
ON SALIE'S SUM

by L. J. MORDELLf

(Received 2 April, 1971)

Let/? be an odd prime and let/(x) be a complex-valued function such that f(x+p) =f(x)
for all integers x. Write e(jc) = exp(2nix/p), and define l/x by x, where xx = 1 (mod/»). We
consider the sum

ax+-)(-) for ab^O(modp), (1)

where I - I is the Legendre symbol. The sum is zero if (— I = — 1, as is clear on replacing
\Pj \PJ

x by bjax. Salie has found a result which can be written in the form

-h)}, (2)

when h2 =4ab(modp).
This permits of further applications, as I have shown [1] in a forthcoming paper. Recently,

[2] K. S. Williams has found a result which can be written more symmetrically as

xj\pj x=0 \ P J x=o

If h ^ 0(mod/?), on making the substitution

x^xjh, f(x)-+f(hx),
(3) becomes

VV A ^2\fX\ V U ̂ fX + 2h\Jr ft JX~2h

Z f[x+-)[- = Z / w ( — — )+!/(*)(——
{ab\

Suppose now that a and b are two integers such that I — I = 1. Define a value of h by
\Pj

h2 = ab (mod/?). Replace x by ax on the left-hand side of (4). We then have

a result of which Williams informs me he was aware.
Williams's proof of (3) is quite simple, but I give a different one. In (3), corresponding

terms of the two series on the right-hand side cancel unless

t Professor Mordell died on 12 March, 1972.
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On writing x2-4 = (x-2t)2 (mod/>), this gives x = t + l/t. The same value for x occurs for
two values of t unless x = ±2, / = + 1 . Hence

JK- '\ n I *" \ r

which is equivalent to (3).
Now put fix) = eix), and replace /; by \h. Then the right-hand side of (5) becomes a

gaussian sum; whence

)
\Pj

where /J2 s 4ab (mod^). This gives (2) in a slightly different form from that found by Williams.
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