Proceedings of the Edinburgh Mathematical Society (1996) 39, 535-546 (

FACTORIZATIONS OF OUTER FUNCTIONS AND EXTREMAL PROBLEMS

by TAKAHIKO NAKAZI*

(Received 22nd November 1994)

The author has proved that an outer function in the Hardy space H^1 can be factored into a product in which one factor is strongly outer and the other is the sum of two inner functions. In an endeavor to understand better the latter factor, we introduce a class of functions containing sums of inner functions as a special case. Using it, we describe the solutions of extremal problems in the Hardy spaces H^p for $1 \leq p < \infty$.

1991 AMS Subject classification: Primary 30D55, 46J15, secondary 47B35

1. Introduction

 N, N_+ and H^p for $1 \le p < \infty$ denote the Nevanlinna class, the Smirnov class and the Hardy space, respectively on the open unit disc U in the complex plane. A function h in N_+ is called outer if it is not divisible in N_+ by a non-constant inner function. A function g in H^1 is called strongly outer if the only functions f in H^1 such that f/g is non-negative are scalar multiples of g. If g is not outer and so g = qh for some inner q, then $f = (1+q)^2 h$ belongs to H^1 and $f/g = (1+q)^2/q$ is non-negative. A norm one function in H^1 is outer if and only if it is an extreme point of the unit ball of $H^1[2]$. On the other hand, a norm one function in H^1 is strongly outer if and only if it is an exposed point of the unit ball of H^1 (cf. [2, 12]. Like outer functions, strongly outer functions appear in many important areas, for example, function theory, operator theory and prediction theory.

It is not difficult to give a characterization of a strongly outer function similar to the above definition of an outer function. If g is divisible in H^1 by a sum of two inner functions q_1 , q_2 where $q_1 + q_2$ is not constant and $Im\bar{q}_1q_2 \leq 0$ almost everywhere, then $f = -i(q_1 - q_2)g/(q_1 + q_2)$ is not a scalar multiple of g and f/g is non-negative because $-i(q_1 - q_2)/(q_1 + q_2) \geq 0$ almost everywhere. Thus g is not strongly outer. The converse is also true by the following factorization theorem [12].

Theorem. If an outer function h in H^1 is not strongly outer, then $h = (q_1 + q_2)g$ where both q_1 and q_2 are inner, $Im\bar{q}_1q_2 \leq 0$ almost everywhere, $(q_1 - q_2)^{-1}$ is summable and g is strongly outer. If q_1 is a finite Blaschke product of degree n then so is q_2 .

*This research was partially supported by Grant-in-Aid for Scientific Research, Ministry of Education.

The aim of this paper is to gain a better understanding of this theorem and of the sum of two inner functions. The sum of two inner functions appeared in H. Helson's papers [7] and [8]. D. Sarason [15] examined cases in which the sum of two nonconstant inner functions is outer. In this paper, we introduce functions in H^2 which have the form; $k=s+q\bar{s}$ where s is in L^2 and q is inner. If s=1, then k=1+q. If $s=q_1$ and $q = q_1q_2$ where q_1 and q_2 are inner, then $k = q_1 + q_2$. If f is the square of H^2 function $s + q\bar{s}$, then put q_1 = the inner part of f + iq and q_2 = the inner part of f - iq. Then $Im\bar{q}_1q_2 \leq 0$, $q_1 + q_2$ is non-constant and f is divisible in H^1 by $q_1 + q_2$. By the remark above the Theorem, f is not strongly outer. The following factorization theorem can be proved easily by a theorem of E. Hayashi ([5, 6]).

Theorem. If an outer function h in H^1 is not strongly outer, then $h = (s + q\bar{s})^2 g$ where q is a non-constant inner function, $s + q\bar{s}$ is in H^2 and g is strongly outer.

Proof. Suppose $h = k^2$ and k is outer in H^2 . By a theorem of E. Hayashi ([4, 5]),

$$H^2 \cap (k/\bar{k})\bar{H}^2 = g_0(H^2 \ominus zqH^2)$$

and $k/\bar{k} = \bar{q}\bar{g}_0/g_0$ where q is inner and g_0^2 is strongly outer. Hence $k = lg_0$ where $l \in H^2 \ominus qzH^2$ and $\bar{q}l^2 \ge 0$. Put s = l/2, then $l = s + q\bar{s}$ and $h = l^2 g_0^2$.

In this theorem, we should like to be able to choose $s+q\bar{s}=q_1+q_2$ for some inner functions q_1 and q_2 . Unfortunately we could not do except in some special cases [12]. Note that by an example of J. Inoue [9], we cannot choose $s + q\bar{s} = 1 + q$.

2. Bad parts of outer functions

In this section we study a function in H^2 which has the form $s+q\bar{s}$ where s is in L^2 and q is an inner function. If $\prod_{j=1}^{n} (q_j + q'_j)$ where q_j and q'_j are inner functions for $1 \leq j \leq n$, then $\prod_{j=1}^{n} (q_j + q'_j) = s + q\bar{s}$ for $q = \prod_{j=1}^{n} q_j q'_j$. Two natural questions are the following: (1) When is $s + q\bar{s}$ an outer function? (2) When can $s + q\bar{s}$ be divisible in H^2 by 1+q' where q' denotes some nonconstant inner function? The question (1) is related with a paper of D. Sarason [15]. He studied it when $s+q\bar{s}$ is a sum of two inner functions. The question (2) is related with a paper of J. Inoue [9]. By the second theorem in the Introduction, Inoue's result is the following: There exists an outer function f in H^2 which is not divisible in H^2 by any nonconstant 1+q' but is divisible in H^2 by some nonconstant $s + q\bar{s}$, where q and q' are inner functions. Because of the first theorem in the Introduction, we are also interested in nonconstant outer function $q_1 + q_2$ such that both q_1 and q_2 are inner functions, $Im\bar{q}_1q_2 \leq 0$ almost everywhere and $(q_1 - q_2)^{-1}$ is summable.

Proposition 1. Suppose s is a nonnegative function in N_+ and s^{-1} is summable. If $i-s=q_1l$ where q_1 is an inner function and l is an outer function, then $q_2=(i+s/i-s)q_1$ is an inner function, $q_1 + q_2$ is an outer function, $Im \tilde{q}_1 q_2 \leq 0$ almost everywhere and

 $(q_1-q_2)^{-1}$ is summable. If s is a rational function, then both q_1 and q_2 are finite Blaschke products of the same degree.

Proof. Since $|q_2| = 1$ a.e. on ∂U and $q_2 = (i+s)/l$, q_2 is inner. Since $q_1 + q_2 = 2il$, $q_1 + q_2$ is outer. By a simple calculation,

$$\frac{-Im\bar{q}_1q_2}{|q_1+q_2|^2} = \frac{-i(q_1-q_2)}{q_1+q_2} = s \ge 0 \quad \text{a.e.}$$

and so $Im\bar{q}_1q_2 \leq 0$ a.e. on ∂U . Since $(q_1-q_2)^{-1} = (i-s)/(-2s)$ and s^{-1} is summable, $(q_1-q_2)^{-1}$ is summable. If s is a rational function, by [7] the number of zeros of s-i and that of s+i are equal. Hence q_1 and q_2 are finite Blaschke products of the same degree.

In Proposition 1, if $s = -z/(1-z)^2$, then q_1 and q_2 have degree one. However even if q_1 and q_2 have degree one and $q_1 + q_2$ is outer, $Im\bar{q}_1q_2$ is not necessarily non-negative. In fact, suppose |a| < 1 and $|\rho| = 1$. Then, $\rho z + \bar{\rho}(z - a/1 - \bar{a}z)$ is outer if and only if $|Re\rho| \leq |a|$, [15]. However $Im\bar{z}(z - a/1 - \bar{a}z)$ is not non-negative on ∂U .

Proposition 2. Suppose $s+q\bar{s}$ is in H^2 , where q is an inner function and s is in L^2 . Then $s+q\bar{s}$ is an outer function if and only if there exists a function t in L^2 such that $s+(t-q\bar{t})$ is an outer function.

Proof. If $l=s+(t-q\bar{t})$ is outer, then $s+q\bar{s}=l+q\bar{l}\in H^2$ and $q\bar{l}\in H^2$. Hence $q\bar{l}=q_0l$ for some inner function q_0 . Then $s+q\bar{s}=l(1+q(\bar{l})=l(1+q_0))$ and hence $s+q\bar{s}$ is outer. Conversely if $s+q\bar{s}=2l$ is outer, then $q\bar{l}=l$ and hence $s+q\bar{s}=l+q\bar{l}$. Let k=l-s, then $k+q\bar{k}=0$ and so $k=t-q\bar{t}$, where t=k/2. Thus $l=s+(t-q\bar{t})$ is outer.

Corollary 1. Suppose $s + q\bar{s}$ is in H^2 , where q is an inner function and s is in L^2 . If s and q satisfy one of the following (1) ~ (3), then $s + q\bar{s}$ is an outer function.

(1) s is an outer function.

(2) $q = q_1q_2$ and $s = q_1h$ where q_1 and q_2 are inner functions, h is an outer function and $q_2h = \alpha h$ for some complex number α .

(3) $q = q_1q_2$ and $s = q_1h$ where $\{q_j\}_{j=1,2,3}$ are inner functions, h is an outer function, $q_2\bar{h} = q_3h$, and $q_1 + q_3$ is an outer function.

Proof. (1) is clear by Proposition 2 and (2) is a special case of (3). For (3), let $t = (q_3 - q_1)h/4$, then

$$q\bar{t} = \frac{1}{4}q(\bar{q}_{2}h - \bar{q}_{1}\bar{h}) = \frac{1}{4}(q_{1}h - q_{2}\bar{h}) = \frac{1}{4}(q_{1} - q_{3})h$$

because $q_2\bar{h}=q_3h$. Hence $t-q\bar{t}=(q_3-q_1)h/4$ and so $s+(t-q\bar{t})=(q_3+q_1)h/2$. This implies (3) because q_1+q_3 is outer.

Proposition 3. Suppose q_1 is an inner function and $s + q\bar{s}$ is a non-zero function in H^2 , where q is an inner function and s is in L^2 . Then $s + q\bar{s}$ is divisible in H^2 by $1 + q_1$ if and only if there exists a function t in L^2 such that $q\{\bar{s}+(\bar{t}-q\bar{t})\}=q_1\{s+(t-q\bar{t})\}$. In particular, if $q\bar{s}=q_1s$ then $s+q\bar{s}$ is divisible by $1+q_1$.

Proof. If there exists a function t in L^2 such that $q\{\bar{s}+(\bar{t}-\bar{q}t)\}=q_1\{s+(t-q\bar{t})\}$, then $s+q\bar{s}=s+t-q\bar{t}+q(\bar{s}+\bar{t}-\bar{q}t)=s+t-q\bar{t}+q_1(s+t-q\bar{t})=(s+t-q\bar{t})(1+q_1)$ and hence $s+q\bar{s}$ is divisible in H^2 by $1+q_1$. Conversely if $l=(s+q\bar{s})/(1+q_1)$ is in H^2 , then

$$\bar{q} = \frac{\bar{s} + \bar{q}s}{s + q\bar{s}} = \frac{\bar{l}}{l} \frac{1 + \bar{q}_1}{1 + q_1} = \frac{\bar{l}}{l} \bar{q}_1$$

and hence $q\bar{l}=q_1l$. If k=l-s, then $k=t-q\bar{t}$ for some $t\in L^2$ and hence $l=s+(t-q\bar{t})$. This implies that $q\{\bar{s}+(\bar{t}-\bar{q}t)\}=q_1\{s+(t-q\bar{t})\}$.

Corollary 2. Suppose $s + q\bar{s}$ is in H^2 , where q is an inner function and s is in L^2 .

(1) If s is an outer function and $q\bar{s}\neq \alpha s$ for any α in C with $|\alpha| = 1$, then there exists a non-constant inner function q_1 such that $s+q\bar{s}$ is divisible in H^2 by $1+q_1$. (2) If h is an outer function, $q\bar{h}=q_1q_2^2h$ and $s=q_2h$ where q_1 and q_2 are inner functions, then $s+q\bar{s}$ is divisible in H^2 by $1+q_1$.

(3) If q is a finite Blaschke product, then there exists a non-constant finite Blaschke product q_1 such that $s + q\bar{s}$ is divisible in H^2 by $1 + q_1$, or $s + q\bar{s}$ is not an outer function.

Proof. (1) Since s is outer, $q\bar{s}=q_1s$ for some inner function q_1 . By the hypothesis, q_1 is non-constant and hence Proposition 3 implies (1).

(2) $q\bar{s} = q_1q_2h = q_1s$ implies (2) by Proposition 3.

(3) Since $\bar{q}(s+q\bar{s})^2 \ge 0$ a.e. on ∂U and q is a finite Blaschke product, $(s+q\bar{s})^2 = \prod_{j=1}^{n} (z-a_j)(1-\bar{a}_jz)l^2$, where $|a_j| \le 1(1 \le j \le n)$ and l is outer in $H^2([2, 11])$. Therefore if $s+q\bar{s}$ is outer, then $s+q\bar{s}=\prod_{j=1}^{n} (-\bar{a}_j)^{1/2}(z-a_j)l$ and $|a_j|=1$. Thus $s+q\bar{s}$ is divisible in H^2 by $z-a_j$.

When q_1 and q_2 are inner functions, we write $q_1 < q_2$ if there exists a nonzero function f in H^1 such that $\bar{q}_1q_2 = f/|f|$. If both q_1 and q_2 are finite Blaschke product, then $q_1 < q_2$ is equivalent to (degree of q_1) \leq (degree of q_2). For each g in H^1 , sing g denotes the set of the unit circle on which g cannot be analytically extended.

Proposition 4. If q_1 and q_2 are inner functions and the inner part of q_1+q_2 is q, then $q \prec q_1$ and $q \prec q_2$.

Proof. Let $q_1 + q_2 = qh$, then $|\bar{q}q_1 - h| = |\bar{q}q_2 - h| = 1$. By a theorem of P. Koosis (cf. [4, Chapter 4, Lemma 5.4]), $q \prec q_1$ and $q \prec q_2$.

Corollary 3. Suppose q_1 and q_2 are inner functions and $q_1 + q_2 = qh$ where q is an inner function and h is an outer function.

(1) If q_1 is a finite Blaschke product, then q is also a finite Blaschke product and (degree of $q) \leq (\text{degree of } q_1)$.

(2) If $(sing q_1) \cap (sing q_2)$ is empty, then q is a finite Blaschke product.

(3) Suppose $q_1 = \exp(-(a+z)/(a-z))$ and $q_2 = -\alpha \exp(-(b+z)/(b-z))$, where |a| = |b| = 1, $b = -\bar{a}$ and $|\alpha| = 1$. If $\alpha = 1$, then q = z or q is constant. If $\alpha \neq 1$, then q is always constant, that is, $q_1 + q_2$ is an outer function.

Proof. (1) By Proposition 4, $\bar{q}q_1 = f/|f|$ for some function $f \in H^1$ and hence $\bar{q}_1(qf) \ge 0$ a.e. on ∂U . If q_1 is a finite Blaschke product of degree *m*, $qf = \prod_{j=1}^{n} (z-a_j)(1-\bar{a}_jz)l$ and $n \le m$ where $|a_j| \le 1(1 \le j \le n)$ and *l* is strongly outer. Hence *q* is a finite Blaschke product of degree *k* and $k \le n$.

(2) By Proposition 4, $\bar{q}q_1 = f/|f|$ for some function $f \in H^1$ and hence $\bar{q}q_1 = g/\bar{g}$ for some outer function $g \in H^2$. Therefore $\bar{q}_1qg = \bar{g}$ and so $qg \in H^2 \ominus q_1zH^2$. Hence sing $q_1 \supseteq sing qg$ and by [10, Lemma 4], sing $q_1 \supseteq sing q$. Similarly sing $q_2 \supseteq sing q$ and by the hypothesis q is a finite Blaschke product.

(3) By (2), q is a finite Blaschke product. If q(x)=0 for some point $x \in U$, then $exp(-(a+x)/(a-x)) = \alpha exp(-(b+x)/(b-x))$ and hence

$$-\frac{a+x}{a-x} = -\frac{b+x}{b-x} + i\rho$$
 and $\rho = t + 2n\pi$

where n is some integer and $\alpha = e^{it}$. If $\rho = 0$ then q = z because $a \neq b$. Suppose $\rho \neq 0$. Then

$$x^{2} - \left\{ \left(1 - \frac{2i}{\rho}\right)b + \left(1 + \frac{2i}{\rho}\right)a \right\} x + ab = 0.$$

If A and B are the solutions of the above quadratic equation, then AB = ab = -1 and

$$A+B=\left(1+\frac{2i}{\rho}\right)a-\left(\frac{1+\frac{2i}{\rho}}{\rho}\right)a.$$

This implies |A| = |B| = 1 and contradicts |x| < 1.

(1) of Corollary 3 was proved by D. Sarason [15, Proposition 3]. Our proof is different from his.

3. Projection

For each inner function q, we define two operators on L^2

$$L_q(s) = \frac{s+q\bar{s}}{2}$$
 and $L'_q(s) = \frac{s-q\bar{s}}{2}$.

If q = 1, then $L_q(s)$ is the real part of s and $L'_q(s)$ is the imaginary part of s. In general, $|L_q(s)| \leq |s|$ and $|L'_q(s)| \leq |s|$. Hence L_q and L'_q are contractive. L_q and L'_q commute with multiplication operators by real valued functions in L^{∞} . Moreover on L^2 , we have $L_qL_q = L_q$ and $L_qL'_q = 0$ and $L_q + L'_q$ is the identity operator. By results of the last section, we are interested in a function s such that $L_q(s)$ belongs to H^2 . Since $q = (1+q)^2/|1+q|^2$, we define $q^{1/2} = (1+q)/|1+q|$. Put

$$6\mathscr{A}_q = \left\{ g \in H^2 : \frac{g}{1+q} \text{ is a real valued function} \right\}.$$

Theorem 5. Let q be a non-constant inner function. Then

$$\{s \in L^2: L_q(s) \in H^2\} = \mathscr{A}_q + iq^{1/2}L_R^2,$$

where $L_R^2 = \{s \in L^2: s \text{ is a real valued function}\}$. In particular, if $s + q\bar{s}$ belongs to H^2 for some s in L^2 , then $s + q\bar{s} = t + q\bar{t}$ for some t in H^2 .

Proof. If $g \in \mathcal{A}_q$ then u = g/(1+q) is real and g = u(1+q). Hence $q\bar{g} = g$ and so $L_q(g) = g \in H^2$. If $s = iq^{1/2}u$ and $u \in L_R^2$ then $L_q(s) = 0$. This implies that $\{s \in L^2: L_q(s) \in H^2\}$ $\supseteq \mathcal{A}_q + iq^{1/2}L_R^2$. Conversely, suppose $g = L_q(s) \in H^2$. If g = 0, then $s = -q\bar{s}$ and $s^2 = -q|s|^2$. Hence $(i\bar{q}^{1/2}s)^2 = -\bar{q}s^2 = |s|^2 \ge 0$ and so $i\bar{q}^{1/2}s = -u$ is real. Thus $s = iq^{1/2}u$ and $u \in L_R^2$. If $g \neq 0$, $s + q\bar{s} = 2g$ and

$$\frac{s}{g} + \overline{\left(\frac{s}{g}\right)} = 2$$

Put t=s/g-1, then $t+\bar{t}=0$ and so t=iv for some $v \in L_R^2$. Hence s=g+ivg and $vg=q^{1/2}u$, where $u=v\bar{q}^{1/2}g$ is in L_R^2 . Thus $s=g+iq^{1/2}u$. This completes the proof of the theorem.

Corollary 4. Let q be a non-constant inner function. Then

$${s \in H^2: L_q(s) \in H^2} = \mathscr{A}_q + i \mathscr{A}_q$$

and hence $H^2 \ominus qzH^2 = \mathscr{A}_q + i\mathscr{A}_q$. L_q is the projection from $H^2 \ominus qzH^2$ onto \mathscr{A}_q and has kernel $i\mathscr{A}_q$.

Proof. If $g \in \mathscr{A}_{q}$, then g = v(1+q) for some real valued function v and so $g = q^{1/2}u$

where u = v |1+q|. Hence $\mathscr{A}_q \subset q^{1/2} L_R^2$ and $(q^{1/2} L_R^2) \cap H^2 = \mathscr{A}_q$. Now Theorem 5 implies the corollary.

The proof of Theorem 5 is related to that of [14, Theorem 3]. The equality in Corollary 4, that is, $H^2 \ominus qzH^2 = \mathscr{A}_q + i\mathscr{A}_q$ is known by [12, (1) of Theorem 3].

Corollary 5. Let q be an inner function. (1) If $q = z^n$, then $\mathscr{A}_q = \{\sum_{j=0}^n b_j z^j; b_j = \overline{b}_{n-j}\}$. (2) If $q = \prod_{l=1}^{\infty} (-\overline{a}_l/|a_l|) (z - a_l/1 - \overline{a}_l z)$ and $\sum_{l=1}^{\infty} (1 - |a_l|) < \infty$, then

$$\mathscr{A}_{q} = \left\{ \sum_{j=0}^{\infty} \frac{c_{j}B_{j} + \bar{c}_{j}zB'_{j}}{1 - \bar{a}_{j}z} : \sum_{j=0}^{\infty} \frac{|c_{j}|^{2}}{(1 - |a_{j}|)^{2}(1 + |a_{j}|)} < \infty \right\}$$

where $B_j = \prod_{l=1}^{j-1} (-\bar{a}_j/|a_j|) (z - a_j/1 - \bar{a}_j z), \quad B'_j = \prod_{l=j}^{\infty} (-\bar{a}_j/|a_j|) (z - a_j/1 - \bar{a}_j z), \quad a_0 = 0, \quad B_0 = 1 \text{ and } B'_0 = q.$

Proof. (1) If $s \in H^2 \ominus qzH^2$, then $s = \sum_{j=0}^n a_j z^j$ and hence $s + q\bar{s} = \sum_{j=0}^n (a_j + \bar{a}_{n-j}) z^j$. Now corollary 4 implies (1). (2) If $s \in H^2 \ominus qzH^2$, then by [1]

$$s = \sum_{j=0}^{\infty} c_j (1 + |a_j|)^{1/2} B_j (1 - \bar{a}_j z)^{-1} (1 - |a_j|)$$

and $\sum_{j=0}^{\infty} |c_j|^2 < \infty$. Hence

$$s + q\bar{s} = \sum_{j=0}^{\infty} \left(c_j \frac{B_j}{1 - \bar{a}_j z} + \bar{c}_j \frac{q\bar{B}_j}{1 - \bar{a}_j z} \right) (1 + |a_j|)^{1/2} (1 - |a_j|)$$
$$= \sum_{j=0}^{\infty} \left(\frac{c_j B_j + \bar{c}_j z B'_{j+1}}{1 - \bar{a}_j z} \right) (1 + |a_j|)^{1/2} (1 - |a_j|).$$

Now Corollary 4 implies (2).

A theorem of P. R. Ahern and D. N. Clark [1, Theorem 3.1], lets one describe \mathcal{A}_q for arbitrary inner function q.

4. Extremal problems

Let $1 \le q \le \infty$ and 1/p + 1/l = 1. If $\phi \in L^l$, we denote by T^p_{ϕ} the continuous functional defined on the Hardy space H^p by

$$T^{p}_{\phi}(f) = \int_{-\pi}^{\pi} f(e^{i\theta})\phi(e^{i\theta})d\theta/2\pi.$$

A function f in H^p , which satisfies $T^p_{\phi}(f) = ||T^p_{\phi}||$ and $||f||_p \leq 1$, is called an extremal function. A function ϕ in L^l is called an extremal kernel when $||\phi||_l = ||T^p_{\phi}||$. The existence and uniqueness of extremal functions and extremal kernels is known for 1 (cf. [3, Theorem 8.1]). For <math>p = 1, the situation is very different. An extremal function may not exist, the dual extremal kernel always exists and is unique if an extremal function exists (cf. [3, Theorem 8.1]). For p = 1, the set S_{ϕ} of all extremal functions is defined by

$$S_{\phi} = \{ f \in H^1: T^1_{\phi}(f) = ||T^1_{\phi}|| \text{ and } ||f||_1 = 1 \}.$$

 S_{ϕ} has been described in general by E. Hayashi [5, 6]. In this section, we describe S_{ϕ} completely in ways different from that of E. Hayashi. Moreover using the result we describe extremal kernels and extremal functions for 1 .

Theorem 6. Suppose p=1 and S_{ϕ} is nonempty. Then there exist an inner function q and a strong outer function g which satisfy the following $(1) \sim (4)$. (1) The unique extremal kernel of T_{ϕ}^{1} is $\bar{q} |g|/g$. (2) f is a member of S_{ϕ} if and only if

$$f = \gamma q_0 \left(\frac{s+q\bar{s}}{1+q_0}\right)^2 g,$$

where γ is a positive constant, $||f||_1 = 1$, q_0 is an inner function, s is in $H^2 \ominus qzH^2$ and $(s+q\bar{s})/(1+q_0)$ is an outer function in H^2 . (3) f is a member of S_{ϕ} if and only if

$$f = \gamma q_0 (t + q \overline{q_0 t})^2 g,$$

where γ is a positive constant, $\|f\|_1 = 1$, q_0 is an inner function, t is in $H^2 \ominus qzH^2$ and $t + q\overline{q_0t}$ is an outer function in $H^2 \ominus qzH^2$. (4) f is a member of S_{ϕ} if and only if

$$f = \gamma \{ (s+q\bar{s})^2 + (t+q\bar{t})^2 \} g,$$

where γ is a positive constant, $\|f\|_1 = 1$, and s and t are in $H^2 \ominus qzH^2$.

Proof. (1) is known from [5]. (2) If $f = \gamma q_0 (s + q\bar{s}/1 + q_0)^2 g$, then

$$\frac{|f|}{f} = q_0 \frac{|1+q_0|^2}{(1+q_0)^2} \frac{|s+q\bar{s}|^2}{(s+q\bar{s})^2} \frac{|g|}{g} = \bar{q} \frac{|g|}{g},$$

and hence $f \in S_{\phi}$. Conversely, if $f \in S_{\phi}$ and $f = q_0 h^2$, where q_0 is inner and h is outer, then $\gamma_1(1+q_0)^2 h^2 \in S_{\phi}$ for some positive constant γ_1 . Since $(1+q_0)h$ is outer in H^2 , by a theorem of E. Hayashi ([5, 6]),

$$H^2 \cap q_0(h/\bar{h})\bar{H}^2 = q_0(H^2 \ominus q_2H^2)$$

and $q_0(h/\bar{h}) = \bar{q}\bar{q}_0/q_0$, where q is inner and $g = g_0^2$, is strongly outer. Hence $(1+q_0)h = kg_0$ where $k \in H^2 \ominus qzH^2$ and $\bar{q}k^2 \ge 0$. Since $k \in \mathscr{A}_q$, by Corollary 4, $k = s + q\bar{s}$ for some function $s \in H^2 \ominus qzH^2$. Now q_0h belongs to $g_0(H^2 \ominus qzH^2)$ because $q_0h = q_0(k/\bar{h})\bar{h}$. Therefore q_0h/g_0 belongs to $H^2 \ominus qzH^2$ and hence $h/g_0 = (s+q\bar{s})/(1+q_0)$ belongs to $N_+ \cap L^2 = H^2$. This implies (2).

(3) Put $(s+q\bar{s})/(1+q_0) = l$ in (2); then

$$\frac{l}{l} = \frac{\bar{s} + \bar{q}s}{1 + \bar{q}_0} \frac{1 + q_0}{s + q\bar{s}} = q_0 \bar{q}.$$

Hence $l = q\overline{q_0}l$ and so $l = t + q\overline{q_0}t$, where $t = l/2 \in H^2$. This implies (3).

(4) By (2), the 'if' part is clear. Conversely if $f \in S_{\phi}$, then by (2) $f = q_0 k^2 g$, where $k = \gamma^{1/2}(s + q\bar{s})/(1 + q_0)$. Since $\bar{q}q_0k^2 = |k|^2$, $q\bar{k} = q_0k$ and hence $k \in H^2 \ominus qzH^2$. By Corollary 4, k = l + im for some functions l, $m \in \mathcal{A}_q$ and hence $q_1 k = l - im$ for some inner function q_1 . Thus $q_1k^2 = l^2 + m^2$ and hence $\bar{q}q_1k^2 = |k|^2$. Therefore $q_1 = q_0$. Corollary 4 implies (4) because $f = \gamma \{l^2 + m^2\}g$.

If $(s+q\bar{s})/(1+q_0)$ belongs to H^2 , then $q_0 \prec q$ and $(s+q\bar{s})/(1+q_0)$ belongs to $H^2 \ominus$ qzH^2 . In fact, if $l=(s+q\bar{s})/(1+q_0)$, then by the proof of (3) of Theorem 6, $q\bar{l}=q_0l$. Hence l belongs to $H^2 \ominus qzH^2$ and $q_0 \prec q$ because $\bar{q}_0 q = l^2/|l|^2$. Theorem 7 and Theorem 1 in [13] describe extremal kernels and extremal functions in case 1 .

Theorem 7. Suppose 1 and <math>1/p + 1/l = 1. Then ϕ is the unique extremal kernel and f is the unique extremal function of T_{ϕ}^{p} if and only if there exist an inner function q and a strong outer function g which satisfy the following:

$$\phi = \left\| T^p_{\phi} \right\| \bar{q} \frac{|g|}{g} \left(\frac{s+q\bar{s}}{1+q_0} \right)^{2/l} g^{1/l}$$

$$p = \|T^p_{\phi}\|\bar{q}\frac{|\mathbf{g}|}{g}\left(\frac{1}{1+q_0}\right) g^{\mathsf{T}}$$

$$f = q_0 \left(\frac{s + q\bar{s}}{1 + q_0}\right)^{2/p} g^{1/p},$$

where q_0 is an inner function, $\|f\|_p = 1$, $\|\phi\|_l = \|T_{\phi}^p\|$, $s \in H^2 \ominus qzH^2$ and $(s+q\bar{s})/(1+q_0)$ is an outer function in H^2 .

and

Proof. If ϕ is the unique extremal kernel and f is the unique extremal function of T_{ϕ}^{p} , then by [13, Theorem 1]

$$\phi = \phi_0 h, f = \left\| T_{\phi}^{l} \right\|^{-l/p} Q h^{l/p}$$
$$\left\| T_{\phi}^{l} \right\|^{-l} Q h^{l} \in S_{\phi_0}, \phi_0 = \bar{Q} \left\| h \right\|^{l} h^{-l},$$

and

where h is outer with
$$|\phi| = |h|$$
 and Q is the inner part of f. By Theorem 6,

$$\left\| T_{\phi}^{i} \right\|^{-i} Q h^{i} = q_{0} \left(\frac{s + q\bar{s}}{1 + q_{0}} \right)^{2} g$$

where q and q_0 are inner, g is strongly outer, $||q_o(s+q\bar{s}/1+q_0)^2g||_1=1$, $s \in H^2 \ominus qzH^2$ and $(s+q\bar{s})/(1+q_0)$ is outer in H^2 . Hence $Q=q_0$, $h=||T_{\phi}^{l}||(s+q\bar{s}/1+q_0)^{2/l}g^{1/l}$ and $\phi_0=\bar{q}_0(|h|^l/h^l)=\bar{q}(|g|/g)$.

Thus

$$\phi = \bar{q} \frac{|g|}{g} ||T_{\phi}^{l}|| \left(\frac{s+q\bar{s}}{1+q_{0}}\right)^{2/l} g^{1/l}$$

and

$$f = \left\| T_{\phi}^{l} \right\|^{-l/p} q_{0} h^{l/p} = q_{0} \left(\frac{s + q\bar{s}}{1 + q_{0}} \right)^{2/p} g^{1/p}.$$

Theorem 6 is a generalization of [11, Theorem 2]. Theorem 7 is a generalization of [13, Theorem 2]. But the descriptions are different from the previous ones. In those descriptions, the bad part $q_0(s+q\bar{s}/1+q_0)^{2/l}$ is important. If f is an inner function, then it is clear that $||f+\bar{z}\bar{H}^l|| = ||f||_l$ for $1 \le l \le \infty$. If $f = q_0(s+q\bar{s}/1+q_0)^{2/l}$, then, by Theorem 8, $||f+\bar{z}\bar{H}^l|| = ||f||_l$ for $1 \le l \le \infty$. Theorem 8 also shows [13, Corollary 3]. To prove Theorem 8 we need the following lemma.

Lemma. Suppose $1 \le l \le \infty$ and f = qh is in H^l , where q is an inner function and h is an outer function. Then $||f + \overline{z}\overline{H}^l|| = ||f||_l$ if and only if $qh^{2-l}/|h|^{2-l}$ is an inner function.

Proof. For $l \neq 1$ the lemma is known [13, Corollary 2]. Suppose l=1. By [3, p. 133], if $||f + \overline{z}\overline{H}^1|| = ||f||_1$, then there exists an extremal function $Q \in H^{\infty}$ and |Q| = 1 a.e. on $\{\theta; f(e^{i\theta}) \neq 0\}$ and $Qf \ge 0$ a.e. on ∂U . Hence Q is inner and so f/|f| is inner. The converse is clear.

Theorem 8. Suppose $1 \le l \le \infty$ and f is a nonzero function in H^l . (1) $|| f + \overline{z}\overline{H}^2 || = || f ||_2$ for an arbitrary function f in H^2 . (2) For $2 < l < \infty$, $|| f + \overline{z}\overline{H}^l || = || f ||_l$ if and only if

$$f = q \left(\frac{s+q\bar{s}}{1+Q}\right)^{2/l-2}$$

where q and Q are inner functions with $Q \prec q$. (3) For $1 \leq l < 2$, $||f + \bar{z}\bar{H}^{l}|| = ||f||_{l}$ if and only if

$$f = q \left(\frac{s + Q\bar{s}}{1 + q}\right)^{2/2 - l},$$

where q and Q are inner functions with $q \prec Q$. (4) Suppose $l = \infty$ and $S_{\bar{f}}$ is nonempty. Then $||f + \bar{z}\bar{H}^{\infty}|| = ||f||_{\infty}$ if and only if f is an inner function.

Proof. (1) is clear because f is orthogonal to $\bar{z}\bar{H}^2$. Suppose f = qh where q is inner and h is outer. (2) If $||f + \bar{z}\bar{H}^l|| = ||f||_b$, then by Lemma $qh^{2-l}/|h|^{2-l} = Q$ is inner. Hence $\bar{q}Qh^{l-2} = |h^{l-2}|$. If 1 < t < l/l - 2, then $h^{l-2} \in H^1$ and so $h^{l-2} \in H^1$. Now Theorem 6 implies that

$$Qh^{l-2} = Q\left(\frac{s+q\bar{s}}{1+Q}\right)^2$$
 and $Q \prec q$.

Hence $h = (s + q\bar{s}/1 + Q)^{2/l-2}$ and so $f = q(s + q\bar{s}/1 + Q)^{2/l-2}$. Conversely if $f = q(s + q\bar{s}/1 + Q)^{2/l-2}$, then $h = (s + q\bar{s}/1 + Q)^{2/l-2}$ and hence

$$\bar{q} \frac{h^{l-2}}{|h|^{l-2}} = \bar{q} \frac{(s+q\bar{s})^2}{(1+Q)^2} \frac{|1+Q|^2}{|s+q\bar{s}|^2} = Q.$$

The lemma implies $||f + \overline{z}\overline{H}^{l}|| = ||f||_{l}$. (3) If $||f + \overline{z}\overline{H}^{l}|| = ||f||_{l}$, then by the lemma $qh^{2-l}/|h|^{2-l} = Q$ is inner. Hence $\overline{Q}qh^{2-l} = |h|^{2-l}$ and $h^{2-l} \in H^{1}$ because $h^{l} \in H^{1}$ and l > 2-l > 0. Again by Theorem 6

$$qh^{2-l} = q\left(\frac{s+Q\bar{s}}{1+q}\right)^2$$
 and $q \prec Q$.

Hence $h = (s + Q\bar{s}/1 + q)^{2/2 - l}$ and so $f = q(s + Q\bar{s}/1 + q)^{2/2 - l}$. Conversely if $f = q(s + Q\bar{s}/1 + q)^{2/2 - l}$, then

$$\bar{q} \frac{h^{l-2}}{|h|^{l-2}} = \bar{q} \frac{(s+Q\bar{s})^2}{(1+q)^2} \frac{|1+q|^2}{|s+Q\bar{s}|^2} = Q.$$

The lemma implies $||f + \overline{z}\overline{H}^t|| = ||f||_t$.

(4) If $S_{\bar{f}}$ is nonempty and $||f + \bar{z}\bar{H}^{\infty}|| = ||f||_{\infty}$, then f is inner by Theorem 6.

REFERENCES

1.P. R. AHERN and D. N. CLARK, On functions orthogonal to invariant subspaces, Acta Math. 124 (1970), 191-204.

2. K. DELEEUW and W. RUDIN, Extreme points and extremum problems in H^1 , Pacific J. Math. 8 (1958), 467–485.

3. P. DUREN, Theory of H^p spaces (Academic Press, New York, 1970).

4. J. B. GARNETT, Bounded analytic functions (Academic Press, 1981).

5. E. HAYASHI, The solution sets of extremal problems in H^1 , Proc. Amer. Math. Soc. 93 (1985), 690-696.

6. E. HAYASHI, The kernel of a Toeplitz operator, Integral E_a. Oper. Theory 9 (1986), 589-591.

7. H. HELSON, Large analytic functions, Oper. Theory Adv. Appl. 43 (1989), 209-216.

8. H. HELSON, Large analytic functions 2, in Analysis and partial differential equations (C. Sadosky, ed., Marcel Dekker, Basel, 1990).

9. J. INOUE, An example of a non-exposed extreme function on the unit ball of H^1 , Proc. Edinburgh Math. Soc. 37 (1993), 47-51.

10. M. LEE and D. SARASON, The spectra of some Toeplitz operators, J. Math. Anal. Appl. 33 (1971), 529-543.

11. T. NAKAZI, Exposed points and extremal problems in H¹, J. Funct. Anal. 53 (1983), 224-230.

12. T. NAKAZI, Sum of two inner functions and exposed points in H^1 , Proc. Edinburgh Math. Soc. 35 (1992), 349–357.

13. T. NAKAZI, Extremal problems in H^p, J. Austral. Math. Soc. Ser. A 52 (1992), 103-110.

14. T. NAKAZI and K. TAKAHASHI, Hyponormal Toeplitz operators and extremal problems of Hardy spaces, *Trans. Amer. Math. Soc.* 338 (1993), 753-767.

15. D. SARASON, Making an outer function from two inner functions, preprint.

DEPARTMENT OF MATHEMATICS FACULTY OF SCIENCE HOKKAIDO UNIVERSITY SAPPORO 060 JAPAN