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0. Introduction. In this paper G is a nondiscrete compact abelian group with
character group I' and M(G) the usual convolution algebra of Borel measures on G. We
designate the following subspaces of M(G) employing the customary notations: M,(G)
those measures which are absolutely continuous with respect to Haar measure; M,(G) the
space of measures concentrated on sets of Haar measure zero and M, (G) the discrete
measures.

The Fourier-Stieltjes transform of the measure € M(G) is defined by

ﬂ(v)=L Yx)dux)  (veD).

The ideal of measures whose transforms vanish at infinity will be denoted by My(G).

Let L?(G) (1 = p=wx) be the Lebesgue space of index p formed with respect to Haar
measure on G and C(G) those fe L*(G) which are continuous. For any subspace B(G) of
M(G) and subset E of T put

Be(G)={neB(G): =0 off E}.

In section 1 we give several extensions of a classical theorem due to Rajchman [23]
which we state for the circle group T as

Tueorem 1. Suppose pe M(T) and (n)=o(1) for all n>0 or all n<0. Then
pe My(T).

An analogue of Theorem 1 is valid for any compact abelian group with ordered dual
in the sense of relating the behavior of a Fourier-Stieltjes transform at ‘“‘+” with its
behavior at “—«”, see [4, p. 230] and especially the example.

A subset R of I' will be called a Rajchman set if whenever we M(G) and e
Co(T\R), then pe My(G). Here Cy(I'\R) means those complex-valued functions on I’
which vanish at infinity off $i. In section 1 we prove the following two theorems which we
now cite.

(i) The union of a Rajchman set and a Sidon set is a Rajchman set;

(ii) The union of a Rajchman set and any set € satisfying M, (G)" |y M (G) ¢ is a
Rajchman set.

Let E be a Rider set contained in Z*, the positive part of Z. We also prove in section
1 that:

(ili) Z"U E" is a Rajchman set.

In section 2 we present some examples of Rajchman sets in I'. The sum sets in
example (III) are especially interesting from an arithmetic point of view. In section 3 we
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exhibit a connection between Rajchman sets in the integer group Z and idempotent
measures on the circle. The result of this section provided the original motivation for our
study of Rajchman sets.

1. Union problems for Rajchman sets. A subset S of I' is said to be a Sidon set if
whenever fe L$(G), then Y |f(a)| <. Our first result is:
THeOREM 2. The union of a Rajchman set and a Sidon set is a Rajchman set.

Proof. We adapt the proof of [5]. Let e Co(I'\RU S), where R is Rajchman and §
is Sidon. By a result of Drury, given a natural number m there is a measure v, € M(G)

such that
bm(@)=1  (a€S), (1)
<= (agS). @)
m

Since R is Rajchman it follows from (1) that the measure
=, *ue My G). (3)

On letting m — o in (3) we gather from (2) that i € Co(I'\ S). Our result now follows from
Theorem 2.20 of [16, p. 30].

We remark that Theorem 2.20 of [16, p. 30] shows that the method of proof of [5]
works for any compact abelian group to establish that the union of a small p set and a
Sidon set is a small 2p set. For if I' is not ordered or the positive cone is not Rajchman
then the first part of the argument of [5] shows that i € Co(T'\S). An improvement of [5]
due to the author and S. Saeki can be found in [22, p. 91]. The reader is also referred to
example I of the present paper.

Next, let & satisfy

M, (G) |y = My(G) . (%)

The interpolation property (*) has been studied by many authors; the reader is referred to
[2], [11], [14], and [21]. It is known that the set of prime powers and the sets
{r"+r™:n,meZ*} where rezZ* and r=2 satisfy (*) for '=27; see [10].

THeorReM 3. The union of a Rajchman set R and any set & satisfying (*) is a
Rajchman set.

Proof. Let we M(G) and suppose

g€ Cy(T\EUR). (1
Let a,€€ and choose ve M,(G) such that
V() = 1. (2)
Since & satisfies (*) we gather there is a measure w, € M,;(G) such that
fy=9 on €. (3)
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By (1)
(o * p—v*p) e CI'\R);

thus

Ra * p— v * ue My(G). (4)
In light of the Riemann-Lebesgue Lemma, (4) implies that

tq * p € Mo(G). ()
Put
M5(G)={p e M(G):p is singular with each 7€ M,(G)}.

Then, as is well known, M(G) = My(G)D M§(G). Since My(G) is translation invariant and
since M3(G) is translation invariant and closed, it follows that if p, € M,(G), then

pa * M5(G) = Mz(G). (6)

Write p=po+p, where poe My(G) and u, € M5(G). We infer from (5) that
Ba * 1, € M(G), so we obtain via (6) that

Ba* ) =0. (7
But (2) and (3) in combination with (7) yield (& ) (a,)=0. Thus
(L*p ) e CI\R) ty

and so p*pu, € My(G). It is now evident that u, *u, € My(G) and this is possible if and
onlyif u, =0.

Theorem 3 implies the following result which we state without proof.

Every non-Sidon subset of a discrete abelian group contains a Rajchman set which is
non-Sidon.

For the remainder of this section our notation will be for the most part that of [16].
In what follows I' is ordered by the positive cone 2.

A subset S of I is called asymmetric if 0¢ S and « € S imply —a£ S. For any subset E
of I' and integer s =0, R (E) denotes the number of asymmetric subsets § of EU—E
satisfying |S|=s and ¥ a=0. The set E is called a Rider set if there is a constant B>0

aeS

such that R(E)= B* for all s. For ke Z* let E, consist of all characters of the form } «
where § is an asymmetric subset of EU—E and |S|=k. *es

Before presenting our result we shall need the next two propositions, which we now
state for the readers’ convenience.

Prorosition 1. (Bonami [3]). Let E be a Rider set in T. Then E, is a A(q) set for all
l=sq< and all k>0.
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Recall that a set A is called a A(q) set if there exists a p<q and a constant K, such
that

lell, < K \ell,
for all trigonometric polynomials ¢t on G with #=0 off A.

Prorosition 2. (Rudin [24]). Let we M(T) and A a set of type A(1). If supp f <
Z7UA, then pe M,(T).

For a generalization of Proposition 2 see [18]. In this connection we point out that for
the corollary of [18, p. 369] to be valid we must replace the word infinity by “—’ in both
the statement of the corollary and its proof. We shall call a subset R of I' a weak
Rajchman set if whenever supp & < R then u € My(G). The set of Proposition 2 is a weak
Rajchman set which is (to the author’s knowledge) not known to be Rajchman. The
method of Theorem 2 shows that the union of a weak Rajchman set and a Sidon set is a
weak Rajchman set.

We shall be interested in showing that for certain A(1) sets A (which are not Sidon)
Z7U A is a Rajchman set. For any subset E of I and natural number n=2 put

n, € E}
and E'=E. We now present this extension of Rajchman’s Theorem:
THEOREM 4. Let E be a Rider set in Z such that EcZ*. Then Z~U E" is a Rajchman

Er={n +n,+ ... +n n#n

{134

set.

Proof. Let we M(T) and i € Co(Z\Z~ U E™). We shall suppose € Cy(Z) and force a
contradiction.

If ig Cy(Z) then there exists by Theorem 1 a § >0 such that the set
F={acE":|i(a)|=8}

is infinite. Choose a sequence (e;)7 with the a’s distinct and in &.
Let v be any weak-star cluster point of {—a;u}. Since the a’s are distinct it follows
from the Helson Translation Lemma that

ve M,(T). (1)
Observe that
5(0)#0 (2)

since the a’s belong to &.

We shall fix a€Z* and calculate #(a). If @ +a; meets E" only finitely many times
then, since e Cy(Z\ZUE"), it follows that #(a)=0. Thus if a€ Z*, then v(a)#0
implies that

@ cTm(E"~ o) = N U E-a)

m=1lk=m
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Well, it is easy to see that
U (B"-a)c A, 3)
i=
where
A={0}UE,VE,... UE,, (n=1).

By Proposition 1 and [23, p. 217] this set A is a A(q) set for all finite q. Inasmuch as
v is singular and supp #<Z U A we obtain via Proposition 2:

7(0)=0. 4

Since (4) contradicts (2) we conclude that i € Cy(Z); i.e. u€ My(T) and this finishes
our proof.

CoroLLArY. If E and F are disjoint with EUF dissociate and EUF<Z*, then
Z-U(E+F) is a Rajchman set.

For some interesting properties of E+ F where E and F are disjoint with dissociate
union see [1].

2. Examples of Rajchman Sets. In this section we present some examples of
Rajchman sets in T'. Most of the examples appear in the literature implicitly.

ExampLes (I) A subset € of Z* is said to satisfy the lacunary condition (%) if for every
increasing sequence n,, n,, ..., € E, Z"Nlim (¥—n;) is a finite set.

Then if & satisfies (?), Z"U& is a Rajchman set. To confirm this assertion it suffices to
repeat the proof of Theorem 3 of [8]. A proof for arbitrary discrete I' that a Sidon set is a
Rajchman set can be based on Theorem 1.4 of [16, p. 8] and the method of proof of the .
present example.

(II) A subset & of Z is said to be a set of uniform convergence or UC-set if every
fe Cs(T) has uniformly convergent Fourier series. Non-Sidon UC-sets were first
exhibited by Figa-Talamanca; see [16, pp. 82-86]. Careful scrutiny of the proof of
Theorem 5 of [7] shows that Z"U % is a Rajchman set.

(III) A subset € of Z is defined to be a strong Rajchman set if € is a Rajchman set.
Here € is a closure of € in Z, where Z has the relative topology of its Bohr compactifica-
tion, Z. A subset R of Z is said to be a Riesz set if Mgx(T)=L&(T). A subset & of Z is
called a strong Riesz set if & is a Riesz set.

Replacing the decomposition M(T) =M, (T)® M,(T) by My(T)® M;(T) in [17] and
adapting the methods of Meyer we can easily prove: If R is a Rajchman set and € is a
strong Rajchman set then RU € is a Rajchman set. In particular we have that the union of
a Rajchman set and a strong Riesz set is a Rajchman set. The following examples of
strong Riesz sets can be found in [6] and [17] respectively:

(i) The set of integers expressible as the sum of two perfect squares is a strong Riesz
set;

(ii) Let n, be a sequence of positive integers such that n,.,/n, is an integer >2 for
all k.
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Then the set of all finite sums of the form

Z tn,  with £€{0,1}, n#n
k=0
is a strong Riesz set.
Here is another example due to the author and S. Saeki:
Fix any two sequences (p,)7 and {(q,)7 of natural numbers =2. Let

€. ={pipr.. - puk:k=0,x1,..., %q,}

and put = J%,. Then €+ ... +% (any finite number of summands) is a strong Riesz set.
1
To see this let
D ={e?™™P-Pa:meZ and neZ*}.

Consider D with the discrete topology and D the compact dual of D. It is easy to prove
that the only accumulation point of €* in D is O; see [13, p. 107] and [13, p. 403]. Since D
is a factor group of Z and D is dense in T we gather that the set of accumulation points of
€ in Z (with the relative Bohr topology) is a subset of {0}. Thus &* is strong Riesz and
moreover since € is symmetric we have that €~ is strong Riesz. Thus £ =" U&" is strong
Riesz.

Now the set of accumulation points for (£+&)* in D is a subset of {0}U&. So since &
is strong Riesz it follows from [17, p. 90] that (¥+&)* is strong Riesz. Thus €+&=
(+%)"U(€+&) is strong Riesz and the proof for any finite number of summands follows
inductively.

(IV) Let R be a Rajchman set in I'. Suppose AT has the property that

{(A—a)NU} is a Rajchman set

for all a2 R. Then A is a Rajchman set.
The proof of the above statement is similar to the proof of Theorem 2 of [19, p. 77]
and we omit the details.

3. Weak Rajchman sets and idempotent measures. Using a remarkable result of K.
de Leeuw and Y. Katznelson, we establish a connection between idempotent measures
and Rajchman sets.

THEOREM 5. Suppose R is a weak Rajchman set in Z and w € M(T) such that i = j*
off R. Then there is an idempotent measure ve M(T) such that =17 off R.

Proof. Let pe M(T) with
A=4* off R (1)
Via (1)
lim sup |fi(n)~ 4%(n)| =0
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and since R is weak Rajchman, we gather that

lim sup |4 (n)— 4%*(n)|=0. (2

neZ

As a consequence of Theorem 2 of [4, pp. 220-221] (2) gives:

B= gt s, i, periodic with w, idempotent 3)
and
lim sup |i,(n)|=0. (4)
neZ

As a consequence of (1), (3), and (4), we deduce that 4=, off R\ F where F is
some finite set. Thus, since i, is periodic, we are done.

Theorem 5 is an extension of a theorem of H. Helson [12]; see also [15] and [20]. We
conclude our paper with some open questions.

(i) If R is a Riesz set must & be a Rajchman set?

(ii) Is the union of a Rajchman set and a UC-set a Rajchman set? In this connection
see example (II) of section 2.

A subset AcT is called a Rosenthal set if L5(G)= C,(G). It is known that the sum
sets £+...+% in example (III) of section 2 are Rosenthal sets. The following question
suggests itself:

(iii) Is the union of a Rajchman set and a Rosenthal set a Rajchman set? An
analogous result can be found in [9].

After our manuscript had been accepted for publication the author generalized
Theorem 5 to compact abelian groups.

Note added in proof. The author has recently learned of the work of Keiji Izuchi,
Sidon sets and small M,-sets, Sci. Rep. Tokyo Kyoiku Daigaku Sect. A 12 (1974),
146-148. Izuchi proves Theorem 2 of the present paper using the method of [§]. Theorem
2 was also known to the author in 1974.
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