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Supersonic flow over a hollow cylinder/flare with a free-stream Mach number of 2.25
is numerically investigated in this study. Axisymmetric computational fluid dynamics
simulations and global stability analysis (GSA) are performed for a wide range of cylinder
radii and flare deflection angles. The onset of incipient and secondary separation is delayed
as the cylinder radius is decreased due to the axisymmetric effects. The GSA reveals
that a decrease in cylinder radius also postpones the emergence of global instability. The
GSA results agree well with the results of direct numerical simulations for a supercritical
case in the linear stage. The saturated flow exhibits pairs of unsteady streamwise streaks
downstream of reattachment. The criterion of the global stability boundary established for
supersonic flow over a compression corner (Hao et al., J. Fluid Mech, vol. 919, 2021, A4)
is extended to its axisymmetric counterpart.

Key words: boundary layer separation, supersonic flow, absolute/convective instability

1. Introduction

Supersonic flow over a hollow cylinder/flare, which is the axisymmetric equivalent of a
two-dimensional compression corner, is a canonical case of shock-wave/boundary-layer
interaction (Babinsky & Harvey 2011). In addition to free-stream conditions such as the
Mach number, Reynolds number and wall temperature ratio, hollow-cylinder/flare flows
are significantly influenced by axisymmetric effects, which were theoretically illustrated
by the asymptotic triple-deck theory (Neiland 1969; Stewartson & Williams 1969). Huang
& Inger (1983) found that the incipient separation angle increases with body slenderness
for axisymmetric flows. Kluwick, Gittler & Bodonyi (1984) found that the interaction
region decreases in size as the cylinder radius is decreased and that incipient separation
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occurs at a significantly higher deflection angle for the hollow-cylinder/flare flow than for
the two-dimensional counterpart. Furthermore, Gittler & Kluwick (1987) revealed that the
secondary separation angle for a hollow-cylinder/flare geometry considerably exceeds that
for the corresponding compression corner flow.

Similar to supersonic compression corner flows, the presence of streamwise streaks
near reattachment was widely observed in hollow-cylinder/flare flow experiments. Ginoux
(1971) unveiled spanwise variations in skin friction over a hollow cylinder/flare at Mach
5.3 using a sublimation flow visualization technique. Benay et al. (2006) performed an
experimental study of a Mach 5 hollow-cylinder/flare flow and observed periodic and
steady streamwise streaks near flow reattachment using surface oil-flow visualization
with various Reynolds numbers. As a continuation, similar experiments were recently
performed by Lugrin et al. (2022) at Mach 5 with three different Reynolds numbers. They
observed streamwise streaks with different wavenumbers near reattachment and oblique
modes travelling in the shear layer above the recirculation zone using a spectral proper
orthogonal decomposition of surface infrared and high-speed schlieren images.

Despite broad experimental observations, the origin of streamwise streaks is not entirely
understood. Both convective and global instabilities can be responsible. For instance,
Görtler instability is generally considered to induce these streaks (Ginoux 1971; Inger
1977). Dwivedi et al. (2019) performed a resolvent analysis of a Mach 8 compression
corner flow subject to upstream disturbances and suggested that the streaks were induced
by baroclinic effects. Benitez et al. (2020) performed experiments to investigate the
stability of an axisymmetric sharp cone-cylinder-flare flow at Mach 6 and observed
low-frequency travelling waves in the shear layer. Paredes et al. (2022) then revealed
that the oblique first modes accounted for the low-frequency disturbances. Lugrin et al.
(2021b) performed a high-fidelity simulation of a hollow-cylinder/flare flow at Mach
5 with the inflow perturbed by white noise. The nonlinear interaction of the oblique
first modes was found to induce reattachment streaks. As for the global instability, a
three-dimensional numerical simulation of a hypersonic hollow-cylinder/flare flow by
Brown et al. (2009) showed that, beyond a critical Reynolds number, the steady-state
axisymmetric flow bifurcated into an unsteady three-dimensional flow without introducing
any external disturbances. Similar bifurcation was observed for shock impingement on a
flat plate (Robinet 2007) and hypersonic flow over a compression corner (Egorov, Neiland
& Shredchenko 2011).

The method of global stability analysis (GSA), which examines the temporal stability
of small disturbances imposed on a steady base flow with spatial variation, has been
widely employed to investigate global instabilities in two-dimensional and axisymmetric
problems. Sidharth et al. (2018) applied GSA to a Mach 5 double-wedge flow and
found the emergence of three-dimensional perturbations developed from the nominally
two-dimensional flow beyond a critical angle. The streamwise deceleration of the
separated flow, rather than Görtler instability, was considered to induce these streaks.
Direct numerical simulations (DNS) performed by Cao et al. (2021) found the formation
of streamwise heat flux streaks downstream of reattachment for a Mach 7.7 compression
corner flow with low-frequency unsteadiness. The satisfactory agreement between the
DNS and GSA results indicated that the unsteadiness of the compression corner
flow originated from global instabilities. Hao et al. (2021) investigated the effects
of ramp angles and wall temperatures on the emergence of global instability for a
hypersonic compression corner flow at Mach 7.7. A stability boundary in terms of a
scaled deflection angle defined in the triple-deck theory was proposed to predict the
presence of global instability. The global stability boundary was further extended to the
high-enthalpy flow regime by Hong et al. (2022) for a hypersonic double-wedge flow.
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Figure 1. Schematic view of the hollow-cylinder/flare configuration.

They found an insensitivity of the three-dimensional global instability to thermochemical
non-equilibrium modelling.

A GSA was also applied to hypersonic axisymmetric flows. Tumuklu, Theofilis &
Levin (2018) studied the unsteadiness of an axisymmetric hypersonic double-cone flow
at Mach 16 but only revealed temporally stable modes. Hao et al. (2022) recently
investigated a hypersonic 25°–55° double-cone flow at Mach 11.5 with varying unit
Reynolds numbers. The GSA found that a three-dimensional global instability that was
azimuthally periodic occurred beyond a critical Reynolds number. Paredes et al. (2022)
studied a sharp cone-cylinder-flare flow at Mach 6 with varying flare half angles and
nose tip radii. A critical flare angle for global instability was determined by GSA. Lugrin
et al. (2021a) characterized two dominant modes for a hollow-cylinder/flare flow at
Mach 6 with a transitional Reynolds number using GSA. Cerulus, Quintanilha & Theofilis
(2021) investigated a supersonic hollow-cylinder/flare flow at Mach 3. However, they
merely considered a low flare deflection angle of 10° with a marginal separation region.
Consequently, only stable global modes were obtained.

To facilitate a deeper understanding of three-dimensionality and unsteadiness in
shock-induced separated flows, this study investigates the axisymmetric effects on the
global stability of supersonic hollow-cylinder/flare flows with varying cylinder radii and
flare deflection angles through computational fluid dynamics (CFD) simulations and
GSA. Direct numerical simulations are carried out to verify the GSA prediction and
manifest the nonlinear development of the three-dimensionality. The CFD and GSA
results are interpreted using triple-deck theory to determine the critical incipient and
secondary separation angles and the global stability boundary. In this paper, the influence
of axisymmetric effects on the global stability for a supersonic hollow-cylinder/flare flow is
discussed in detail. A stability boundary in terms of the flare deflection angle is established
for hollow-cylinder/flare flows with varying cylinder radii, which is an extension of
the planar counterpart (Hao et al. 2021). The evolution of three-dimensionality and
unsteadiness for the supercritical hollow-cylinder/flare flow is found to be associated with
intrinsic instabilities.

2. Geometric configuration and flow conditions

The hollow-cylinder/flare geometry is shown in figure 1. The length of the cylinder is set
to L = 0.1 m. The cylinder radius R is varied to investigate the axisymmetric effects, while

975 A40-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

86
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.865


C. Li and J. Hao

the flare deflection angle α is adjusted to generate different stages of flow separation. Three
typical cylinder radii are considered here: R/L = 0.2, 0.5 and 1.0. Numerical simulations
and stability analysis are also performed for the two-dimensional counterpart of the
hollow-cylinder/flare model, namely, a compression corner, which represents a limiting
case where R/L =∞. The coordinate system is established with the origin at the centre
of the cylinder on the leading-edge plane, the x direction along the cylinder axis, the r
direction perpendicular to the axis and the φ direction satisfying the right-hand rule.

The free-stream flow conditions are taken from the experiment of Leblanc &
Ginoux (1970): the free-stream streamwise velocity u∞ = 539.5 m s−1, the free-stream
temperature T∞ = 143.1 K, the free-stream density ρ∞ = 2.246 × 10−2 kg m−3, the
free-stream Mach number M∞ = 2.25 and the free-stream unit Reynolds number
Re∞ = 1.2 × 106 m−1. The wall temperature is set to Tw = 293 K. The air is assumed
to be calorically perfect. The specific heat ratio γ is set to 1.4. The dynamic viscosity is
calculated from Sutherland’s law. The flow-field variables are non-dimensionalized using
free-stream quantities.

3. Numerical methods

3.1. Governing equations and base-flow solver
The governing equations are the compressible Navier-Stokes equations for a calorically
perfect gas

∂U
∂t

+ ∂F
∂x

+ 1
r

∂(rG)

∂r
+ 1

r
∂H
∂φ

= 1
r

Q, (3.1)

where U is the vector of conserved variables, F , G and H are the vectors of fluxes and Q
is the vector of source terms. See Hao et al. (2022) for detailed expressions of the vectors.

The base-flow solutions are obtained using an in-house multiblock parallel finite-volume
solver called PHAROS (Hao, Wang & Lee 2016; Hao & Wen 2020). The inviscid fluxes are
calculated by the modified Steger–Warming scheme (MacCormack 2014). The scheme is
extended to second order by the monotone upstream-centred schemes for conservation law
reconstruction (van Leer 1979). The viscous fluxes are computed using the second-order
central difference. An implicit line relaxation method (Wright, Candler & Bose 1998) is
used for pseudo-time stepping.

The free-stream conditions are implemented at the upper and left boundaries, while
zero-order extrapolations of flow variables are used for the outlet boundary. The wall
is set as no slip and isothermal. The Courant–Friedrichs–Lewy number is set to 103 for
pseudo-time stepping. The numerical convergence is determined for a steady state when
the density residual decays by more than nine orders of magnitude and the size of the
separation region remains constant in successive iterations.

3.2. Global stability analysis
The onset of three-dimensionality is investigated by evaluating the stability of the
axisymmetric base flow to azimuthally periodic perturbations; U is divided into an
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axisymmetric steady solution and a three-dimensional small-amplitude disturbance as

U(x, r, φ, t) = Ū(x, r) + U ′(x, r, φ, t), (3.2)

where the overbar and prime represent the base-flow and perturbation variables,
respectively. Substituting (3.2) into (3.1) gives the linearized Navier–Stokes (LNS)
equations. The parameter U′ is expressed in the following modal form:

U ′(x, r, φ, t) = Û(x, r) exp[−iωt + imφ], (3.3)

where Û , ω and m denote the axisymmetric eigenfunction, eigenvalue and azimuthal
wavenumber, respectively. Here, m = 2π/λ, where λ is the azimuthal wavelength. Note
that m must be an integer with m = 0 representing an axisymmetric mode. Substituting
(3.3) into the LNS equations and discretizing the result with a second-order finite-volume
scheme (Hao et al. 2022) yields an eigenvalue problem

AÛ = ωÛ, (3.4)

where A is the global matrix composed of Jacobians of the inviscid and viscous fluxes
and source terms. In the discretization, the modified Steger–Warming scheme is applied
to obtain the inviscid fluxes near discontinuities detected by a shock sensor (Hendrickson,
Kartha & Candler 2018), while a central scheme is implemented in smooth regions to
suppress numerical dissipation (Hao et al. 2021). The second-order central difference is
employed for the viscous fluxes. The boundary conditions are consistent with those in the
base-flow simulation. The implicitly restarted Arnoldi method implemented in ARPACK
(Sorensen et al. 1996) is employed to solve the eigenvalue problem for a given m. Sponge
layers are set near the inflow and outflow boundaries to avoid the reflection of perturbations
(Mani 2012). The real and imaginary parts of the eigenvalues, ωr and ωi, represent the
angular frequency and growth rate of the perturbation, respectively. An unstable mode is
indicated by a positive ωi. Note that the spanwise wavenumber β is used in the planar
regime.

3.3. Triple-deck theory
To theoretically describe the behaviours of flow separation, Neiland (1969) and Stewartson
& Williams (1969) proposed the supersonic triple-deck theory using asymptotic analysis.
The interaction region is divided into three parts (a lower deck, a middle deck and an
upper deck) dominated by varying governing equations. The upper deck with a vertical
length scale of O(Re−3/8) governed by the Prandtl–Glauert equations is inviscid and
irrotational, whereas the middle deck with a vertical length scale of O(Re−1/2) is inviscid
and rotational. In the upper and middle decks, simple analytical solutions are obtained
(Rizzetta, Burggraf & Jenson 1978). In the lower deck with a vertical length scale of
O(Re−5/8), where the flow is viscous and incompressible, the governing equations are
reduced to the incompressible boundary-layer equations by introducing the following
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scaled variables (Rizzetta et al. 1978; Ruban 1978; Gittler & Kluwick 1987):

x∗ = Re3/8C−3/8λ5/4(M2∞ − 1)
3/8

(
Tw

T∞

)−3/2 x − L
L

,

y∗ = Re5/8C−5/8λ3/4(M2∞ − 1)
1/8

(
Tw

T∞

)−3/2 y − R
L

,

p∗ = Re1/4C−1/4λ−1/2(M2∞ − 1)
1/4 p − p∞

ρ∞u2∞
,

α∗ = Re1/4C−1/4λ−1/2(M2∞ − 1)
−1/4

α,

R∗ = Re3/8C−3/8λ5/4(M2∞ − 1)
7/8

(
Tw

T∞

)−3/2 R
L

,

u∗ = Re1/8C−1/8λ−1/4(M2∞ − 1)
1/8

(
Tw

T∞

)−1/2 u
u∞

,

v∗ = Re3/8C−3/8λ−3/4(M2∞ − 1)
−1/8

(
Tw

T∞

)−1/2
v

u∞
,

A∗ = Re5/8C−5/8λ3/4(M2∞ − 1)
1/8

(
Tw

T∞

)−3/2 A
L

,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.5)

Re = ρ∞u∞L
μ∞

, C = μwT∞
μ∞Tw

. (3.6a,b)

Here, x* and y* are the scaled streamwise and radial coordinates, respectively; p* is the
scaled pressure; α* is the scaled deflection angle; R* is the scaled cylinder radius; u* and
v* are the scaled axial and radial velocities, respectively; A* is the scaled displacement
thickness; Re is the Reynolds number; C is the Chapman–Rubesin parameter; λ is a value
determined by the slope of the velocity profile at the wall in the coming boundary layer.
For a Blasius boundary layer, λ equals 0.33206. For R/L = 0.2, 0.5 and 1.0, R* = 4.948,
12.37 and 24.74, respectively.

According to Gittler & Kluwick (1987), the governing equations for hollow-cylinder/flare
flows in the lower deck are

∂u∗

∂t∗
+ u∗ ∂u∗

∂x∗ + v∗ ∂u∗

∂y∗ = −dp∗

dx∗ + ∂2u∗

∂y∗2 ,

∂u∗

∂x∗ + ∂v∗

∂y∗ = 0,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.7)

with the following boundary conditions: u* = v* = 0 for y* = F*(x*); u* = y* + A*(x*) as
y* →∞; u* = y* as x* →−∞. The shape function F* is defined as

F∗(x∗) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 x∗ < −ε,

α∗

4ε
(x∗2 + 2εx∗ + ε2) −ε ≤ x∗ ≤ ε

α∗x∗ x∗ > ε,

, (3.8)
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where ε is the rounding parameter with ε = 0 representing a sharp corner. All subsequent
triple-deck calculations are performed with ε = 1. With Prandtl’s transposition theorem

z∗ = y∗ − F∗(x∗),
w∗ = v∗ − u∗F∗′(x∗),

}
(3.9)

the above governing equations are written as

u∗ ∂u∗

∂x∗ + w∗ ∂u∗

∂z∗ = −dp∗

dx∗ + ∂2u∗

∂z∗2 ,

∂u∗

∂x∗ + ∂w∗

∂z∗ = 0,

⎫⎪⎬
⎪⎭ (3.10)

with the boundary conditions: u* = w* = 0 at z* = 0; u* → z* + A*(x*) + F*(x*) for
z* → ∞; u* → z* for x* → −∞. The interaction law describing the correlation between
the induced pressure and displacement thickness is given by

p∗(x∗) = −∂A∗

∂x∗ + 1
R∗

∫ x

−∞
W

(x − ξ

R∗
)

A∗′
(ξ) dξ . (3.11)

Here,

W(z) =
∫ ∞

0

e−λz

K2
1(λ) + π2I2

1(λ)

dλ
λ

(3.12)

is the function introduced by Ward (1948), where I1 and K1 are the modified Bessel
functions of the first kind and the second kind, respectively.

The steady solutions of (3.10) are obtained by an explicit finite difference method that
is first order in time integration and second order in spatial discretization. Specifically,
a second-order backward or forward difference scheme is applied to approximate the
streamwise convection term depending on whether u* is positive or negative. The scaled
wall shear stress is obtained by τ* = ∂u*/∂y*.

4. Results

4.1. General flow features
Base flows are obtained for a hollow cylinder/flare with a series of cylinder radii and
flare deflection angles and its two-dimensional counterpart with different ramp angles.
For convenience, the critical deflection angles for incipient and secondary separation are
denoted by α1 and α2, respectively.

The skin friction coefficient Cf and surface pressure coefficient Cp are defined as

Cf = τw

0.5ρ∞u2∞
, Cp = pw

0.5ρ∞u2∞
, (4.1a,b)

where τw and pw are the skin shear stress and surface pressure, respectively. The locations
of the separation and reattachment points are identified when Cf crosses zero upstream
and downstream, respectively. The size of the separation region Lsep is measured from the
separation point to the reattachment point along the x-axis. A grid independence study (see
Appendix A) shows that 600 × 350 grid points are sufficient for both CFD simulations and
GSA. The triple-deck calculations are performed for the axisymmetric and planar flows
with 1000 × 200 and 800 × 200 grid points, respectively. A good agreement is observed
between the obtained triple-deck solutions and data in the literature (see Appendix B).
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Figure 2. The skin friction coefficient distributions for (a) R/L = 0.2, (b) R/L = 0.5, (c) R/L = 1.0 and
(d) R/L =∞ at different deflection angles with enlarged views near the juncture (PHAROS). Open symbols:
separation and reattachment points. Horizontal dashed line: zero skin friction. Vertical dashed line: juncture.

Figure 2 presents the skin friction curves at various deflection angles for different
cylinder radii R/L = 0.2, 0.5, 1.0 and ∞. The open symbols represent the separation and
reattachment points. The enlarged views near the juncture are also displayed. Following
an initial decrease upstream of separation due to the development of the laminar boundary
layer, Cf experiences a rapid decay near the separation point to the first local minimum
and then a gradual growth along the cylinder. Downstream of the juncture, a downward
trend of Cf to the second local minimum is observed in the separation region. After
the noticeable second local minimum, the skin friction progressively increases around
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Figure 3. The (a) scaled length of the separation region as a function of α*3/2 and (b) magnitude of the
second minimum in Cf as a function of α* for axisymmetric and planar configurations (PHAROS).

the reattachment point. The existence of two local minima in Cf inside the separation
zone indicates a fully separated flow. As α is increased, the extent of the separation
zone accordingly grows. The magnitudes of both the second minimum and the local
peak near the juncture also increase with increasing α. These features are similar to the
findings in compression corner flows (Smith & Khorrami 1991; Korolev, Gajjar & Ruban
2002; Shvedchenko 2009; Gai & Khraibut 2019). Beyond a threshold deflection angle
α2, secondary separation occurs, which is characterized by a positive local peak near
the juncture. The secondary bubble emerges at 15° ≤ α2 ≤ 16° for R/L = 0.2. When the
cylinder radius is increased to R/L = 0.5 and 1.0, α2 decreases to 14°–15° and 13°–14°,
respectively. It is observed that the emergence of secondary separation is delayed to
a higher deflection angle when the cylinder radius is decreased. With respect to the
compression corner flow (R/L =∞), the critical ramp angle for secondary separation
is 11°–12°, which is lower than those for the axisymmetric flows. The above results
can be interpreted by the triple-deck theory through the scaled deflection angle α*
to determine the critical angles for incipient separation and secondary separation. For
R/L = ∞ (R* = ∞), secondary separation occurs at α* = 4.51–4.92. As the cylinder radius
is decreased to R/L = 1.0, 0.5 and 0.2 (R* = 24.74, 12.37 and 4.948), the occurrence of
secondary separation is delayed to α* = 5.33–5.74, 5.74–6.15 and 6.15–6.57, respectively.
Additional CFD simulations show that the critical angles for incipient separation are
α* = 1.64–2.05 for R* = 4.948 and 12.37 and α* = 1.23–1.64 for R* = 24.74 and ∞.

As seen in figure 2, the length of the separation region and the magnitude of the second
minimum in Cf depend on the deflection angle α for a given cylinder radius. Burggraf
(1975) and Korolev et al. (2002) showed a linear dependence between L∗

sep and α*3/2 for
a compression corner based on the triple-deck theory. Here, L∗

sep is plotted versus α*3/2

for varying scaled cylinder radii R* in figure 3(a). The linear dependence still holds for
hollow-cylinder/flare flows with the slope decreasing as the cylinder radius is decreased.
Korolev et al. (2002) also noted that the magnitude of the wall shear stress minimum ahead
of reattachment |τw,min| is proportional to α* for a compression corner flow. Figure 3(b)
presents the variations in |Cf ,min| against α* for the considered cases. It is confirmed that
a linear relationship between |Cf ,min| and α* is satisfied for both the compression corner
and hollow-cylinder/flare flows.

In figure 4, the scaled length of the separation region and the magnitude of the second
skin friction minimum are plotted against the scaled cylinder radius for varying deflection
angles. In figure 4(a), as the cylinder radius is increased, the size of the separation bubble
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Figure 4. The (a) scaled length of the separation region and (b) magnitude of the second minimum in Cf as a
function of R* for varying deflection angles (PHAROS). Horizontal dashed line: the limiting planar results.
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Figure 5. The distributions of the surface pressure coefficient for (a) R/L = 0.2, (b) R/L = 0.5, (c) R/L = 1.0 and
(d) R/L =∞ with different deflection angles (PHAROS). Open symbols: separation and reattachment points.
Vertical dashed line: juncture.

experiences an increase and eventually converges to the planar results denoted by the
dashed lines. Similarly, the magnitude of the friction minimum grows with increasing
R* and approaches the planar data in figure 4(b).

The surface pressure coefficients for various cylinder radii and deflection angles are
shown in figure 5. The initial rise in surface pressure upstream of the separation point is
governed by the free-interaction process (Chapman, Kuehn & Larson 1958). Downstream
of separation, a pressure plateau forms, and both its size and magnitude increase with
increasing α. A small ‘dip’ can be observed near the juncture at the end of the pressure
plateau for large α, which becomes progressively noticeable as α is increased. This local
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Figure 6. Contours of (a) density gradient magnitude and (b) non-dimensional pressure scaled by ρ∞u2∞
with streamlines superimposed for R/L = 0.5 at α = 14° (left column) and 15° (right column) (PHAROS).

drop indicates a local low-pressure region near the juncture, which is consistent with
the observations in compression corner and double-cone flows (Smith & Khorrami 1991;
Korolev et al. 2002; Gai & Khraibut 2019; Hao et al. 2022). Near the reattachment point,
Cp experiences a drastic rise, which becomes steeper with increasing α. This pressure
climb continues until Cp reaches the peak value, which grows with α.

For R/L = 0.5, figure 6 presents the density gradients in the separation region and the
non-dimensional pressure scaled by ρ∞u2∞ in the juncture region at α = 14° and 15°.
At α = 14°, the primary vortex core is located over the flare surface downstream of
the juncture, and the secondary separation bubble is not seen. At α = 15°, a secondary
vortex emerges beneath the primary bubble close to the juncture, while the primary
bubble fragments into two vortices. A smaller secondary bubble also appears on the flare.
At α = 14°, there is a low-pressure zone near the vortex core, which may balance the
centrifugal force of a fluid element rotating about the core (Jeong & Hussain, 1995). The
‘dip’ in Cp is assumed to reflect this low-pressure zone on the flare. As α grows, the low
pressure near the primary vortex core remains almost unchanged, while the pressure in
the upstream part of the separation zone increases in accordance with the change in the
plateau pressure (see figure 5).

The axisymmetric effects are then studied by comparing the solutions with different
cylinder radii. Figure 7 presents the distributions of Cf and Cp at two deflection angles,
α = 5° and 13°. The open symbols represent the separation and reattachment points.
A detailed view of the skin friction distributions near the juncture at α = 13° is also
shown here. As α = 5° is slightly higher than the incipient separation angle, only a
marginal separation region is observed, and a pressure plateau has not yet formed. At
α = 13°, the emergence of two local minima in Cf and a constant plateau in Cp suggests
a large separation region. As R is decreased, the surface pressure upstream of separation
gradually decreases (Kluwick et al. 1984; Kluwick, Gittler & Bodonyi 1985), whereas
the skin friction shows an opposite trend (White & Majdalani 2006). The length of the
separation region and the magnitude of the local minima of Cf both increase with R for
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Figure 7. The distributions of the skin friction coefficient (left column) and surface pressure coefficient (right
column) for varying cylinder radii at (a) α = 5° and (b) α = 13° (PHAROS). Horizontal dashed line: zero skin
friction for Cf , pressure predicted by the oblique shock relations (upper) and conical shock relations (lower) for
Cp. Vertical dashed line: juncture.

a fixed α, which corresponds to figure 4. Furthermore, the plateau and peak pressures
both grow with increasing R. The pressure overshoot on the flare surface is due to the
strong compression waves induced by flow reattachment. In fact, if the flow is inviscid, the
pressure immediately downstream of the juncture obeys the oblique shock relations. Due
to the axisymmetric effects on the viscous–inviscid interaction, the oblique shock solution
can never be achieved. When R is progressively increased to recover the two-dimensional
case, the surface pressure far downstream of reattachment increasingly approaches the
value predicted by the oblique shock relations. Conversely, as the cylinder body becomes
slenderer, the decay of Cp to a lower limit value determined by the conical shock relations
becomes more rapid. Such trends in Cp on the flare are indicative of the axisymmetric
effects.

Figure 7 demonstrates that for a given α, the axisymmetric effects decay with increasing
R, and the separation and reattachment processes are milder in an axisymmetric flow than
in its two-dimensional counterpart. The length of the separation region, the peak and
plateau pressures and the skin friction minima increase with increasing R and eventually
recover to the two-dimensional solutions. Furthermore, the occurrence of both incipient
and secondary separation is postponed with decreasing R, which is indicative of more
pronounced transverse curvature effects. As R is decreased, the axisymmetric effects
lead to a slightly higher Cf upstream of separation and a decreasing pressure overshoot
downstream of reattachment, thus reducing the size of the separation bubble and delaying
the occurrence of separation.
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Figure 8. The scaled wall shear stress distributions obtained by the triple-deck theory for different cylinder
radii (a) R* = 4.948, (b) R* = 12.37, (c) R* = 24.74 and (d) R* =∞ at various deflection angles (triple-deck
solutions). Vertical dashed line: juncture. Horizontal dashed line: scaled wall shear stress of zero and one.

Despite a general overestimation of the size of the separation region (Katzer 1989),
the triple-deck theory is accurate in anticipating the occurrence of flow separation.
Figure 8 presents the distributions of scaled wall shear stress for hollow-cylinder/flare
flows and compression corner flows by solving the triple-deck equations at varying α*.
Note that, due to the rounded juncture, the minimum shear stress emerges upstream of the
juncture when α* is small (Kluwick et al. 1984). The distributions of wall shear stress
for axisymmetric flows are generally consistent with those for two-dimensional flows. The
incipient separation emerges at α∗

1 = 2.05–2.46 for R* = 4.948 and 12.37, and 1.64–2.05
for R* = 24.74. For compression corner flows, the critical angle for incipient separation
is 1.64 ≤ α∗

1 ≤ 2.05. The exact calculations give α∗
1 ≈ 1.85, which is in reasonable

agreement with the values obtained by Cassel, Ruban & Walker (1995), Grisham, Dennis
& Lu (2018) and Exposito, Gai & Neely (2021). This value is higher than the typical value
of 1.57 (Rizzetta et al. 1978; Ruban 1978) due to a rounded corner. The critical incipient
separation angle for an axisymmetric flow is much higher than that for the corresponding
planar problem and increases with decreasing cylinder radius, which corresponds well
with the findings of Huang & Inger (1983) and Kluwick et al. (1984). Similar trends
are observed for the occurrence of secondary separation. For the planar case, secondary
separation is observed at 4.10 ≤ α∗

2 ≤ 4.51, which agrees well with the results of Smith
& Khorrami (1991), Korolev et al. (2002), Shvedchenko (2009) and Gai & Khraibut
(2019). For the axisymmetric flow, the critical angle of secondary separation decreases
from 6.15–6.57 for R* = 4.948 to 5.33–5.74 for R* = 12.37 and 4.92–5.33 for R* = 24.74.
In effect, the triple-deck solutions show that the critical deflection angles of both incipient
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Figure 9. The scaled length of the separation region as a function of (a) α*3/2 for R* = 12.37 and ∞ and
(b) R* for a constant deflection angle α* = 3.69 (PHAROS and triple-deck solutions). Open symbols: base-flow
data. Solid symbols: triple-deck data. Horizontal dashed line in (b): limiting planar results.

and secondary separation decrease with increasing cylinder radius and eventually approach
the values for the compression corner case. Although triple-deck theory generally provides
a slight overprediction of the incipient separation angles and a marginal underprediction of
the secondary separation angles, the triple-deck solutions exhibit the same overall trends
as the CFD solutions in terms of the axisymmetric effects.

It is significant to quantitatively assess the accuracy of the triple-deck theory in terms
of estimating the length of the separation region. Despite satisfactory qualitative results,
Burggraf et al. (1979) found that the quantitative accuracy was only obtained at very high
Reynolds numbers. Katzer (1989) indicated an overprediction of the separation region
for finite Reynolds numbers. The discrepancy was found to increase with increasing
Mach number and decreasing Reynolds number. With respect to the influence of wall
temperature, Exposito et al. (2021) revealed an overestimation of the triple-deck theory
for Tw/T0 ≥ 0.15 and an underestimation for Tw/T0 ≤ 0.15. Figure 9 compares the scaled
length of the separation region obtained by both triple-deck and CFD solutions. Similar
to figure 3, the triple-deck results exhibit a linear trend with α*3/2 for both planar and
axisymmetric cases in figure 9(a). However, the noticeable discrepancy of the triple-deck
and base-flow results in their slopes indicates a general overprediction of the triple-deck
theory. The overestimation substantially grows with α because the linearized theory
assumed in triple-deck theory no longer holds for higher α. The influence of cylinder
radius is taken into consideration in figure 9(b). The discrepancy between the base-flow
results and the triple-deck data increases as the cylinder radius is increased. The triple-deck
theory in the axisymmetric regime assumes that the scaled body radius satisfies R* ∼ O(1)
(Huang & Inger 1983; Kluwick et al. 1984). Therefore, a better estimation is obtained for a
slightly smaller body radius (Kluwick et al. 1985). As the cylinder radius is increased, the
interaction law which relates the pressure and displacement thickness is not appropriate
for consideration, thus leading to the overestimation of the length of the separation region.
The hot wall (Tw/T0 = 1.02) in the present instance also contributes to the overestimation
in figure 9 (Exposito et al. 2021).

The above discussion reveals that the triple-deck theory provides a satisfactory
prediction for the occurrence of incipient and secondary separation. However, this
asymptotic theory exhibits limitations in quantitatively estimating the length of the
separation region.
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Supersonic flow over a hollow cylinder/flare
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Figure 10. Variations in the growth rates of the most unstable modes as a function of spanwise wavenumber
at different flare deflection angles for R/L =∞ (GSA). Vertical dashed line: the most unstable wavenumber.
Horizontal dashed line: zero growth rate.

4.2. Occurrence of global instability
To identify the global stability of azimuthally periodic perturbations imposed on the base
flows, GSA is performed over a wide range of azimuthal wavenumbers with a series of
cylinder radii and flare deflection angles.

The global instability of the appropriate compression corner flow is considered first.
Figure 10 shows the growth rates of the most unstable modes as a function of the spanwise
wavenumber for various deflection angles. At the lowest deflection angle α = 9°, only
stable modes are observed. At α = 10°, the compression corner flow becomes globally
unstable with the presence of a stationary unstable mode whose largest growth rate occurs
at βL = 16.9 (λ/L = 0.37). When α is increased to 11°, the unstable mode is shifted to a
smaller wavenumber of βL = 14.1 (λ/L = 0.45). As α is further increased, more unstable
modes gradually emerge. At α = 12°, three unstable modes including two stationary
unstable modes (modes 1 and 3) and an oscillatory unstable mode (mode 2) are captured
by the GSA. The mode shown in figure 10 corresponds to mode 1, which has the largest
growth rate among the three modes. At α = 13°, four unstable modes exist, including two
stationary modes and two oscillatory modes. The strongest mode reaches its maximum
growth rate at βL = 67.9 (λ/L = 0.093).

The growth rates and angular frequencies of the three unstable modes captured
at α = 12° are plotted as a function of the spanwise wavenumber in figure 11.
Modes 1 and 2 reach their maximum growth rates at βL = 60.5 (λ/L = 0.104) and
βL = 66.7 (λ/L = 0.094), respectively. The weaker stationary mode (mode 3) with
the growth rates peaking at approximately βL = 11.2 (λ/L = 0.56) corresponds to the
stationary modes observed at α = 10° and 11°. Figure 12 presents the contours of the real
part of the pressure perturbation p′ and spanwise velocity perturbation w′ for modes 1 and
2 at their respective most unstable spanwise wavenumbers. The features of the pressure
and spanwise velocity perturbations are consistent with previous findings in compression
corner flows (Cao et al. 2021; Hao et al. 2021). The pressure perturbations mainly exist
in the downstream half of the separation zone, with the positive and negative parts
periodically coupled to each other. The wave-like structures further stretch downstream
of the reattachment.
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Figure 11. Variations in (a) growth rates and (b) frequencies of the unstable modes as a function of spanwise
wavenumber for R/L =∞ at α = 12° (GSA). Vertical dashed line: the most unstable wavenumber. Horizontal
dashed line: zero growth rate and angular frequency.
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Figure 12. Real parts of (a) the spanwise velocity perturbation and (b) pressure perturbation for mode 1 (left
column) with βL = 60.5 and mode 2 (right column) with βL = 66.7 at α = 12° for the two-dimensional problem
(GSA). The contour levels are uniformly distributed between ±0.1 of the maximum |w′| and |p′|, respectively.

For an intermediate radius R/L = 0.5, figure 13 presents the growth rates of the captured
dominant unstable modes as a function of azimuthal wavenumber at various deflection
angles. Note that these dominant unstable modes shown in figure 13 are all stationary.
At α = 11°, the flow is globally stable. A globally unstable mode appears at α = 12°. At
α = 13°, the peak growth rate further increases and shifts to a slightly smaller wavenumber,
which corresponds to the trend shown in figure 10. Two stationary unstable modes are
observed at α = 14°. One belongs to the same family as those at lower angles (not shown),
while the other becomes dominant with the most unstable azimuthal wavenumber of
m = 36. A further slight increase in the flare angle has profound consequences on the
global instability. At α = 15°, four unstable modes are captured. The maximum growth
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Figure 13. Variations in the growth rates of the most unstable modes as a function of azimuthal wavenumber
at different flare deflection angles for R/L = 0.5 (GSA). Vertical dashed line: the most unstable wavenumber.
Horizontal dashed line: zero growth rate.
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rate of the most unstable mode occurs at m = 40. Recall that the secondary separation
angle is 14°–15° for R/L = 0.5. The growth rate of the most unstable mode increases with
α. At α = 12° and 13°, there is only one unstable stationary mode with a relatively small
wavenumber. As α approaches and surpasses α2, the flow is strongly destabilized and
dominated by a new stationary mode with a much larger wavenumber, which is consistent
with the compression corner flow.

For R/L = 0.5, the flow is strongly destabilized at α = 15°. The growth rates and angular
frequencies of the four unstable modes against the azimuthal wavenumber are plotted in
figure 14. Note that mode 1 is the mode shown in figure 13 at α = 15°. The distributions
of angular frequencies suggest that modes 1 and 3 are stationary, whereas modes 2 and 4
are oscillatory. The growth rate of mode 1 peaks at m = 40, whereas mode 2 reaches its
maximum growth rate at a slightly larger wavenumber m = 42. The dominant frequency
of mode 2 at m = 42 is approximately f =ωr/2π = 3.0 kHz ( f L/u∞ = 0.56). Modes 3 and
4 reach their maximum growth rates at considerably lower azimuthal wavenumbers m = 8
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(left column) at m = 40 and mode 2 at m = 42 (right column) for R/L = 0.5 at α = 15° (GSA). The contour
levels are uniformly distributed between ±0.1 of the maximum |w′| and |p′|, respectively.

and 14, respectively. Note that mode 3 is associated with the stationary unstable modes
captured at α = 12°, 13° and 14°, as shown in figure 13.

For R/L = 0.5 and α = 15°, figure 15 presents the contours of the real parts of pressure
perturbation p′ and azimuthal velocity perturbation w′ for modes 1 and 2 at m = 40
and 42, respectively. Modes 1 and 2 are structurally similar to the dominant stationary
and oscillatory unstable modes shown in figure 12 and the unstable modes observed
in supersonic double-wedge flows, compression corner flows, double-cone flows and
hollow-cylinder/flare flows (Sidharth et al. 2018; Cao et al. 2021; Hao et al. 2021, 2022;
Lugrin et al. 2021a). The unstable modes are attributed to the separated flow, and they are
identical in nature. Appendix C presents the distributions of streamwise and radial velocity
perturbations, density perturbations and temperature perturbations for modes 1 and 2.

The growth rates of the most unstable modes as a function of azimuthal wavenumber
at different deflection angles are shown in figure 16 for R/L = 0.2 and 1.0. For R/L = 0.2,
the separated flow becomes unstable at α = 13°, which is higher than that for R/L = 0.5.
As α is increased to 14° and 15°, the stationary unstable mode is observed at m = 5. When
α is further increased to 16°, the maximum growth rate of the least stable mode occurs
at m = 19. For R/L = 1.0, global instability occurs at α = 11°, which is lower than that for
R/L = 0.5. As α is increased to 12°, an unstable mode is observed at m = 18. At α = 13° and
14°, the most unstable modes are shifted to considerably higher wavenumbers m = 66 and
72, respectively. It is observed that the variations of the maximum ωi and corresponding
m in different α for R/L = 0.2 and 1.0 are similar to those unveiled for R/L = 0.5. However,
the emergence of global instability is suppressed as R is decreased. For R/L = 0.2 and 1.0,
a series of stationary and oscillatory unstable modes emerge at higher deflection angles.
These obtained modes are similar to the unstable modes presented in figure 15 and thus
are not shown here for brevity.
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Figure 16. Variations in the growth rates of the most unstable modes as a function of azimuthal wavenumber
for (a) R/L = 0.2 and (b) R/L = 1.0 with increasing deflection angles (GSA). Vertical dashed line: the most
unstable azimuthal wavenumber. Horizontal dashed line: zero growth rate.

Similarly, the GSA results can be scaled using the triple-deck theory to determine the
critical deflection angles where the flow becomes globally unstable. For the planar case
R* = ∞, α* = 3.69–4.10, which agrees well with the stability boundary for a compression
corner flow by Hao et al. (2021). For R* = 24.74, 12.37 and 4.948, α* = 4.10–4.51,
4.51–4.92 and 4.92–5.33, respectively. A decrease in cylinder radius postpones the
occurrence of global instability. When the deflection angle gradually approaches and
exceeds the critical secondary separation angle α2, the flow is strongly destabilized with
the emergence of more unstable modes and a pronounced increase in the growth rate of
the most unstable mode.

4.3. Direct numerical simulations
Direct numerical simulations are performed for the canonical case R/L = 0.5 and its planar
counterpart R/L = ∞ at α = 15° to verify the foregoing GSA results and illustrate the
temporal evolution of three-dimensional structures.

The GSA is similarly performed for the compression corner flow at α = 15°. Since
the planar flow is much more unstable than its axisymmetric equivalent, a finer mesh
(600 × 450) is used for the base-flow simulations and GSA to ensure grid convergence.
The GSA results of the planar case at α = 15° are shown in Appendix D. Note that the three
most unstable modes (modes 1, 2 and 3) reach their maximum growth rates at βL = 74, 60
and 72, respectively.

Direct numerical simulations are performed for both axisymmetric and planar flows
at α = 15° to verify the GSA results. For the axisymmetric case, the medium mesh
(600 × 350) is rotated around the flow axis over an azimuthal angle of 36° with 200
grid cells in the azimuthal (φ) direction. This azimuthal angle is chosen because the
growth rates of mode 1 and mode 2 peak at m = 40 and 42, respectively. The initial flow
field is generated through a duplication of the base flow along the azimuthal direction.
Similarly, for the planar case, the mesh with 600 × 450 grid points is extended along the
spanwise (z) direction for 42 mm, which corresponds to approximately five wavelengths
of mode 1 at R/L = ∞. The 200 grid points are equally spaced in the spanwise direction.
The three-dimensional flow field is generated by extending the base-flow solution in
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Figure 17. Temporal evolution of (a) the averaged azimuthal velocity for R/L = 0.5 and (b) the averaged
spanwise velocity for R/L = ∞ at x/L = 1.25 (DNS).

the spanwise direction. The inlet and upper boundary conditions are given by the
free-stream profiles. Periodic boundary conditions are enforced on the azimuthal/spanwise
boundaries. Without introducing any external or internal perturbations, the numerical
round-off error is expected to induce global instability. The three-dimensional simulations
are conducted using PHAROS with a second-order implicit method (Peterson 2011) for
time integration. The physical time step is set to 20 ns for both axisymmetric and planar
simulations. To ensure a sufficiently developed flow, the simulated time is set to t = 20 ms
(tu∞/L = 108) for R/L = 0.5 and t = 8 ms (tu∞/L = 43) for R/L =∞.

The evolution of global instability is described by the root mean square of the
azimuthal/spanwise velocity (Cao et al. 2021; Hao et al. 2022) at a streamwise location,
which is defined as

σw =

√√√√√ 1
NrNφ

Nr∑
j=1

Nφ∑
k=1

(
w

u∞

)2

(4.2)

for the axisymmetric flow and

σw =

√√√√√ 1
NyNz

Ny∑
j=1

Nz∑
k=1

(
w

u∞

)2

(4.3)

for the planar flow, where Nr, Nφ , Ny and Nz represent the numbers of grid cells in the
radial, azimuthal, normal and spanwise directions, respectively.

Figure 17 presents the temporal evolution of σw for the axisymmetric and planar cases
at x/L = 1.25, respectively. For R/L = 0.5, the initialization is followed by an exponential
increase from tu∞/L ≈ 6 to 20 and a successive nonlinear saturation. The variation in
σw enters a quasi-steady stage from tu∞/L ≈ 50. The growth rate of σw in the linear
exponential stage agrees well with that of mode 1 at m = 40 predicted by the GSA and
denoted by the red dashed line. For R/L = ∞, after the initial adaption, σw similarly
experiences a rapid increase from tu∞/L ≈ 5 to 10. A satisfactory agreement is also
observed between the DNS data and the GSA prediction in the planar regime. Due to
the stronger global instability of the dominant mode, the required time period for the
exponential growth is shorter for the planar flow than for its axisymmetric counterpart.
After the rapid growth, the compression corner flow similarly enters a saturated stage at
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Figure 18. The azimuthal velocity distributions for R/L = 0.5 and α = 15° at tu∞/L = 14.88: (a) the x–r plane
with φ = 18°; (b) the wall-normal slice extracted at x/L = 1.21 (DNS).
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Figure 19. The spanwise velocity distributions for R/L =∞ and α = 15° at tu∞/L = 8.63: (a) the x–y plane
with z/L = 0.5; (b) the wall-normal slice extracted at x/L = 1.25 (DNS).

approximately tu∞/L = 12, from which sustained fluctuations of σw occur. The saturated
values for the axisymmetric and planar flows are of the same order.

Figure 18(a) presents the azimuthal velocity distributions of the hollow-cylinder/flare
flow in an azimuthal plane (φ = 18°) at tu∞/L = 14.88 in the mid-linear stage.
Perturbations mainly exist in the downstream part of the separated region (0.40 < x/L <

1.48) and stretch further downstream through the reattaching shear layer, which is similar
to the findings in compression corner flows (Cao et al. 2021). The general structure is
consistent with that of mode 1 found by GSA, indicating that mode 1 plays a predominant
role in the linear growth of the three-dimensional perturbations. Figure 18(b) presents the
azimuthal velocity distributions of a wall-normal slice at x/L = 1.21 which is located in the
separation bubble. The azimuthal velocity variations unveil a periodicity of m = 40, which
corresponds well with the GSA results.

Figure 19 shows the spanwise velocity distributions of the compression corner flow in
the x–y plane with z/L = 0.5 and the z–y plane with x/L = 1.25 at tu∞/L = 8.63 which
belongs to the exponential stage. Similar to the findings of Cao et al. (2021), figure 19(a)
reveals the existence of perturbations in the downstream part of the separation zone
(0.17 < x/L < 1.75). Moreover, the perturbations of spanwise velocity are consistent with
that of mode 1 captured by GSA. The consistency manifests that mode 1 captured by GSA
governs the exponential growth of the three-dimensional perturbations. Figure 19(b) shows
the periodic distributions of spanwise velocity. The wavelength of the spanwise velocity
variations agrees well with the GSA data, namely λ/L = 0.085 of mode 1.

A fast Fourier transformation is performed for the temporal perturbation of the
azimuthal/spanwise velocity near flow reattachment in the quasi-steady stage with a
sampling frequency of fs = 1.0 MHz. Figure 20 presents the power spectral density
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Figure 20. The PSD of (a) the azimuthal velocity at x/L = 1.55 and r/L = 0.68 for φ = 18° and (b) the
spanwise velocity at x/L = 1.71 and y/L = 0.71 for z/L = 0.5 (DNS).

(PSD) of the azimuthal velocity obtained near the surface at φ = 18° and x/L = 1.55
from tu∞/L = 54 to 97 for the axisymmetric case and the spanwise velocity obtained at
x/L = 1.71 and z/L = 0.5 from tu∞/L = 16 to 43 for the planar case. The power spectra are
computed using Welch’s method (Welch 1967) with eight segments and a 50% overlap.
A Hamming window is used for the Fourier transform. For the axisymmetric flow, with
a dominant frequency at f L/u∞ = 0.23, the azimuthal velocity signal shows a broadband
low-frequency feature, which agrees well with the dominant frequencies of modes 2 and 4
by the GSA at f L/u∞ = 0.56 and 0.077, respectively. In figure 20(b), the spanwise velocity
signal shows a similar broadband spectrum which covers the dominant frequency of mode
3 ( f L/u∞ = 0.72) by the GSA. The frequency broadening phenomenon, which was also
observed in compression corner flows (Cao et al. 2021) and double-cone flows (Hao
et al. 2022), is associated with the interactions of the critical multiple perturbation modes
arising after the linear growth stage (Fan, Hao & Wen 2022).

Figure 21 presents the evolution of the skin friction coefficient contours in the x−Φ

plane to illustrate the development of three-dimensionality for the hollow-cylinder/flare
flow. The isolines represent that Cf = 0, while the solid points denote the separation and
reattachment points obtained from base-flow solutions. The initial contour at tu∞/L = 0
is identical to the axisymmetric base-flow solution. At tu∞/L = 14.88, the reattachment
lines of the primary bubble and the secondary bubble are slightly corrugated, while
the separation lines remain nearly unchanged. Meanwhile, azimuthal oscillations and
several small bubbles gradually emerge. At tu∞/L = 28.37, the primary separation line
begins to move upstream, while the reattachment line zigzags, indicating the influence
of three-dimensionality. Subsequently, the size of the separation region slightly grows,
and the reattachment line noticeably meanders. At tu∞/L = 55.34, 76.93 and 98.51,
distinct skin friction streaks are observed along the azimuthal direction downstream of
reattachment, which is consistent with the experimental observations (Benay et al. 2006;
Lugrin et al. 2022). The discrepancy of skin friction coefficient distributions at these
instants indicates that the flow is unsteady.

For the planar flow, figure 22 provides the evolution of skin friction coefficient contours
at six instants in the x–z plane. The isolines of Cf = 0 are also displayed to identify the
separation zones. The separation and reattachment points are marked by solid points. At
tu∞/L = 0, the distribution of Cf is indistinguishable from the two-dimensional converged
solutions. As is shown in figure 17, the temporal development of three-dimensionality
is considerably faster for the compression corner flow than its axisymmetric equivalent.
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Figure 21. Contours of the skin friction coefficient for R/L = 0.5 and α = 15° at (a) tu∞/L = 0,
(b) tu∞/L = 14.88, (c) tu∞/L = 28.37, (d) tu∞/L = 55.34, (e) tu∞/L = 76.93 and ( f ) tu∞/L = 98.51 (DNS).
Solid lines: isolines of Cf = 0. Solid points: separation and reattachment points of base-flow solutions.

Consequently, at tu∞/L = 8.63 in the exponential stage, the reattachment lines of the
primary bubble and the secondary bubble become corrugated and several small vortices
occur inside the separation region. The rapid evolution of three-dimensionality leads to
the occurrence of streamwise streaks which are non-uniformly distributed downstream
of reattachment at tu∞/L = 10.79. The streaks in the spanwise direction correspond
to previous experimental observations (Simeonides & Haase 1995; Chuvakhov et al.
2017; Roghelia et al. 2017a,b). The unsteadiness subsequently develops with meandering
reattachment lines at tu∞/L = 19.42, 30.21 and 41.00.

Figure 23 provides the distributions of skin friction coefficient by DNS at
tu∞/L = 98.51 for the axisymmetric case and tu∞/L = 41.00 for the planar case. The
shaded area represents the azimuthal/spanwise variations of DNS data. The averaged
DNS data correspond to the base-flow results. However, the variations of Cf in
azimuthal/spanwise directions are significant downstream of flow reattachment. The
length of the separation region for the compression corner flow is significantly larger
than its axisymmetric counterpart for both base-flow and DNS results, which manifests
a stronger shock-wave/boundary-layer interaction of the planar flow.

4.4. Criterion for triple-deck scaling
The triple-deck theory is an effective tool to correlate the theoretical analyses,
experimental data and numerical results for supersonic planar and axisymmetric flows
(Gai & Khraibut 2019; Exposito et al. 2021; Hao et al. 2021, 2022). Figure 24 exhibits
the variations in the scaled critical flare deflection angle as a function of cylinder radius
for the emergence of incipient separation (α∗

1) and secondary separation (α∗
2) by CFD
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Figure 22. Contours of the skin friction coefficient for R/L =∞ and α = 15° at (a) tu∞/L = 0,
(b) tu∞/L = 8.63, (c) tu∞/L = 10.79, (d) tu∞/L = 19.42, (e) tu∞/L = 30.21 and ( f ) tu∞/L = 41.00 (DNS). Solid
lines: isolines of Cf = 0. Solid points: separation and reattachment points of base-flow solutions.
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Figure 23. A comparison of the skin friction coefficient distributions between the base-flow and DNS results:
(a) the azimuthally averaged Cf for R/L = 0.5 and α = 15° at tu∞/L = 98.51; (b) the spanwise-averaged Cf for
R/L =∞ and α = 15° at tu∞/L = 41.00 (DNS). The shaded area denotes the azimuthal/spanwise variations.

and triple-deck solutions and for the occurrence of global instability (α∗
GSA) by GSA.

Extensive CFD and GSA simulations are further performed for a series of cylinder radii.
According to (3.5), the error bars represent an uncertainty of approximately 0.41 for α* due
to a minimum increment of 1° in physical deflection angle α. The horizontal dashed lines
represent the limit solutions obtained from the equivalent two-dimensional circumstance.
Furthermore, the figure consists of theoretical, numerical and experimental data taken
from previous research for supersonic and hypersonic hollow-cylinder/flare flows with a
wide range of free-stream Mach numbers from 3.0 to 7.3 and unit Reynolds numbers from
2.8 × 105 m−1 to 1.1 × 107 m−1. The geometric parameters and flow conditions are listed
in table 1. For the CFD data, the formation of three-dimensional streamwise streaks in the
absence of any external disturbance essentially indicates a globally unstable flow. For the
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Benay et al. (2006) case 1 CFD & exp.
Benay et al. (2006) case 2 CFD & exp.
Benay et al. (2006) case 3 CFD & exp.
Benay et al. (2006) case 4 CFD & exp.
Benay et al. (2006) case 5 CFD & exp.
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Figure 24. The scaled critical deflection angles as a function of the scaled cylinder radii for the incipient
separation α∗

1 and secondary separation α∗
2 by CFD and triple-deck theory, and global instability α∗

GSA by GSA.
Horizontal dashed lines: limiting solutions obtained from the equivalent two-dimensional compression corner
flow. Red symbols: both presence of incipient separation and absence of secondary separation. Blue symbols:
emergence of secondary separation. Open symbols: globally stable. Solid symbols: globally unstable.

Reference R/L α (deg.) M∞ ReL Tw/T0

Benay et al. (2006) 0.26 15 5.00 3.8 × 105 0.58
6.8 × 105

8.1 × 105

1.6 × 106

2.2 × 106

Lugrin et al. (2021a) 0.26 15 6.00 1.9 × 106 0.41
Lugrin et al. (2021b) 0.26 15 5.00 1.9 × 106 0.41
Lugrin et al. (2022) 0.26 15 5.00 4.0 × 105 0.58

7.0 × 105 0.55
1.1 × 106 0.53

Leinemann et al. (2019) 0.32 15 5.90 2.2 × 106 0.62
Brown et al. (2009) 0.32 30 7.29 4.0 × 105 0.10
Cerulus et al. (2021) 0.42 10 3.00 1.7 × 104 1.0

Table 1. Flow conditions and geometric parameters of the collected theoretical, numerical and experimental
data shown in figure 24.

experimental data, owing to the presence of upstream disturbances in the experiments, the
global instability is further examined by the current GSA.

In figure 24, it is evident that the critical angles for incipient separation, secondary
separation and global instability simultaneously decrease with the cylinder radius and
eventually recover to the planar solutions. In accordance with supersonic two-dimensional
compression corner flows (Hao et al. 2021) and axisymmetric double-cone flows (Hao
et al. 2022), global instability emerges at a deflection angle smaller than the secondary
separation angle for hollow-cylinder/flare flows. The data taken from the literature denoted
by symbols are in reasonable agreement with the separation and global stability boundaries
denoted by the solid lines. Therefore, the criterion of the stability boundary with regard to
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Figure 25. The scaled critical deflection angles as a function of the scaled cylinder radii for the incipient
separation α∗

1 and secondary separation α∗
2 by CFD and triple-deck theory, and global instability α∗

GSA by GSA.
Horizontal dashed lines: limiting solutions obtained from the equivalent two-dimensional compression corner
flow. Red symbols: both presence of incipient separation and absence of secondary separation. Open symbols:
globally stable.

Reference R/L α (deg.) M∞ ReL Tw/T0

Moss, Price & Dogra (1994) 0.32 30 9.98 1.7 × 104 0.27
Gnoffo (2001) 0.32 30 11.35 3.7 × 104 0.08

11.44 2.7 × 104 0.09
11.27 1.5 × 104 0.09
9.55 1.9 × 104 0.10

Moss (2001) 0.32 30 9.57 1.5 × 104 0.08
11.44 1.7 × 104 0.09
11.44 1.4 × 104 0.09
11.44 1.1 × 104 0.09

Chanetz et al. (1998) 0.32 30 9.91 1.8 × 104 0.28
Li, Yu & Bao (2021) 0.32 27 11.00 5.0 × 104 0.20

Table 2. Flow conditions and geometric parameters of the collected theoretical, numerical and experimental
data presented in figure 25.

critical deflection angles established for supersonic compression corner and double-wedge
flows (Hao et al. 2021) is extended to hollow-cylinder/flare flows.

In figure 25, a series of hollow-cylinder/flare flows taken from the literature are
considered to further confirm the separation and stability boundaries. The free-stream
conditions are shown in table 2. Note that additional CFD and GSA simulations are carried
out for these cases since the separation stage and global stability were not entirely known
in the literature. It is seen that the present criterion corresponds well with the considered
cases.

It is important to note that the cold-wall effects are not considered in this study. For
triple-deck theory, the wall cooling effects on separation for a compression corner flow
were studied in subcritical, transcritical and supercritical regimes (Brown, Cheng & Lee
1990; Kerimbekov, Ruban & Walker 1994; Cassel, Ruban & Walker 1996; Exposito et al.
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2021). It was found that wall cooling could postpone the emergence of incipient separation
for compression corner flows and diminish the magnitude of the second minimum of wall
shear stress. Recently, Hao et al. (2021) and Hong et al. (2022) have revealed that low wall
temperatures can promote the appearance of secondary separation and global instability
for compression corner flows. Therefore, it is likely that the cold-wall effects are also
significant to the emergence of flow separation and global instability for axisymmetric
hollow-cylinder/flare flows, e.g. the high-enthalpy experiments by Holden et al. (2013).
Besides, Hong et al. (2022) found that the thermochemical non-equilibrium effects slightly
stabilized double-wedge flows through changing the base flow and the perturbations were
thermochemically frozen. The stabilization caused by thermochemical non-equilibrium
effects may be similarly observed for the hollow-cylinder/flare flow. In terms of the
influence of Mach number, the triple-deck scaling in (3.5) indicates that, as the free-stream
Mach number is increased, R* undergoes an increase and α* experiences a decrease.
Since α∗

1 , α∗
2 and α∗

GSA also decrease with increasing R*, it is not straightforward to
determine the influence of Mach number in the axisymmetric regime, which merits further
investigation.

5. Conclusion

A supersonic laminar hollow-cylinder/flare flow with a free-stream Mach number of 2.25
is numerically investigated with a series of cylinder radii and flare deflection angles.
Numerical solutions by CFD show that as the cylinder radius is decreased, the critical
deflection angles for both incipient and secondary separation gradually increase, which is
attributed to the pronounced axisymmetric effects. Triple-deck equations are numerically
solved for the axisymmetric hollow-cylinder flare flow and the appropriate compression
corner flow. Despite slight overpredictions of the incipient separation angles and
underpredictions of the secondary separation angles, the triple-deck solutions similarly
reveal the influence of the cylinder radius and deflection angle on the hollow-cylinder flare
flows. However, the triple-deck theory shows a general overestimation of the length of the
separation region, which becomes more significant as the cylinder radius is increased.
This indicates that the triple-deck theory needs careful consideration for an accurate
quantitative estimation of the size of the separation zone.

A GSA is performed to explore the global stability in terms of azimuthally periodic
perturbations. The flow becomes globally unstable with increasing flare deflection angles.
The critical deflection angles for global instability are identified over a wide range of
cylinder radii. As the deflection angle is further increased, the flow becomes strongly
destabilized with the appearance of more globally unstable modes. The obtained stationary
and oscillatory unstable modes resemble those found in compression corner flows. The
global instability occurs at a higher critical deflection angle for the hollow-cylinder/flare
flow than for the corresponding compression corner flow. Furthermore, the decrease in
cylinder radius is found to postpone the emergence of global instability.

Direct numerical simulations are performed for a globally unstable hollow-cylinder/flare
flow to verify the GSA results and investigate the evolution of the three-dimensional
streak-like flow structures. The DNS results show that the three-dimensional
hollow-cylinder/flare flow first experiences an exponential increase in the azimuthal
velocity and then a nonlinear salutation before it becomes quasi-steady. The mode
shape, growth rate and azimuthal wavenumber of the three-dimensional perturbations
in the exponential growth stage correspond well with the GSA predictions. In the
absence of internal and external disturbances, streamwise streaks in skin friction are
observed in the azimuthal direction downstream of reattachment. The unsteadiness of the
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Figure 26. Distributions of (a) surface pressure coefficient and (b) skin friction coefficient obtained on three
varying grids for R/L = 0.5 at α = 15° (left column) and R/L =∞ at α = 13° (right column) (PHAROS).

streamwise streaks is linked with the intrinsic instabilities for the investigated supersonic
hollow-cylinder/flare flow. Similar phenomena are observed for the corresponding
compression corner flow which is more globally unstable.

The CFD and GSA results are interpreted using triple-deck theory. A scaled critical flare
deflection angle is introduced to identify the emergence of incipient separation, secondary
separation and global instability. A criterion of the stability boundary with respect to
critical deflection angles is established for supersonic hollow-cylinder/flare flows.
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Appendix A. Grid convergence

This appendix provides the grid convergence study for the supersonic hollow-cylinder/flare
flow and the appropriate compression corner flow. Three levels of meshes are used for CFD
simulations and GSA, including 400 × 250 (coarse), 600 × 350 (medium) and 800 × 450
(fine) grid points along the streamwise and radial directions, respectively. The normal
spacing on the surfaces is chosen as 1 × 10−6 m to guarantee that the grid Reynolds
number has an order of magnitude of 1.

Figure 26 presents the distributions of Cf and Cp for the hollow-cylinder/flare
flow R/L = 0.5 at α = 15° and the corresponding compression corner flow R/L = ∞ at
α = 13°. The distributions of Cf and Cp on the medium and fine meshes are nearly
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Figure 27. Eigenvalue spectra obtained on three different grids for (a) the hollow-cylinder flare flow at
R/L = 0.5 and α = 15° and (b) the appropriate compression corner flow at α = 13° in terms of the most unstable
azimuthal/spanwise wavenumbers (GSA). Squares: coarse grid; diamonds: medium grids; circles: fine grids.
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Figure 28. Distributions of scaled wall shear stress obtained on three varying grids: (a) the planar case
R* =∞ at α* = 3.69; (b) the axisymmetric case R* = 12.37 at α* = 4.92 (triple-deck solutions).

indistinguishable, indicating that grid refinement leads to the convergence of surface
pressure and shear stress. Hence, the medium mesh of 600 × 350 is adequate to ensure
grid independence for both axisymmetric and planar flows in CFD simulations.

Figure 27 shows the eigenvalue spectra obtained on three levels of meshes for R/L = 0.5
at α = 15° with the most unstable azimuthal wavenumber m = 40 and R/L =∞ at α = 13°
with the most unstable spanwise wavenumber βL = 67.9, respectively. The eigenvalue
spectra obtained on the medium and fine meshes are nearly identical, indicating that the
medium mesh is also sufficient to ensure grid convergence for the GSA.

Figure 28 shows the triple-deck results obtained on different levels of meshes for
R* = ∞ at α* = 3.69 (α = 9°) and R* = 12.37 (R/L = 0.5) at α* = 4.92 (α = 12°). Three
levels of meshes are used for the planar problem: 600 × 200 (coarse), 800 × 200 (medium)
and 1000 × 200 (fine). For the axisymmetric problem, the selected meshes consist of
750 × 200 (coarse), 1000 × 200 (medium) and 1250 × 200 (fine) grid points. The medium
meshes are fine enough to ensure mesh convergence for triple-deck calculations.
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Figure 29. Numerical results for ε = 1 and R* = 1 at different deflection angles: (a) wall shear stress
distributions; (b) pressure distributions; (c) displacement thickness distributions (triple-deck solutions). Solid
squares: data collected from Gittler & Kluwick (1987).
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Figure 30. Numerical results of wall shear stress distribution τ*(x*) for the compression corner flow at
different deflection angles: (a) α* = 2.0, 2.5, 3.0 and 3.5; (b) α* = 3.6 (triple-deck solutions). Horizontal
dashed line: zero wall shear stress. Solid squares in (a): data collected from Cassel et al. (1995). Solid circles
and diamonds in (b): data collected from Logue et al. (2014) and Broadley et al. (2023), respectively.
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Figure 31. Real parts of mode 1 (left column) at m = 40 and mode 2 at m = 42 (right column) for R/L = 0.5
at α = 15°: (a) streamwise velocity perturbations; (b) radial velocity perturbations; (c) density perturbations;
and (d) temperature perturbations (GSA). The contour levels are uniformly distributed between ±0.1 of the
maximum |u′|, |v′|, |ρ′| and |T ′|, respectively.

Appendix B. Comparison of the triple-deck results

For axisymmetric flows past a hollow-cylinder flare, the triple-deck results are compared
with the axisymmetric triple-deck solutions of Gittler & Kluwick (1987). For ε = 1 and
R* = 1, figure 29 presents the distributions of the scaled wall shear stress, pressure and
displacement thickness. The obtained triple-deck solutions are in good agreement with
the results of Gittler & Kluwick (1987). The incipient separation occurs at 3 ≤ α* ≤ 4.
More accurate calculations show that α∗

1 ≈ 3.5, which agrees well with the value of 3.39
by Kluwick et al. (1984). Similarly, the secondary separation does not occur at α* = 9.

For the planar flow, figure 30 compares the obtained wall shear stress distributions with
data collected from the literature at different deflection angles. The results correspond well
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Figure 32. Eigenvalue spectra for the compression corner flow at α = 15° with βL = 74 (GSA).
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Figure 33. Variations in (a) growth rates and (b) angular frequencies of the unstable modes as a function
of spanwise wavenumber for R/L =∞ at α = 15° (GSA). Vertical dashed line: the most unstable spanwise
wavenumber. Horizontal dashed line: zero frequency.

with the data in the literature (Cassel et al. 1995; Logue, Gajjar & Ruban 2014; Broadley,
Hewitt & Gajjar 2023).

Appendix C. Shape of GSA modes for R/L = 0.5 at α = 15°

For R/L = 0.5 at α = 15°, figure 31 presents the distributions of the real parts of the
streamwise velocity perturbation u′, radial velocity perturbation v′, density perturbation
ρ′ and temperature perturbation T ′ for modes 1 and 2 at m = 40 and 42, respectively.

Appendix D. The GSA results of the compression corner flow at α = 15°

For the compression corner flow at α = 15°, the eigenvalue spectrum at βL = 74
(λ/L = 0.085) is shown in figure 32. Three stationary unstable modes and six oscillatory
unstable modes are captured by the GSA, indicating that the flow is considerably unstable.
Among the three most unstable modes, modes 1 and 2 are stationary, whereas mode 3 is
an oscillatory mode.
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Figure 34. Real parts of (a) the spanwise velocity perturbation and (b) pressure perturbation for mode 1 (left
column) with βL = 74 and mode 3 (right column) with βL = 72 at α = 15° for the compression corner flow
(GSA). The contour levels are uniformly distributed between ±0.1 of the maximum |w′| and |p′|, respectively.

In figure 33, the non-dimensional growth rates and frequencies of the three most
unstable modes are plotted versus the spanwise wavelength. Modes 1, 2 and 3 reach their
peak growth rates at βL = 74, 60 and 72 (λ/L = 0.085, 0.105 and 0.087), respectively.

Figure 34 presents the distributions of the pressure and spanwise velocity perturbations
for mode 1 at βL = 74 and mode 3 at βL = 72, which are similar to those observed in
figures 12 and 15.
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