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FACTORIZATIONS OF OUTER FUNCTIONS AND EXTREMAL
PROBLEMS

by TAKAHIKO NAKAZI*
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The author has proved that an outer function in the Hardy space Hl can be factored into a product in which
one factor is strongly outer and the other is the sum of two inner functions. In an endeavor to understand
better the latter factor, we introduce a class of functions containing sums of inner functions as a special case.
Using it, we describe the solutions of extremal problems in the Hardy spaces H" for lgp<oo.
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1. Introduction

N, N + and Hp for 1 g p < oo denote the Nevanlinna class, the Smirnov class and the
Hardy space, respectively on the open unit disc U in the complex plane. A function h in
AT+ is called outer if it is not divisible in N+ by a non-constant inner function. A
function g in H1 is called strongly outer if the only functions / in H1 such that f/g is
non-negative are scalar multiples of g. If g is not outer and so g = qh for some inner q,
then f = (l + q)2h belongs to H1 and f/g=(l+q)2/q is non-negative. A norm one
function in H1 is outer if and only if it is an extreme point of the unit ball of Hl\l\. On
the other hand, a norm one function in Hl is strongly outer if and only if it is an
exposed point of the unit ball of H1 (cf. [2, 12]. Like outer functions, strongly outer
functions appear in many important areas, for example, function theory, operator theory
and prediction theory.

It is not difficult to give a characterization of a strongly outer function similar to the
above definition of an outer function. If g is divisible in H1 by a sum of two inner
functions qu q2 where qt + q2 is not constant and lmqlq2^Q almost everywhere, then
/ = — i(<h— <h)£/(<Zi + <72) ' s n o t a scalar multiple of g and f/g is non-negative because
— i(Qi~<h)/(<h + <fo)=0 almost everywhere. Thus g is not strongly outer. The converse is
also true by the following factorization theorem [12].

Theorem. If an outer function h in Hl is not strongly outer, then h=(qi+q2)g where
both qt and q2 are inner, Imq^q^Q almost everywhere, (<h—<h) * is summable and g is
strongly outer. If qx is a finite Blaschke product of degree n then so is q2.
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The aim of this paper is to gain a better understanding of this theorem and of the
sum of two inner functions. The sum of two inner functions appeared in H. Helson's
papers [7] and [8]. D. Sarason [15] examined cases in which the sum of two non-
constant inner functions is outer. In this paper, we introduce functions in H2 which
have the form; k = s + qs where s is in L2 and q is inner. If s= 1, then k = 1 +q. If s = qt

and q = qtq2 where qx and q2 are inner, then k = ql + q2. If / is the square of H2

function s + qs, then put q1=the inner part of f + iq and q2 = the inner part of f — iq-
Then Imq1q2^0, q±+q2 is non-constant and / is divisible in H1 by qx+q2. By the
remark above the Theorem, / is not strongly outer. The following factorization theorem
can be proved easily by a theorem of E. Hayashi ([5, 6]).

Theorem. If an outer function h in Hl is not strongly outer, then h=(s + qs)2g where q
is a non-constant inner function, s + qs is in H2 and g is strongly outer.

Proof. Suppose h = k2 and k is outer in H2. By a theorem of E. Hayashi ([4, 5]),

H2n(k/k~)H2=g0(H
2ezqH2)

and k/k~=qgo/go where q is inner and gl is strongly outer. Hence k = lg0 where
leH2QqzH2 and ql2^0. Put s = //2, then 1=s + qs and h = l2gl

In this theorem, we should like to be able to choose s + qs = ql + q2 for some inner
functions qY and q2. Unfortunately we could not do except in some special cases [12].
Note that by an example of J. Inoue [9], we cannot choose s + qs = l+q.

2. Bad parts of outer functions

In this section we study a function in H2 which has the form s + qs where s is in L2

and q is an inner function. If Y\J=I (Qj+Qj) where qj and q] are inner functions for
lg j^H, then nj=i (Qj+Qfi — s + Qs for g = rij=i QJQ'J- Two n a t u r a l questions are the
following: (1) When is s + qs an outer function? (2) When can s + qs be divisible in H2 by
l+q' where q' denotes some nonconstant inner function? The question (1) is related
with a paper of D. Sarason [15]. He studied it when s + qs is a sum of two inner
functions. The question (2) is related with a paper of J. Inoue [9]. By the second
theorem in the Introduction, Inoue's result is the following: There exists an outer
function / in H2 which is not divisible in H2 by any nonconstant l+q' but is divisible
in H2 by some nonconstant s + qs, where q and q' are inner functions. Because of the
first theorem in the Introduction, we are also interested in nonconstant outer function
qt+q2 such that both qt and q2 are inner functions, Imq1q2^0 almost everywhere and
(qi—q2)~

l is summable.

Proposition 1. Suppose s is a nonnegative function in N+ and s"1 is summable. If
i—s = qil where qy is an inner function and I is an outer function, then q2=(i + s/i—s)ql is
an inner function, q\+q2 is an outer function, Imq1q2^0 almost everywhere and
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(qi — q2)
1 is summable. If s is a rational function, then both qx and q2 are finite Blaschke

products of the same degree.

Proof. Since | ^ 2 | = 1 a e - o n SV and q2=(i + s)/l, q2 is inner. Since q1+q2 = 2il,
qi+q2 is outer. By a simple calculation,

Imqiq iiqi-q2) = ^ o ^

and so lmqlq2^0 a.e. on dU. Since (ql—q2)~
i=(i — s)/( — 2s) and s"1 is summable,

(qi — q2) ' is summable. If s is a rational function, by [7] the number of zeros of s — i
and that of s + i are equal. Hence qt and q2 are finite Blaschke products of the same
degree.

In Proposition 1, if s = —z/(l—z)2, then qt and q2 have degree one. However even if
qx and q2 have degree one and qv + q2 is outer, lmq±q2 is not necessarily non-negative.
In fact, suppose \a\ <1 and \p\ = 1 . Then, pz + p(z — a/l—dz) is outer if and only if
|Rep| ^ \a\, [15]. However Imz(z — a/l—dz) is not non-negative on 3U.

Proposition 2. Suppose s + qs is in H2, where q is an inner function and s is in L2.
Then s + qs is an outer function if and only if there exists a function t in L2 such that
s + (t — qi) is an outer function.

Proof. If l=s+(t — qi) is outer, then s + qs = l + qTeH2 and qTeH2. Hence qT=qol for
some inner function q0. Then s + qs = /(l + q(J) = /( l+q0) a n d hence s + qs is outer.
Conversely if s + qs = 21 is outer, then qT=l and hence s + qs = l + qT. Let k = l—s, then
k + qk=O and so k = t — ql, where t = k/2. Thus l = s+(t — qT) is outer.

Corollary 1. Suppose s + qs is in H2, where q is an inner function and s is in L2. If s
and q satisfy one of the following (1) ~ (3), then s + qs is an outer function.

(1) s is an outer function.
(2) q = qtq2 and s = qth where qx and q2 are inner functions, h is an outer function and
q2K=ahfor some complex number a.
(3) q = q^q2 and s =q^h where {qj}j=i,2,3 are inner functions, h is an outer function,
q2h~=q3h, and qx +q3 is an outer function.

Proof. (1) is clear by Proposition 2 and (2) is a special case of (3). For (3), let
t=(q3~qi)h/4, then

because q2h~=q3h. Hence t — qt=(q3 — ql)h/4 and so s + (t — qt)=(q3 + ql)h/2. This
implies (3) because qt + q3 is outer.

https://doi.org/10.1017/S0013091500023282 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500023282


538 TAKAHIKO NAKAZI

Proposition 3. Suppose qt is an inner function and s+qs is a non-zero function in H2,
where q is an inner function and s is in L2. Then s + qs is divisible in H2 by l+qt if and
only if there exists a function t in L2 such that q{s + (t—qi)} = q1{s+(t — qt)}. In
particular, if qs = qls then s + qs is divisible by 1

Proof. If there exists a function t in L2 such that q{s+(t — qt)} = q1{s + (t — qi)}, then
s + qs=s+t-qt + q(s + t-qt) = s + t-qt + ql(s + t-qi)=(s + t-qt)(l+q1) and hence s +
qs is divisible in Hz by 1 +qv Conversely if/=(s+^s)/(l + q1) is in H2, then

T.

and hence qT=qll. If k = l—s, then k = t—qt for some teL2 and hence l=s+(t—qi).
This implies that q{s + (t — qt)}=qi{s+(t-qf)}.

Corollary 2. Suppose s + qs is in H2, where q is an inner function and s is in L2.

(1) If s is an outer function and qs^as for any a. in C with \cc\ =1, then there exists a
non-constant inner function qx such that s + qs is divisible in H2 by 1 +q\.
(2) If h is an outer function, q^—q^q^h and s = q2h where qt and q2 are inner functions,
then s + qs is divisible in H2 by \+qv

(3) If q is a finite Blaschke product, then there exists a non-constant finite Blaschke
product qt such that s + qs is divisible in H2 by 1 +qlt or s + qs is not an outer function.

Proof. (1) Since s is outer, qs = qts for some inner function qx. By the hypothesis, qx

is non-constant and hence Proposition 3 implies (1).
(2) qs = q1q2h = q1s implies (2) by Proposition 3.
(3) Since q(s + qs)2^0 a.e. on dU and 4 is a finite Blaschke product, (s + qs)2 =
Y]]=1 (z-aj)(l-djZ)l2, where \a}\ g l ( l^ j^w) and / is outer in H2([2, 11]). Therefore if
s + qs is outer, then s + qs = Y[nj=i ( — aj)1/2(z-aj)l and \aj\ = 1 . Thus s + qs is divisible in
H2 by z-aj.

When <jj and q2 are inner functions, we write q1-<q2 if there exists a nonzero function
/ in H1 such that q~iq2

 = f/\f\- If both qx and q2 are finite Blaschke product, then
q^-<q2 is equivalent to (degree of qt)^(degree of q2). For each g in Hl, sing g denotes
the set of the unit circle on which g cannot be analytically extended.

Proposition 4. / / ^ j and q2 are inner functions and the inner part of qY+q2 is q, then
q<qi and q<q2.

Proof. Let qi+q2 = qh, then \qqi~h\ = | ^ 2 ~ ' l | =1. By a theorem of P. Koosis (cf.
[4, Chapter 4, Lemma 5.4]), q<qt and q<q2.
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Corollary 3. Suppose q^ and q2 are inner functions and qt + q2 = qh where q is an inner
function and h is an outer function.
(1) Ifql is a finite Blaschke product, then q is also a finite Blaschke product and (degree of
q)<L(degree of qx).
(2) If (sing ql)n(sing q2) is empty, then q is a finite Blaschke product.
(3) Suppose ql=exp(—(a + z)/(a — z)) and q2= —<xexp(—(b + z)/(b — z)), where \a\ = \b\ =
1, b=— a and | a | = 1 . J / a = l, then q = z or q is constant. If a.^1, then q is always
constant, that is, qi+q2 is an outer function.

Proof. (1) By Proposition 4, qqi = f/\f\ for some function feH1 and hence
Qiivf) = 0 a.e. on dU. If ql is a finite Blaschke product of degree m, qf =
Y\j=i ( z~a j )0~fl ; z ) ' a n d n^m where |a , | ^ l ( l ^ / ^ « ) and / is strongly outer. Hence q
is a finite Blaschke product of degree k and k^n.
(2) By Proposition 4, qqi = f/\f\ for some function feH1 and hence qqi=g/g for some
outer function geH2. Therefore q~iqg=g and so qgeH2 QqtzH2. Hence sing qi^sing
qg and by [10, Lemma 4], sing q^sing q. Similarly sing q2^sing q and by the
hypothesis q is a finite Blaschke product.
(3) By (2), q is a finite Blaschke product. If q(x) = 0 for some point xeU, then
exp( — (a+x)/(a—x)) = cc exp(—(b + x)/(b — x)) and hence

a+x b+x , .
= — h ip and p = t + inn

a—x b—x

where n is some integer and a=e". If p = 0 then q = z because a^b. Suppose p # 0 . Then

x — < l

If A and B are the solutions of the above quadratic equation, then AB = ab = — 1 and

This implies | A | = | B \ = 1 and contradicts | x | < 1.

(1) of Corollary 3 was proved by D. Sarason [15, Proposition 3]. Our proof is
different from his.

3. Projection

For each inner function q, we define two operators on I?
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and

If'q=l, then L^s) is the real part of s and L'^s) is the imaginary part of s. In general,
| Lq(s) | ^ | s | and | L'J^s) | g | s |. Hence L, and L', are contractive. Lq and Ẑ  commute
with multiplication operators by real valued functions in L00. Moreover on L2, we have
LqLq = Lq and LqL'q=0 and L̂  + L, is the identity operator. By results of the last section,
we are interested in a function s such that L^s) belongs to H2. Since q = (l + q)2/\ 1 + q\ 2,
we define qll2=(l + q)/\l+q\. Put

6s#q = \geH2: is a real valued function >.

Theorem 5. Let q be a non-constant inner function. Then

{seL2:

where L2
t = {seL2: s is a real valued function}. In particular, if s + qs belongs to H2 for

some s in L2, then s + qs = t + qTfor some t in H2.

Proof. If ges#q then u=g/(\+q) is real and g = u(l+q). Hence qg=g and so
Lq(g)=geH2. If s=iq1/2u and ueL2

R then L,(s) = 0. This implies that {seL2: Lq(s)eH2}
^s/q + iqit2L\. Conversely, suppose g=Lq\s)€H2. If # = 0, then s=—qs and s2 =
— ̂ | s | 2 . Hence (iqll2s)2 = —qs2— | s | 2 ^ 0 and so iq1/2s=—u is real. Thus s = iql/2u and
UBL\. If g#0, s + qs = 2g and

Put t = s/g—l, then t + T=O and so r = iu for some veL\. Hence s=g + ivg and
vg = qi/2u, where u = vqll2g is in L2

R. Thus s=g + iqil2u. This completes the proof of the
theorem.

Corollary 4. Let q be a non-constant inner function. Then

and hence H2 0 qzH2 = J / , + i$4q. Lq is the projection from H2 Q qzH2 onto si'q and has
kernel is/q.

Proof. If g&st- then g=v(l + q) for some real valued function v and so g=qil2u
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where u = v\ l+q\. Hence $0qaqil2L2
R and (q1 / 2L|)nH2 = j ^ r Now Theorem 5 implies

the corollary.

The proof of Theorem 5 is related to that of [14, Theorem 3]. The equality in
Corollary 4, that is, H2 QqzH2 = jtfq + is/q is known by [12, (1) of Theorem 3].

Corollary 5. Let q be an inner function.
(1) Ifq = z", then ^ , = {Ej=0 bj: bj = Bm.j}.
(2) Ifq = nr= i (-a,/\a,|) (z-aj\ -atz) and £,» , (1 - |a,\)< oo, then

_ f CiBj + CizB). \c,\
q~\k l • 4 ( l | | ) 2 ( l + k | )

where Bj = Y\l-l (-*Aaj\) (z-aj\-ap), ff} = \\r=i(-aj\at\)[z-aj\-ajz), ao = 0,
Bo = 1 and B'o = q.

Proof. (1) If seH2QqzH2, then s = Yj=oajzJ a n d hence s + qs = Yj=o («j + an_j)z7'.
Now corollary 4 implies (1).
(2) If seH2 Q qzH2, then by [1]

5 =

and Y,T= o | Cj-12 < oo. Hence

Now Corollary 4 implies (2).

A theorem of P. R. Ahern and D. N. Clark [1, Theorem 3.1], lets one describe s#q for
arbitrary inner function q.

4. Extremal problems

Let l^q^co and l /p+l / /=l . If <f>eLl, we denote by TJ the continuous functional
defined on the Hardy space Hp by
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= ] Reie)<i>(ei0)ddl2n.

A function / in H", which satisfies T£(/) = | |T$|| and | | / | | p g l , is called an extremal
function. A function (f> in L' is called an extremal kernel when | |$| | j = || T£||. The
existence and uniqueness of extremal functions and extremal kernels is known for
l < p ^ o o (cf. [3, Theorem 8.1]). For p=\, the situation is very different. An extremal
function may not exist, the dual extremal kernel always exists and is unique if an
extremal function exists (cf. [3, Theorem 8.1]). For p= l , the set S^ of all extremal
functions is defined by

St = {feHi-.Tl{f)=\\Tl\\ and

S^ has been described in general by E. Hayashi [5, 6]. In this section, we describe Ŝ
completely in ways different from that of E. Hayashi. Moreover using the result we
describe extremal kernels and extremal functions for 1 <p< oo.

Theorem 6. Suppose p = 1 and S^ is nonempty. Then there exist an inner function q
and a strong outer function g which satisfy the following (1)~(4).
(1) The unique extremal kernel ofT\ is q\g\/g.
(2) / is a member of S0 if and only if

s + qs\2

-rr~) 8'

where y is a positive constant, | | / | | i = l, q0 is an inner function, s is in H2 Q qzH2 and
(s + qs)/(l +q0) is an outer function in H2.
(3) / is a member of S^ if and only if

where y is a positive constant, \\f\\ i = 1, q0 is an inner function, t is in H2 Q qzH2 and
t + qq^i is an outer function in H2 0 qzH2.
(4) / is a member of S^ if and only if

where y is a positive constant, || / 1 | i = 1, and s and t are in H2 Q qzH2.

Proof. (1) is known from [5].
(2) If f = yqo(s + qs/l+qo)

2g, then
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g| Jgl
+ qs)2 g V

and hence / e S^. Conversely, if / e S^ and / = qoh2, where q0 is inner and h is outer,
then y1(l+q0)2/ i2eS^ for some positive constant yx. Since (l+qo)h is outer in H2, by a
theorem of E. Hayashi ([5, 6]),

H2 n qo(h/h~)H2 = qo(H
2 © qzH2)

and qo(h/E) = qq~0/q0, where q is inner and g=g%, is strongly outer. Hence (l+qo)h=kgo

where keH2 Q qzH2 and 4/c2 ̂  0. Since k e .s/,, by Corollary 4, fc = s + qs for some
function seH2 © qzH2. Now <JO/J belongs to go(H

2 © qzH2) because qoh = qo(k/h~)h~.
Therefore q0h/g0 belongs to H2QqzH2 and hence h/go=(s + qs)/(l+qo) belongs to
N+nL2 = H2. This implies (2).
(3) Put (s+qs)/(l+qo) = l in (2); then

T + go -
s Hoq'Z l + ^ o s + qs

Hence l=qq^l and so l=t + qq^i, where t = l/2eH2. This implies (3).
(4) By (2), the 'if part is clear. Conversely if feS^ then by (2) f = q0k

2g, where
/c = / / 2 ( s + qs)/(l+<a!o)- Since qqok

2=\k\2, qk~=qok and hence ksH2QqzH2. By Coroll-
ary 4, k = l + im for some functions /, mes/q and hence q1k = l—im for some inner
function <jr,. Thus q1k

2 = l2 + m2 and hence qqxk
2= \k\2. Therefore qi = q0. Corollary 4

implies (4) because f=y{l2 + m2}g.

If (s+qs)/( l+g0) belongs to H2, then go~<9 and (s + qs)/(l + q0) belongs to H2 Q
qzH2. In fact, if l = (s + qs)/(l+q0), then by the proof of (3) of Theorem 6, qT=qol.
Hence / belongs to H2QqzH2 and qo<q because qo1 = l2/\l\2- Theorem 7 and
Theorem 1 in [13] describe extremal kernels and extremal functions in case 1 < p < o o .

Theorem 7. Suppose l<p<co and \/p + l/l=l. Then $ is the unique extremal kernel
and f is the unique extremal function of T£ if and only if there exist an inner function q
and a strong outer function g which satisfy the following:

g
and

f-af~9° [l+qo)

where q0 is an inner function, || / 1 | „= 1, || 4> || ,= || T$ | | , seH2 0 qzH2 and (s + qs)/(l+• q0)
is an outer function in H2.
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Proof. If (f> is the unique extremal kernel and / is the unique extremal function of
T%, then by [13, Theorem 1]

0=^0*,/= II r; ||-'"eh1"
and

where h is outer with | 4> | = | h | and Q is the inner part of / . By Theorem 6,

where q and ^0 are inner, g is strongly outer, ||qo(s + qs/l +<zo)
2£|| i = *> seH2 QqzH2

and (s + qs)/(l+q0) is outer in tf2. Hence Q = q0, h=\\T'4>\\(s + qs/l+q0)
vlg1" and

M ' ' U|
Thus

and

Theorem 6 is a generalization of [11, Theorem 2]. Theorem 7 is a generalization of
[13, Theorem 2]. But the descriptions are different from the previous ones. In those
descriptions, the bad part qo(s + qs/l +q0)

21' is important. If / is an inner function, then
it is clear that ||f + zHl|| = | | / | | , for l ^ / ^ o o . If f = qo(s + qs/l +q0)

21', then, by
Theorem 8, | | / + zH'|| = | | / | | , for l<j/^oo. Theorem 8 also shows [13, Corollary 3].
To prove Theorem 8 we need the following lemma.

Lemma. Suppose 1 ^ / ̂  oo and f = qh is in H', where q is an inner function and h is
an outer function. Then | | / + zH'|| = | | / | | , if and only if qh2~'/\h\ 2~l is an inner
function.

Proof. For /#1 the lemma is known [13, Corollary 2]. Suppose /=1 . By [3, p. 133],
if HZ + zH11| = | | / 1 | „ then there exists an extremal function Qe//00 and \Q\ =1 a.e. on
{6; /(ei9)#0} and Qf^O a.e. on dU. Hence Q is inner and so / / | / | is inner. The
converse is clear.

Theorem 8. Suppose 1 ^ / ^ o o and f is a nonzero function in Hl.
(1) || f + zft21| = | / | | 2 for an arbitrary function f in H2.
(2) For 2</<oo, ifandonlyif
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where q and Q are inner functions with Qq
(3) For 1 ^ / < 2, || / + zH> \\ = \\f\\,tf and only if

where q and Q are inner functions with q<Q.
(4) Suppose l=oo and Sj is nonempty. Then Wf + zH^W = \\f\\oo if and only if f is an
inner function.

Proof. (1) is clear because / is orthogonal to zH2. Suppose f = qh where q is inner
and h is outer.
(2) If HZ + zT/ ' l^l l / l l , , then by Lemma qh2-'/\h\ 2'1 = Q is inner. Hence qQhl~2 =
\h'-2\. If l<t<l/l-2, then /i'-2etf' and so h'^eH1. Now Theorem 6 implies that

Hence h = (s + qs/l +Q)2"'2 and so f = q{s + qs/l + Q)2/l'2. Conversely if /
qs/l+Q)211'2, then h = (s + qs/l +Q) 2 / ' " 2 and hence

h"2 _-(s + qs)2 \l+Q\2_
q \h\'-2 \l+Q)2 \s + qs\2

The lemma implies
|| ||

\ f + zHl \\ = \\f \\i-
\\

p \ \\ \\f \\
(3) If | | / + ztt'|| = | f\\b then by the lemma qh2~ll\h\ 2~' = Q is inner. Hence Qqh2~'
\h\2-' and h2~leHl because h'eH1 and / > 2 - / > 0 . Again by Theorem 6

and q<Q.

Hence h = {s + Qs/l +q)2'2~l and so f = q{s + Qs/l+q)2'2'1. Conversely if /
q(s + Qs/\+q)2/2-1, then

)2 \s + Qs\

The lemma implies | | / + zff'|| =
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(4) If Sf is nonempty and || f + zHx || = || / ||co> then / is inner by Theorem 6.
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