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0. Introduction. In this paper G is a nondiscrete compact abelian group with
character group F and M(G) the usual convolution algebra of Borel measures on G. We
designate the following subspaces of M(G) employing the customary notations: Ma(G)
those measures which are absolutely continuous with respect to Haar measure; MS(G) the
space of measures concentrated on sets of Haar measure zero and Md(G) the discrete
measures.

The Fourier-Stieltjes transform of the measure fi e M{G) is defined by

(yeT).

The ideal of measures whose transforms vanish at infinity will be denoted by M0(G).
Let LP(G) (l<p<oo) be the Lebesgue space of index p formed with respect to Haar

measure on G and C(G) those feU°{G) which are continuous. For any subspace B(G) of
M(G) and subset E of T put

:£ = 0 off E).

In section 1 we give several extensions of a classical theorem due to Rajchman [23]
which we state for the circle group T as

THEOREM 1. Suppose /xeM(T) and £(n) = o(l) for all n>0 or all n<0. Then

An analogue of Theorem 1 is valid for any compact abelian group with ordered dual
in the sense of relating the behavior of a Fourier-Stieltjes transform at "+<»" with its
behavior at "-<»", see [4, p. 230] and especially the example.

A subset 91 of F will be called a Rajchman set if whenever /x e M{G) and fi. e
C0(r\9t), then pieM0(G). Here C0(r\[ft) means those complex-valued functions on T
which vanish at infinity off 91. In section 1 we prove the following two theorems which we
now cite.

(i) The union of a Rajchman set and a Sidon set is a Rajchman set;
(ii) The union of a Rajchman set and any set ? satisfying Ma(G)A|Sf<= Md(G)A|y is a

Rajchman set.
Let E be a Rider set contained in Z+, the positive part of 2. We also prove in section

1 that:
(iii) IT U£" is a Rajchman set.
In section 2 we present some examples of Rajchman sets in Y. The sum sets in

example (III) are especially interesting from an arithmetic point of view. In section 3 we
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exhibit a connection between Rajchman sets in the integer group Z and idempotent
measures on the circle. The result of this section provided the original motivation for our
study of Rajchman sets.

1. Union problems for Rajchman sets. A subset S of F is said to be a Sidon set if
whenever /eLs(G), then £ |/(a)|<°°. Our first result is:

THEOREM 2. The union of a Rajchman set and a Sidon set is a Rajchman set.

Proof. We adapt the proof of [5]. Let fi. e C0(r\9i U S), where 9t is Rajchman and S
is Sidon. By a result of Drury, given a natural number m there is a measure vm e M(G)
such that

vm{a) = \ (o€S), (1)

^ (2)

Since 9t is Rajchman it follows from (1) that the measure

fi - vm* fi 6 M0(G). (3)

On letting m -* °° in (3) we gather from (2) that fi, e C0(r\S). Our result now follows from
Theorem 2.20 of [16, p. 30].

We remark that Theorem 2.20 of [16, p. 30] shows that the method of proof of [5]
works for any compact abelian group to establish that the union of a small p set and a
Sidon set is a small 2p set. For if F is not ordered or the positive cone is not Rajchman
then the first part of the argument of [5] shows that (L e C0(F\S). An improvement of [5]
due to the author and S. Saeki can be found in [22, p. 91]. The reader is also referred to
example I of the present paper.

Next, let g" satisfy

The interpolation property (*) has been studied by many authors; the reader is referred to
[2], [11], [14], and [21]. It is known that the set of prime powers and the sets
{rn + rm:n, mel+} where reZ+ and r>2 satisfy (*) for F = Z; see [10].

THEOREM 3. The union of a Rajchman set di and any set "S satisfying (*) is a
Rajchman set.

Proof. Let fieM(G) and suppose

| ieC 0 ( r \gu9l ) . (1)

Let aoe% and choose veMa{G) such that

v(o0) = l. (2)

Since g" satisfies (*) we gather there is a measure /xdeMd(G) such that

fid = v on 9. (3)
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By(l)

thus

ixd * / x - v * / x e M 0 ( G ) . (4)

In light of the Riemann-Lebesgue Lemma, (4) implies that

fc*MM0(G). (5)

Put

Mo{G) = {p eM(G): p is singular with each r e M0(G)}.

Then, as is well known, M(G) = Mo(G)©Mo(G). Since M0(G) is translation invariant and
since MQ(G) is translation invariant and closed, it follows that if pdeMd(G), then

Pd*M%{G)^Mt{G). (6)

Write n = iio + fjb± where /AoeMo(G) and p,xeMo(G). We infer from (5) that
Md * |ii£M0(G), so we obtain via (6) that

/td * Ma. = 0. (7)

But (2) and (3) in combination with (7) yield (ju.±)
A(a0) = 0. Thus

(8)

and so /x*/xxeM0(G). It is now evident that /AX*/X±€ M0(G) and this is possible if and
only if nx = 0.

Theorem 3 implies the following result which we state without proof.
Every non-Sidon subset of a discrete abelian group contains a Rajchman set which is

non-Sidon.
For the remainder of this section our notation will be for the most part that of [16].

In what follows F is ordered by the positive cone 9.
A subset S of T is called asymmetric if 0£S and aeS imply -a£S. For any subset E

of F and integer ssO, RS{E) denotes the number of asymmetric subsets S of EU—E
satisfying \S\ = s and X « = 0. The set E is called a Rider set if there is a constant B > 0

aeS

such that RS(E)<BS for all s. For kef let Ek consist of all characters of the form X a
where S is an asymmetric subset of EU-E and |S| = /c. a e S

Before presenting our result we shall need the next two propositions, which we now
state for the readers' convenience.

PROPOSITION 1. (Bonami [3]). Let E be a Rider set in T. Then Ek is a A(q) set for all
1 < q < oo and all k>0.
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Recall that a set A is called a A(q) set if there exists a p < q and a constant Kp such
that

for all trigonometric polynomials t on G with ?=0 off A.

PROPOSITION 2. (Rudin [24]). Let fieM(T) and A a set of type A(l). If
Z"UA, then /xeMa(T).

For a generalization of Proposition 2 see [18]. In this connection we point out that for
the corollary of [18, p. 369] to be valid we must replace the word infinity by "—<»" in both
the statement of the corollary and its proof. We shall call a subset R of F a weak
Rajchman set if whenever supp (L <= R then jx e M0(G). The set of Proposition 2 is a weak
Rajchman set which is (to the author's knowledge) not known to be Rajchman. The
method of Theorem 2 shows that the union of a weak Rajchman set and a Sidon set is a
weak Rajchman set.

We shall be interested in showing that for certain A(l) sets A (which are not Sidon)
Z~ U A is a Rajchman set. For any subset E of F and natural number n s: 2 put

E" = {n,. + nh + ... + nin: nh * nik, nh e E}

and Ex =E. We now present this extension of Rajchman's Theorem:

THEOREM 4. Let E be a Rider set in 1 such that E c Z+. Then Z" U En is a Rajchman
set.

Proof. Let /xeM(T) and j ie C0(Z\Z"U£"). We shall suppose ££C0(Z) and force a
contradiction.

If ££C0(2) then there exists by Theorem 1 a S>0 such that the set

is infinite. Choose a sequence (ay)7 with the a's distinct and in Sf.
Let v be any weak-star cluster point of {-a,/x}. Since the a's are distinct it follows

from the Helson Translation Lemma that

VGMS(T). (1)

Observe that

i>(0)*0 (2)

since the a's belong to y.
We shall fix a e Z + and calculate i>(a). If a + at meets En only finitely many times

then, since (ieC0(I\l~UEn), it follows that i>(a) = 0. Thus if ael+, then v(a)
implies that

-a,.)= f] Q (E"-«k).
m = 1 fc = m
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Well, it is easy to see that

-a,.)c:A, (3)

where
A={0}UE2UE4...UE2n (n>l).

By Proposition 1 and [23, p. 217] this set A is a A(q) set for all finite q. Inasmuch as
v is singular and supp i><^l~\J A we obtain via Proposition 2:

i>(0) = 0. (4)

Since (4) contradicts (2) we conclude that £eC0(Z); i.e. /xeM0(T) and this finishes
our proof.

COROLLARY. / / E and F are disjoint with EDF dissociate and £ U F c / + , then
1~\J(E + F) is a Rajchman set.

For some interesting properties of E + F where E and F are disjoint with dissociate
union see [1].

2. Examples of Rajchman Sets. In this section we present some examples of
Rajchman sets in F. Most of the examples appear in the literature implicitly.

EXAMPLES (I) A subset g of Z+ is said to satisfy the lacunary condition (2P) if for every
increasing sequence n,, n 2 , . . . , e E, 1+C\ Hm (%- n() is a finite set.

Then if & satisfies (0*), Z~U8? is a Rajchman set. To confirm this assertion it suffices to
repeat the proof of Theorem 3 of [8]. A proof for arbitrary discrete T that a Sidon set is a
Rajchman set can be based on Theorem 1.4 of [16, p. 8] and the method of proof of the
present example.

(II) A subset 9 of Z is said to be a set of uniform convergence or l/C-set if every
/eCgr(T) has uniformly convergent Fourier series. Non-Sidon [/C-sets were first
exhibited by Figa-Talamanca; see [16, pp. 82-86]. Careful scrutiny of the proof of
Theorem 5 of [7] shows that Z~ U & is a Rajchman set.

(Ill) A subset @ of 2 is defined to be a strong Rajchman set if (S is a Rajchman set.
Here @ is a closure of (5 in Z, where Z has the relative topology of its Bohr compactifica-
tion, Z. A subset S8 of Z issaid to be a Riesz set if Mgj(T) = VgJJ). A subset g1 of Z is
called a strong Riesz set if S? is a Riesz set.

Replacing the decomposition M(T) = Ma(T)©Ms(T) by M0(T)©M£(T) in [17] and
adapting the methods of Meyer we can easily prove: if 31 is a Rajchman set and (& is a
strong Rajchman set then 9ft U (5 is a Rajchman set. In particular we have that the union of
a Rajchman set and a strong Riesz set is a Rajchman set. The following examples of
strong Riesz sets can be found in [6] and [17] respectively:

(i) The set of integers expressible as the sum of two perfect squares is a strong Riesz
set;

(ii) Let nk be a sequence of positive integers such that nk+Jnk is an integer >2 for
all k.
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Then the set of all finite sums of the form

£ tknk with fke{0,1},

is a strong Riesz set.
Here is another example due to the author and S. Saeki:
Fix any two sequences (pn)T and (qn)" of natural numbers ^ 2 . Let

*„ = {p,Pa • • • P«fe: fc = 0, ± 1 , . . . , ±qn}

and put <£= U $?„. Then %+...+% (any finite number of summands) is a strong Riesz set.
i

To see this let

D = {g2"^p.-p»: m e 2 and n e 2+}.

Consider D with the discrete topology and D the compact dual of D. It is easy to prove
that the only accumulation point of g"+ in D is 0; see [13, p. 107] and [13, p. 403]. Since D
is a factor group of Z and D is dense in T we gather that the set of accumulation points of
?+ in Z (with the relative Bohr topology) is a subset of {0}. Thus %+ is strong Riesz and
moreover since <g is symmetric we have that g"~ is strong Riesz. Thus % = &+ U ?~ is strong
Riesz.

Now the set of accumulation points for (%+%)+ in D is a subset of {0}U&. So since %
is strong Riesz it follows from [17, p. 90] that (?+g)+ is strong Riesz. Thus ? + ? =
(£+i?)+ U (%+%)~ is strong Riesz and the proof for any finite number of summands follows
inductively.

(IV) Let 91 be a Rajchman set in T. Suppose 51 c T has the property that

{(%-a)C\W\ is a Rajchman set

for all a £9ft. Then % is a Rajchman set.
The proof of the above statement is similar to the proof of Theorem 2 of [19, p. 77]

and we omit the details.

3. Weak Rajchman sets and idempotent measures. Using a remarkable result of K.
de Leeuw and Y. Katznelson, we establish a connection between idempotent measures
and Rajchman sets.

THEOREM 5. Suppose R is a weak Rajchman set in 1 and ju,eM(T) such that fi = (i2

off R. Then there is an idempotent measure v e M(T) such that (L = v off R.

Proof. Let /i 6 M(T) with

/i = A2 off R. (1)

Via (1)

lim sup |/i(n) - (i2(n)\ = 0
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and since R is weak Rajchman, we gather that

limsup|/2(n)-/i2(n)| = 0. (2)

11 eZ

As a consequence of Theorem 2 of [4, pp. 220-221] (2) gives:

/x = /A] + fi2, (il periodic with fjbx idempotent (3)
and

limsup|/22(n)| = 0. (4)
neX

As a consequence of (1), (3), and (4), we deduce that /2 = /ix off R\F where F is
some finite set. Thus, since /&, is periodic, we are done.

Theorem 5 is an extension of a theorem of H. Helson [12]; see also [15] and [20]. We
conclude our paper with some open questions.

(i) If i% is a Riesz set must 3? be a Rajchman set?
(ii) Is the union of a Rajchman set and a [/C-set a Rajchman set? In this connection

see example (II) of section 2.
A subset A c T is called a Rosenthal set if L^CG) = CA(G). It is known that the sum

sets g + . . . + g in example (III) of section 2 are Rosenthal sets. The following question
suggests itself:

(iii) Is the union of a Rajchman set and a Rosenthal set a Rajchman set? An
analogous result can be found in [9].

After our manuscript had been accepted for publication the author generalized
Theorem 5 to compact abelian groups.

Note added in proof. The author has recently learned of the work of Keiji Izuchi,
Sidon sets and small M0-sets, Sci. Rep. Tokyo Kyoiku Daigaku Sect. A 12 (1974),
146-148. Izuchi proves Theorem 2 of the present paper using the method of [5]. Theorem
2 was also known to the author in 1974.
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