{W}^{k}}{\partial t^{\beta}} A_{h^{j}}{ }_{k}=0
\end{gathered}
$$

Hence the following necessary, but not sufficient, condition for a. minimal variety:

Theorem 3. If S_{ν} is a minimal variety in S_{n}, its mean curvature for a normal X^{i} is given by

$$
K_{m}(X)=-X^{h} \lambda^{\beta)} j \frac{\varpi^{k}}{\partial t^{\beta}} A_{h}{ }^{j}{ }_{k} .
$$

When S_{n} is Riemannian and $A_{h}{ }^{j}{ }_{k}=0$, this reduces to the well-known theorem: The mean curvature for every normal of a minimal variety in a Riemannian space vanishes. In this case the condition is sufficient as well as necessary. ${ }^{1}$

If in particular the element of support of the generalised S_{n} is normal to S_{v},

$$
l^{h} \lambda^{\beta)}{ }_{j} \frac{\varpi^{k}}{\partial t^{\beta}} A_{h^{j}}{ }_{k}=\lambda^{\beta)_{j}} \frac{\sigma^{k}}{\partial t^{\beta}} p l^{j} A_{k}=0
$$

since $\lambda^{\beta)}{ }_{j} l^{j}=0$. Hence
Theorem 4. If S_{v} is a minimal variety to which the element of support is normal, its mean curvature for the element of support vanishes.
4. Condilions for the vanishing of the first variation of the volume integral.

From (1.5) follows

[^2]Theorem 5. The first variation vanishes if

$$
\left(\frac{D u^{i}}{\partial t^{\alpha}}+\Omega_{\alpha}{ }^{i}\right) \zeta_{i}^{a)_{i}}=0 \text { over } R .
$$

Also, from (1.7) we have
Theorem 6. The first variation vanishes if R is a region of a minimal variety in S_{n} and the displacement vector is normal to R on its boundary.

For if R is a region of a minimal variety in S_{n} the second integral in (1.7) vanishes identically. Finally, from (1.7) we have also

Theorem 7. The first variation vanishes if the displacement vector satisfies $\mu^{i} D \zeta^{(a)} / \partial t^{a}=\Omega_{a)}{ }^{i} \zeta^{a)}{ }_{i}$ at points of R, and either vanishes or is normal to R on its boundary.

REFERENCES.

1. L. P. Eisenhart, "Riemannian Geometry" (1926).
2. J. G. Freeman, "First and Second Variations of the Length Integral in a Generalized Metric Space," Quart. Journ. Math. (Oxford) 15 (1944), 70-83.
3. J. A. Schouten and J. Haantjes, "Über die Festlegung von allgemeinen Massbestimmungen und Übertragungen in Bezug auf ko- und kontravariante Vektordichten," Monats. für Math. und Phys., 43 (1936), 161-76.

29 Kingsway,

Aldershot, Hants.

[^0]: 1 Of the type treated by Schouten and Haantjes in (3). (See the list of references at the end of the paper.)

[^1]: ${ }^{1}$ Equations (1.5), (1.7) are similar to those for the first variation. of the length integral ; see (2), (3.5), (3.6).
 ${ }^{2}$ See (2), (4.2).
 ${ }^{3}$ See (2), § 4 for proof.

[^2]: 1 Proved in (1), § 52.

