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ON A GENERALIZED DIVISOR PROBLEM I

YUK-KAM LAU

Abstract. We give a discussion on the properties of ∆a(x) (−1 < a < 0), which
is a generalization of the error term ∆(x) in the Dirichlet divisor problem. In
particular, we study its oscillatory nature and investigate the gaps between its
sign-changes for −1/2 ≤ a < 0.

§1. Introduction

Let σa(n) =
∑

d|n da and define for −1 < a < 0 and x ≥ 1,

∆a(x) =
∑

n≤x

′ σa(n) − ζ(1 − a)x − ζ(1 + a)

1 + a
x1+a +

1

2
ζ(−a),(1.1)

where the last term in the sum is halved when x is an integer. The limit

function lima→0− ∆a(x) is the same as the classical error term ∆(x). The

determination of its precise order of magnitude, called the Dirichlet’s divisor

problem, remains open to date. On the other hand, the highly oscillatory

behaviour of ∆(x) has attracted the attention of many authors. There are

numerous papers devoted to the study of properties of ∆(x), such as its

power moments, Ω±-results, gaps between sign-changes and etc.. Corre-

spondingly not many results are known for ∆a(x). The mean square result

is a mature one among them. In 1995, Meurman [9] proved that

∫ T

2
∆a(x)2 dx =











c1T
3/2+a + O(T ) for −1/2 < a < 0,

c2T log T + O(T ) for a = −1/2,
O(T ) for −1 < a < −1/2,

(1.2)

where c1 = (6 + 4a)−1π−2ζ(3/2 − a)ζ(3/2 + a)ζ(3/2)2ζ(3)−1, c2 =

ζ(3/2)2/(24ζ(3)) and the constants implied by the O-symbols may depend

on a. He established the result by using a weighted Voronoi type formula

Received February 8, 2000.
Revised September 22, 2000.
2000 Mathematics Subject Classification: 11N64.

https://doi.org/10.1017/S002776300000814X Published online by Cambridge University Press

https://doi.org/10.1017/S002776300000814X


165-04 : 2002/3/11(18:15)

72 Y.-K. LAU

with an explicit error term of his own. The O-terms in the first and the

third case are the best possible. The first one was confirmed by Lam and

Tsang [7] while, in fact, there exists an asymptotic formula for the third

case (−1 < a < −1/2) in an old paper of Chowla [1] where it is proved that

∫ T

2
∆a(x)2 dx = c3T + O(T 3/2+a log T )

with c3 = ζ(−2a)ζ(1 − a)2/(12ζ(2 − 2a)). These mean square results are

definitely important. From them, one can see that a = −1/2 is a ‘critical’

point for the behaviour of ∆a(x), for example, the ‘average’ order of ∆a(x)

is O(x1/4+a/2) for −1/2 < a < 0, O(
√

log x) for a = −1/2 and O(1) for

−1 < a < −1/2. Analogous to the case ∆(x), we expect that ∆a(x) �
x1/4+a/2+ε (−1/2 ≤ a < 0) and ∆a(x) � xε (−1 < a ≤ −1/2), both of

which are still open. In the opposite direction, we can find the following

Ω±-results: for −1/2 ≤ a < 0,

∆a(x) = Ω±(x1/4+a/2 log1/4+|a|/2 x),(1.3)

and for −1 < a < −25/38,

∆a(x) = Ω±

(

exp

(

(1 + o(1))
1

1 − |a|

( |a|
2

)1−|a| (log x)1−|a|

log log x

))

due to Hafner [2] and Pétermann [10] respectively.

As mentioned, the behaviour of ∆a(x) changes at a = −1/2. It seems

that ∆a(x) behaves like ∆(x) only for the range −1/2 < a < 0 (or −1/2 ≤
a < 0). We shall investigate the properties of ∆a(x) at different values of

a.

In this paper, we shall consider the case −1/2 ≤ a < 0 (and the other

case in the sequel paper [8]). Our first result is about the difference ∆a(x+

h) − ∆a(x) for −1/2 ≤ a < 0 in the mean. In [5], Jutila proved that for

T ε � h ≤
√

T/2,

∫ 2T

T
(∆(t + h) − ∆(t))2 dt � Th log3(

√
T/h).

Results of this kind can reveal their oscillatory natures. Parallel to this, we

prove the following:
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Theorem 1. Let T ≥ 2 and suppose a ∈ [−1/2,−δ] where δ is an

arbitrarily small positive number. Then, for 1 � h ≤
√

T , we have

∫ 2T

T
(∆a(t + h) − ∆a(t))

2 dt �δ Th1+2a min

(

1

1/2 − |a| , log h

)

where the implied constant depends only on δ.

Remark. A recent paper of Kiuchi and Tanigawa [6] includes the result
of the case −1/2 < a < 0 here, but not a = −1/2.

An application of Theorem 1 is to yield the width of gaps between

sign-changes of ∆a(x).

Theorem 2. For −1/2 ≤ a < 0, we can find a sequence {Tn}
tending to infinity such that ∆a(x) has no sign-changes in the interval

[Tn, Tn + caHn] where ca is a constant depending only on a, Hn =

T
1/2−|a|(1/2+|a|)
n (log Tn)−1 if −1/2<a<0 and Hn = (log Tn)3/2/(log log Tn)2

if a = −1/2.

Concerning the sign-changes of ∆a(x), by taking g(n) = πa/2σa(n),

µ(n) = πn, r = 1+a and α = 1 in Ivić [4, Theorem 1], it follows immediately

an upper bound result for the length of gaps between sign-changes.

Theorem 3. Let −1/2 ≤ a ≤ 0 and T be any sufficiently large num-

ber. Then, ∆a(x) has a sign-change in [T, T + ca

√
T ] for some constant ca

depending on a only.

For the case a = 0, Heath-Brown and Tsang [3] showed in the opposite

direction that one can find a sequence {Tn} which tends to infinity and

∆(x) has no sign-changes in the interval [Tn, Tn + c′
√

Tn/ log5 Tn] for some

constant c′. These almost determined the exact order of magnitude of the

gaps between sign-changes of ∆(x). However results of opposite direction

for other cases are not known yet. Our Theorem 2, based on the method

of Heath-Brown and Tsang, is to furnish this part. It can be seen that the

value of Hn in Theorem 2 deviates away from
√

Tn as a decreases from 0 to

−1/2. The true order of magnitude of the gaps between sign-changes is still

mysterious for such cases. At present, there are not enough information to

predict the right order of magnitude.

Finally we want to mention that the Ω±-result in (1.3) for the case

a = −1/2 can be improved.
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Theorem 4. We have

∆−1/2(x) = Ω±

(

exp

(

(1 + o(1))
(log x)1/2

log log x

))

.

It comes from [8, Theorem 1] with a = −1/2. However, one should note

that the definition of ∆a(x) in [8] is different from here. Let us extend the

definition of σa(n) by defining σa(x) = 0 when x is not a positive integer.

Then [8, Theorem 1] gives

∆−1/2(x) +
1

2
σ−1/2(x) = Ω±

(

exp

(

(1 + o(1))
(log x)1/2

log log x

))

.

From (1.1), it is apparent that

∆−1/2(x) ≤ ∆−1/2(x) +
1

2
σ−1/2(x) ≤ ∆−1/2(x + 1) + O(1)

and hence Theorem 4 follows. It should be remarked that unlike the case

of −1/2 ≤ a ≤ 0, Theorem 1 in [8] is derived by another tool instead of

the Voronoi-type formula (thus, so is Theorem 4); nonetheless, the method

used there in the discussion of sign-changes cannot yield results for the case

a = −1/2. (Note that the results in Theorems 2 and 3 here include this

case.) These altogether perhaps give a further support of the peculiarity of

∆−1/2(x).

§2. Proof of Theorem 1

From [9, Lemma 1] with X = 2T , Z = 4T , we have for t ∈ [T, 3T ],

∆a(t) = ∆a(t, T ) + Ra(t, T ) + O(T−1/4+a/2)

where

∆a(t, T ) =
1

π
√

2
t1/4+a/2

∑

n≤4T

σa(n)

n3/4+a/2
wT (n) cos

(

4π
√

nt − π

4

)

and

Ra(t, T ) =
1

2π

∑

n≤4T

σa(n)

∫ 2

1

∫ ∞

2uT
v−1 sin(4π(

√
t −

√
n)
√

v) dv du
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with wT (u) = 1 for 1 ≤ u ≤ 2T and wT (u) = 2 − u/(2T ) for 2T ≤ u ≤ 4T .

Then,

∫ 2T

T
(∆a(t + h) − ∆a(t))

2 dt � T +

∫ 2T

T
(∆a(t + h, T ) − ∆a(t, T ))2 dt(2.1)

where the mean square value of Ra(·, T ) is estimated by [9, (2.3)]. Now,

∫ 2T

T
(∆a(t + h, T ) − ∆a(t, T ))2 dt

�
∫ 2T

T
t1/2+a|

∑

n≤4T

σa(n)

n3/4+a/2
wT (n)(e(2

√

n(t + h)) − e(2
√

nt))|2 dt

+

∫ 2T

T
((t + h)1/4+a/2 − t1/4+a/2)2

×|
∑

n≤4T

σa(n)

n3/4+a/2
wT (n)e(2

√

n(t + h))|2 dt

= I1 + I2, say.(2.2)

We split I1 into three parts as follows.

I1 �

T 1/2+a
∫ 2T

T
|

∑

n≤T/(2h2)

σa(n)

n3/4+a/2
(e(2

√
n(
√

t + h −
√

t)) − 1)e(2
√

nt)|2 dt

+ T 1/2+a
∫ 2T

T
|

∑

T/(2h2)<n≤4T

σa(n)

n3/4+a/2
wT (n)e(2

√

n(t + h))|2 dt

+ T 1/2+a
∫ 2T

T
|

∑

T/(2h2)<n≤4T

σa(n)

n3/4+a/2
wT (n)e(2

√
nt)|2 dt

= I11 + I12 + I13.(2.3)

Following the arguments for the estimate of J± in [9, p.354-355], we see

that I2 � T and I12, I13 � Th1+2a min((1/2 − |a|)−1, log h) + T. With

e(2
√

n(
√

t + h −
√

t)) − 1 � h
√

n/T , Second Mean Value Theorem for

integrals, we get for some ξ ∈ [T, 2T ],

I11 � T 1/2+ah2
∑

n≤T/(2h2)

σa(n)2

n1/2+a
+ T 1+a

∣

∣

∣

∣

∣

∫ 2T

ξ

∑

(t)e(2(
√

m −
√

n)
√

t)
dt√

t

∣

∣

∣

∣

∣
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where

∑

(t) =
∑

m6=n≤T/(2h2)

σa(m)σa(n)

(mn)3/4+a/2
(e(2

√
m(

√
t + h −

√
t)) − 1)

× (e(2
√

n(
√

t + h −
√

t)) − 1).

The first summand in the right-hand side is � Th1+2a. By integration by

parts, we see that the second summand is � Th2a and so I11 � Th1+2a.

Our theorem follows from (2.1)–(2.3).

Remark. A careful treatment, following the same line of arguments in
Jutila [5], can furthermore lead to

∫ 2T
T (∆a(t + h) − ∆a(t))

2 dt �δ Th1+2a.
This was not done here for simplicity.

§3. Proof of Theorem 2

Following the method in [3], we first show that for 1 � H ≤
√

T ,

∫ 2T

T
max
h≤H

(∆a(t + h) − ∆a(t))
2 dt(3.1)

� T (H log H min(
1

1/2 − |a| , log H))1/(1+|a|).

To prove it, let us write H = 2λb, λ ∈ N. Since for v ≤ u,

∆a(u) − ∆a(v) =
∑

v<n≤u

′ σa(n) − ζ(1 − a)(u − v) − ζ(1 + a)

1 + a
(u1+a − v1+a)

≥ −O(|u − v|),

we have for jb < h ≤ (j + 1)b,

∆a(t + jb) − ∆a(t) − O(b) ≤ ∆a(t + h) − ∆a(t)

≤ ∆a(t + (j + 1)b) − ∆a(t) + O(b).

Hence, for a fixed t, let |∆a(t+h)−∆a(t)| attain a maximum at h0 = h0(t)

over [0,H], we then have

max
h≤H

|∆a(t + h) − ∆a(t)| = |∆a(t + h0) − ∆a(t)|

≤ max
1≤j≤2λ

|∆a(t + jb) − ∆a(t)| + O(b).
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Now, let max1≤j≤2λ |∆a(t + jb) − ∆a(t)| = |∆a(t + j0b) − ∆a(t)| for some

j0 = j0(t), by writing j0 = 2λ∑

µ 2−µ where the sum runs over a certain set

St of non-negative integers µ ≤ λ, we can express it as

∆a(t + j0b) − ∆a(t) =
∑

µ

(∆a(t + (ν + 1)2λ−µb) − ∆a(t + ν2λ−µb))

where 0 ≤ ν = νt,µ < 2µ is an integer. (To be specific, ν = 2µ∑

α 2−α

where α runs over St and satisfies min St ≤ α < µ.) By Cauchy-Schwarz’s

inequality, we have

(∆a(t + j0b) − ∆a(t))
2

≤
(

∑

µ

1

)(

∑

µ

(∆a(t + (ν + 1)2λ−µb) − ∆a(t + ν2λ−µb))2
)

≤ (λ + 1)
∑

µ

∑

0≤ν<2µ

(∆a(t + (ν + 1)2λ−µb) − ∆a(t + ν2λ−µb))2,

after including all other integers ν ∈ [0, 2µ). Thus, by taking b =

(H log H min((1/2 − |a|)−1, log H))1/(2+2|a|), we obtain with Theorem 1,

∫ 2T

T
max
h≤H

(∆a(t + h) − ∆a(t))
2 dt

� λ
∑

µ≤λ

∑

0≤ν<2µ

∫ 2T+ν2λ−µb

T+ν2λ−µb
(∆a(t + 2λ−µb) − ∆a(t))

2 dt + Tb2

� T

(

H log H min

(

1

|a| − 1/2
, log H

))1/(1+|a|)

.

Applying (3.1) with H = caT
(1/2+a)(1+|a|)/ log T for −1/2 < a < 0 and

H = ca(log T )3/2/(log log T )2 for a = −1/2 for some suitable small constant

ca > 0, we see together with (1.2) that the integral

∫ 2T

T
(∆a(t)

2 − max
h≤H

(∆a(t + h) − ∆a(t))
2) dt

is positive. Our assertion then follows.
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Institut Élie Cartan
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