
J. Functional Programming 9 (2): 225–245, March 1999. Printed in the United Kingdom

c© 1999 Cambridge University Press

225

Automatic verification of functions with
accumulating parameters

ANDREW IRELAND

Department of Computing & Electrical Engineering, Heriot-Watt University, Riccarton,

Edinburgh EH14 4AS, Scotland

(e-mail: A.Ireland@hw.ac.uk)

ALAN BUNDY

Department of Artificial Intelligence, University of Edinburgh, 80 South Bridge,

Edinburgh EH1 1HN, Scotland

(e-mail: bundy@ed.ac.uk)

Abstract

Proof by mathematical induction plays a crucial role in reasoning about functional programs.

A generalization step often holds the key to discovering an inductive proof. We present a

generalization technique which is particularly applicable when reasoning about functional

programs involving accumulating parameters. We provide empirical evidence for the success

of our technique and show how it is contributing to the ongoing development of a parallelizing

compiler for Standard ML.

1 Introduction and motivations

Functional programs, by their very nature, are highly amenable to formal methods

of reasoning. This has been exploited within the formal verification community

where the majority of theorem proving based tools have a strong functional bias

(Boyer and Moore, 1979; Boyer and Moore, 1988; Bundy et al., 1990; Owre et al.,

1992; Kapur and Zhang, 1995; ORA, 1996; Hutter and Sengler, 1996; Kaufmann

and Moore, 1997). Proof by mathematical induction plays a crucial role in reasoning

about recursively defined functions. The generalization of an inductive conjecture

often holds the key to discovering a proof. We present an automatic generalization

technique which is particularly applicable when reasoning about functional programs

involving accumulating parameters. We are partly motivated by a research project1

in which a parallelizing compiler for Standard ML (SML) is being developed. This

project builds directly upon previous work on the development of parallel systems

from functional prototypes (Michaelson and Scaife, 1995). Transformation rules for

SML will play an important part within the compilation process. It is a goal of this

project to support the formal verification of these transformation rules by embedding

1 EPSRC grant GR/L42889: Parallelising compilation of Standard ML through prototype instrumentation
and transformation.
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a theorem proving capability within the compiler. We see the work presented here

as providing the basis for achieving this goal.

The paper is structured as follows. In section 2 background material on the

problem and our approach are presented. An analysis of our prototype technique,

what which call the ‘basic critic’, is given in section 3. This analysis provides

the motivation for our extended technique which is documented in sections 4, 5

and 6. The implementation and testing of the extended technique are discussed in

section 7, where particular attention is given to a verification obligation generated

by the parallelizing compiler project mentioned above. Related and future work

are outlined in sections 8 and 9, respectively. Finally, we draw our conclusions in

section 10.

2 Background

2.1 Accumulator Ggeneralization

The introduction of accumulator parameters is a well documented (Henderson, 1980;

Bird and Wadler, 1988; Turner, 1991; Bird, 1998) technique for deriving efficient

functional programs. To illustrate the basic idea we use list reversal, a standard

text book example (Henderson, 1980). Consider the following naive definition of list

reversal:

reverse(nil) = nil

reverse(X :: Y ) = app(reverse(Y ), X :: nil)

where :: and app denote list construction and concatenation respectively. An equiva-

lent, but more efficient, version is derived by introducing an additional ‘accumulator’

parameter, i.e.

rev(nil, Z) = Z

rev(X :: Y ,Z) = rev(Y ,X :: Z)

The resulting function rev is tail-recursive. By exploiting the direct correspondence

between tail-recursion and iteration further efficiency gains can be achieved by

purely mechanical means.

2.1.1 The verification problem

The correctness of the transformation given above is of obvious concern. Establishing

the formal correctness, however, is not a purely mechanical process. It requires us

to prove an inductive conjecture of the form:

∀t : list(A). reverse(t) = rev(t, nil) (1)

In this paper, we are concerned with proving such inductive conjectures automati-

cally. A naive attempt at proving (1) by structural induction on the list t fails. The
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failure occurs in the step case where we have a proof obligation of the form:

reverse(t) = rev(t, nil)︸ ︷︷ ︸
hypothesis

` app(reverse(t), h :: nil) = rev(t, h :: nil)︸ ︷︷ ︸
conclusion

Note that the conclusion fails to match the hypothesis because it contains mis-

matching term structures, i.e. app(. . . , h :: nil) on the left-hand-side and h :: . . . on

the right-hand side. The problem is that the induction hypothesis is not strong

enough, i.e. it only tells us about the behaviour of rev when its accumulator pa-

rameter is set to nil. The failed proof attempt can be overcome by generalizing

the conjecture. The generalization involves the introduction of a new universally

quantified variable into the conjecture, i.e.

∀t : list(A).∀l : list(A). app(reverse(t), l) = rev(t, l) (2)

We refer to this as accumulator generalization. The generalized conjecture provides

a stronger induction hypothesis which enables the step case proof to succeed. The

need for generalization represents a major obstacle to the automatic verification

of functional programs. A generalization step is underpinned by the cut-rule of

inference. In a goal-directed framework, therefore, a generalization introduces an

infinite branching point into the search space. It is known (Kreisel, 1965) that

the cut-elimination theorem does not hold for inductive theories. Consequently,

heuristics for controlling generalization play an important role in the automation of

inductive proof.

2.1.2 Our approach

Returning to the list reversal example, the accumulator parameter provides a strong

hint as to where the new universal variable should occur within the generalized

conjecture. However, even with this elementary example additional guidance is

required if the process is to be fully automated. For instance, how is the introduction

of the app(. . . , l) term structure on the left-hand side of (2) motivated? We address

this question through the use of a meta-level reasoning technique. Our starting point

is a meta-level description of the common structure which characterizes an inductive

proof. When a proof attempt fails this description can then be used to bridge the

gap between the failure and a subsequent successful proof. We argue that having

such a description provides a handle on the infinite search space generated by the

generalization problem. Our approach relies upon the richness of the background

theory, i.e. the lemmata which are available to the theorem prover. However, as will

be shown in section 7, this is not as restrictive as it might first appear.

2.2 Proof methods and critics

We build upon the notion of a proof plan (Bundy, 1988) and tactic-based theorem

proving (Gordon et al., 1979). While a tactic encodes the low-level structure of a

family of proofs a proof plan expresses the high-level structure. In terms of automated

deduction, a proof plan guides the search for a proof. That is, given a collection of
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general purpose tactics the associated proof plan can be used automatically to tailor

a special purpose tactic to prove a particular conjecture.

The basic building blocks of proof plans are methods. Using a meta-logic, methods

express the preconditions for tactic application. The benefits of proof plans can be

seen when a proof attempt goes wrong. Experienced users of theorem provers,

such as nqthm, are used to intervening when they observe the failure of a proof

attempt. Such interventions typically result in the user generalizing their conjecture

or supplying additional lemmata to the prover. Through the notion of a proof critic

(Ireland, 1992), we have attempted to automate this process. Critics provide the

proof planning framework with an exception handling mechanism which enables

the partial success of a proof plan to be exploited in search for a proof. The

mechanism works by allowing proof patches to be associated with different patterns

of precondition failure. We previously reported (Ireland and Bundy, 1996) various

ways of patching inductive proofs based upon the partial success of the ripple

method described below.

2.3 Method for guiding inductive proof

In the context of mathematical induction the ripple method plays a pivotal role in

guiding the search for a proof. The ripple method controls the selective application

of rewrite rules in order to prove step case goals. Schematically, a step case goal can

be represented as follows:

· · · ∀b′. P [a, b′]︸ ︷︷ ︸
hypothesis

· · · ` P [c1(a), b]︸ ︷︷ ︸
conclusion

where c1(a) denotes the induction term. To achieve a step case goal the conclusion

must be rewritten so as to allow the hypothesis to be applied:

· · · ∀b′. P [a, b′] · · · ` c2(P [a, c3(b)])

Note that, to apply the induction hypothesis, we must first instantiate b′ to be c3(b)

which gives rise to a goal of the form:

· · ·P [a, c3(b)] · · · ` c2(P [a, c3(b)])

The need to instantiate an inductive hypothesis in this way is commonplace in

inductive proof, and plays a crucial role in our technique. We return to this point at

the end of this section.

Syntactically an induction hypothesis and conclusion are very similar. More

formally, the hypothesis can be expressed as an embedding within the conclusion

(Smaill and Green, 1996). Restricting the rewriting of the conclusion so as to preserve

this embedding maximizes the chances of applying an induction hypothesis. This is

the basic idea behind the ripple method. The application of the ripple method, or

rippling, makes use of meta-level annotations called wave-fronts to distinguish the

term structures which cause the mismatch between the hypothesis and conclusion.

Conversely any term structure within the conclusion which corresponds to the

hypothesis is called skeleton. In general, embedded within each wave-front will be
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parts of the skeleton term structure, these are known as wave-holes. We use a box and

an underline to represent wave-fronts and wave-holes respectively, e.g. an annotated

version of the goal given above takes the form:

· · · ∀b′. P [a, b′] · · · ` P [ c1(a)
↑
, bbc]

We refer to a wave-front and its associated wave-hole, e.g. c1(a)
↑
, as a wave-term.

The arrows are used to indicate the direction in which wave-fronts can be moved

through the term structure. A term structure with the annotations removed is called

the erasure. In order to distinguish terms within the conclusion which can be matched

by universal variables in the hypothesis we use annotations called sinks, i.e. b. . .c.
As will be explained below sinks play an important role in identifying the need for

accumulator generalization. A successful application of the ripple method can be

characterized as follows:

· · · ∀b′. P [a, b′] · · · ` c2(P [a, bc3(b)c]) ↑

Note that the term c3(b), i.e. the instantiation for b′, occurs within a sink so the wave-

front annotation is no longer required. Rippling restricts rewriting to a syntactic

class of rules called wave-rules. Wave-rules make progress towards eliminating wave-

fronts while preserving skeleton term structure. A wave-rule which achieves the

ripple given above takes the form2:

P [ c1(X)
↑
, Y ]⇒ c2(P [X, c3(Y )

↓
])

↑
(3)

Wave-rules are derived automatically from definitions and logical properties like

substitution, associativity and distributivity, etc. All wave-rules are available during

the process of planning a proof. In general, a successful ripple will require multiple

wave-rule applications. There are three basic patterns of rippling which are summa-

rized schematically in figure 1. The preconditions for applying wave-rules are given

in figure 2.3. We draw the readers attention to precondition 4, and in particular

the notion of sinkable wave-fronts. It is the failure of this precondition within the

context of a syntactically applicable wave-rule which provides the trigger for our

proof patching technique. For a complete description of rippling and the generation

of wave-rules see Bundy et al. (1993) and Basin and Walsh (1996). To illustrate one

of the basic patterns of rippling an inductive proof of conjecture (2) is presented.

Structural induction on the list t gives rise to a trivial base case. We focus here on

the step case where the induction hypothesis takes the form:

∀l′ : list(A). app(reverse(t), l′) = rev(t, l′) (4)

and the annotated conclusion takes the form:

app(reverse( h :: t
↑
), blc) = rev( h :: t

↑
, blc) (5)

2 We use ⇒ to denote rewrite rules and → to denote logical implication.
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rippling-out:

f1(. . . (fn( c1(. . .)
↑
)) . . .) cn(f1(. . . (fn(. . .)) . . .))

↑
before afterrippling-sideways:

f1( c1(. . .)
↑
, . . . , fi(. . .), . . .) f1(. . . , . . . , ci(fi(. . .))

↓
, . . .)

before after
rippling-in:

cn(f1(. . . fn(. . .) . . .))
↓

f1(. . . fn( c1(. . .)
↓
) . . .)

before after

An outward ripple involves the movement of wave-fronts into less nested term tree positions.

A sideways ripples moves wave-fronts between distinct branches in the term tree while inward

ripples movement of wave-fronts into more nested term tree positions. In general, a wave-rule

may combine all three forms.

Fig. 1. The three basic rippling patterns.

The proof of the step case requires the definitions of reverse, rev and app, as well as

the associativity of app. These definitions give rise to 49 wave-rules which include:

reverse( X :: Y
↑
) ⇒ app(reverse(Y ), X :: nil)

↑
(6)

rev( X :: Y
↑
, Z) ⇒ rev(Y , X :: Z

↓
) (7)

app( app(X,Y )
↑
, Z) ⇒ app(X, app(Y ,Z)

↓
) (8)

Wave-rule (6) applies on the left-hand-side of (5) to give:

app( app(reverse(t), h :: nil)
↑
, blc) = rev( h :: t

↑
, blc) (9)

Applying wave-rule (7) on the right-hand-side of (9) gives:

app( app(reverse(t), h :: nil)
↑
, blc) = rev(t, bh :: lc)

Finally, wave-rule (8) applies on the left-hand-side giving:

app(reverse(t), bapp(h :: nil, l)c) = rev(t, bh :: lc)
Note that the term structure delimited by the sink annotation on the left-hand-side

simplifies to give:

app(reverse(t), bh :: lc) = rev(t, bh :: lc) (10)

A match between (10) and (4) is achieved by instantiating l′ to be h :: l. This

completes the step case proof.
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Input sequent:

H ` G[f1( c1(. . .)
↑
, f2(b. . .c), f3( c2(. . .)

↑
))]

Method preconditions:

1. there exists a subterm T of G which contains wave-front(s), e.g.

f1( c1(. . .)
↑
, f2(b. . .c), f3( c2(. . .)

↑
))

2. there exists a wave-rule which matches T , e.g.

C → f1( c1(X)
↑
, Y , Z)⇒ c5(f1(X, c3(Y )

↓
, c4(Z)

↓
))

↑

3. the wave-rule condition follows from the context, e.g.

H ` C
4. resulting inward directed wave-fronts are potentially removable, e.g.

. . . c3(f2(b. . .c)) ↓︸ ︷︷ ︸
(sinkable)

. . . or . . . c4(f3( c2(. . .)
↑
))

↓

︸ ︷︷ ︸
(cancellable)

. . .

Note that a wave-front is sinkable if it is inward directed and one or more of its

wave-holes contains a sink. A wave-front is cancellable if it is inward directed and one

or more of its wave-holes contains an outward directed wave-front.

Output sequent:

H ` G[ c5(f1(. . . , c3(f2(b. . .c)) ↓, c4(f3( c2(. . .)
↑
))

↓
))

↑
]

Note that, for a wave-rule to be applicable, both object-level and meta-level term structures

must match.

Fig. 2. Preconditions for applying wave-rules.

2.4 A critic for discovering generalizations

In terms of the preconditions for applying wave-rules, the need for an accumulator

generalization can be explained by the failure of precondition 4, i.e. a missing sink

(see figure 2.3). Schematically this failure pattern can be characterized as follows:

· · ·P [a, d] · · · ` P [ c1(a)
↑
, d]

where d denotes a term which does not contain any sinks. We call the occurrence of

d a blockage term because it blocks the sideways ripple, in this case the application of

wave-rule (3). The identification of a blockage term triggers the generalization critic.

The associated proof patch introduces schematic terms into the goal to partially

specify the occurrences of a sink variable. In the schematic example presented above
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this leads to a patched goal of the form:

· · · ∀l′.P [a,M(l′)] · · · ` ∀l.P [ c1(a)
↑
,M(blc)]

where M denotes a second-order meta-variable. Note that wave-rule (3) is now

applicable, giving rise to a refined goal of the form:

· · · ∀l′.P [a,M(l′)] · · · ` ∀l. c2(P [a, c3(M(blc)) ↓])
↑

The expectation is that an inward ripple will determine the identity of M.

Relating this proof patch to the list reversal example an inductive proof of

conjecture (1) gives rise to the following failure pattern:

· · · reverse(t) = rev(t, nil) · · · `
app(reverse(t), h :: nil)

↑
= rev( h :: t

↑
, nil)︸ ︷︷ ︸

blocked

(11)

Note that the occurrence of nil on the right-hand side is a blockage term because it

prevents the application of wave-rule (7). The patched goal takes the form:

· · · ∀l′ : list(A).M2(reverse(t), l′) = rev(t,M1(l′)) · · · `
M2(reverse( h :: t

↑
), blc) = rev( h :: t

↑
,M1(blc)) (12)

Using wave-rule (6) the goal becomes:

· · · ∀l′ : list(A).M2(reverse(t), l′) = rev(t,M1(l′)) · · · `
M2( app(reverse(t), h :: nil)

↑
, blc) = rev( h :: t

↑
,M1(blc))

Wave-rule (7) is now applicable and gives rise to a goal of the form:

· · · ∀l′ : list(A).M2(reverse(t), l′) = rev(t,M1(l′)) · · · `
M2( app(reverse(t), h :: nil)

↑
, blc) = rev(t, h ::M1(blc) ↓)

Our approach to the problem of constraining the instantiation of schematic terms

will be detailed in section 5. We will refer to the above generalization as the basic

critic.

3 Limitations of the basic critic

The basic critic described in section 2.4 has proved very successful (Ireland and

Bundy, 1996). Through our empirical testing, however, a number of limitations have

been observed:

1. Certain classes of example require the introduction of multiple sink variables.

The basic critic only deals with single sink variables.

2. The basic critic was designed in the context of equational proofs. A sink

variable is assumed to occur on both sides of an equation. On the side
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opposite to the blockage term it is assumed that in the resulting generalized

term structure the sink (auxiliary) will occur as an argument of the outermost

functor.

3. Sink term occurrences which are motivated by blockage terms are more

constrained than those which are not. This is not exploited by the basic critic

during the search for a generalization.

From these observations a number of natural extensions to the basic critic emerged.

These extensions are described in the following sections.

4 Specifying sink terms

To exploit the distinction between different sink term occurrences hinted at above we

extend the meta-level annotations to include the notions of primary and secondary

wave-fronts. A wave-front which provides the basis for a sideways ripple, but which

is not applicable because of the presence of a blockage term is designated to be

primary. All other wave-fronts are designated to be secondary. To illustrate, consider

the following schematic conclusion:

g(f( c1(a, b)
↑
, d), c1(a, b)

↑
) (13)

and the following wave-rules:

f( c1(X,Y )
↑
, Z) ⇒ f(X, c2(Z, Y )

↓
) (14)

g(X, c1(Y ,Z)
↑
) ⇒ c3(g(X,Y ), Z)

↑
(15)

Assuming that the occurrence of d in (13) denotes a blockage term then wave-rule

(14) is not applicable. Wave-rule (15) is applicable and enables an outwards ripple,

i.e.

c3(g(f( c1(a, b)
↑
, d), a), b)

↑

Using subscripts3 to denote primary and secondary wave-fronts then the analysis

presented above gives rise to the following classification of the wave-fronts appearing

in (13):

g(f( c1(a, b)
↑
1
, d), c1(a, b)

↑
2
) (16)

Note that the rippling of the secondary wave-fronts is undone. This increases the

number of generalizations which may be subsequently discovered. Relating the

notion of primary and secondary wave-fronts to blocked goal (11) gives rise to

reverse( h :: t
↑
2
) = rev( h :: t

↑
1
, nil)

3 Note that wave-rules must also take account of the extension to the wave-front annotations.
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4.1 Primary sink terms

For each primary wave-front an associated sink term is introduced. We refer to

these as primary sink terms. The position of a primary sink term corresponds to the

position of the blockage term within the conclusion. The structure of a primary sink

term is a function of the blockage term and is computed as follows:

pri(X) =


Mi(blic) if X is a constant

Mi(X, blic) if X is a wave-front

F(pri(Y1), . . . , pri(Yn)) otherwise

where X ≡ F(Y1, . . . , Yn)

Note that Mi denotes a higher-order meta-variable while li denotes a new object-

level variable. In general distinct primary sink terms may or may not need to share

the same object-level variable. This represents a choice point in the construction of

primary sink terms. Assuming d denotes a constant then pri(d) evaluates toM1(bl1c).
Substituting this sink term for d in (16) gives a schematic conclusion of the form:

g(f( c1(a, b)
↑
1
,M1(bl1c)), c1(a, b)

↑
2
) (17)

Relating the general notion of primary sink terms to the specific list reversal example

gives:

reverse( h :: t
↑
2
) = rev( h :: t

↑
1
,M1(bl1c))

4.2 Secondary sink terms

For each secondary wave-front we eagerly attempt to apply a sideways ripple by

introducing occurrences of the variables associated with the primary sink terms.

These occurrences are specified again using schematic term structures and are called

secondary sink terms. The construction of secondary sink terms are as follows. For

each subterm, X, of the conclusion which contains a secondary wave-front, we

compute a secondary sink term as follows:

sec(X) =Mi(X, bl1c , . . . , blmc)
where l1, . . . , lm denote the vector of variables generated by the construction of

the primary sink terms. To illustrate, consider again the schematic conclusion (17).

Taking X to be c1(a, b)
↑
2

then the process of introducing secondary sink terms

gives rise to a new schematic conclusion of the form:

g(f( c1(a, b)
↑
1
,M1(bl1c)),M2( c1(a, b)

↑
2
, bl1c)) (18)

Note that the selection of X represents a choice point in the construction of

secondary sink terms. In the case of (17), another alternative instantiation for X

exists, i.e.

g(. . . , c1(a, b)
↑
2
)
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Automatic verification of functions with accumulating parameters 235

giving rise to a schematic conclusion of the form:

M2(g(f( c1(a, b)
↑
1
,M1(bl1c)), c1(a, b)

↑
2
), bl1c)

Again, relating the general notion to the specific list reversal example gives rise to

two alternative patches of the form:

reverse(M2( h :: t
↑
2
, bl1c)) = rev( h :: t

↑
1
,M1(bl1c))

M2(reverse( h :: t
↑
2
), bl1c) = rev( h :: t

↑
1
,M1(bl1c)) (19)

Note that the second of these corresponds to the patched goal (12).

5 Instantiating sink terms

The process of instantiating the sink terms introduced by the generalization critic

is guided by the application of wave-rules. In general, the application of wave-

rules in the presence of schematic term structure requires higher-order unification.

Our implementation therefore exploits a higher-order unification procedure (see

section 7). In this application, however, we only require second-order unification.

The application of wave-rules in the presence of second-order meta-variables within

the goal-term requires narrowing, i.e. rewriting where free variables in the redex can

be instantiated through the unification with wave-rules. Below we describe how the

meta-level annotations can be used to constrain the unification process and discuss

the benefits of this approach.

5.1 Constraining second-order unification

Our procedure for constraining the application of rewrite rules within the context of

skeleton term structure which contains second-order meta-variables involves three

steps. The applicability of a wave-rule of the form L ⇒ R to a wave-term W is

computed as follows:

1. For each wave-front within L there exists a wave-front within W which unifies

giving a substitution θ1.

2. The erasures of L′ and W ′ unify giving a substitution θ2, where L′ = L · θ1

and W ′ = W · θ1.

3. For each sink term T of the form Mj[bl1c , . . . , blnc] within L′ · θ2 there exists

a substitution θ3 such that (T · θ3) = blkc (1 6 k 6 n).

If successful then W is replaced by ((R · θ1) · θ2) · θ3. Note that in the unification

of wave-fronts both object-level and meta-level term structure must match, e.g. the

wave-fronts ci(X,Y )
↑
N

and ci(f(a), g(b, c))
↑
2

match giving rise to the following sub-

stitution {X 7→ f(a), Y 7→ g(b, c), N 7→ 2}. The constraints of rippling significantly

reduce the number of unifiers which are considered as will be shown in section 5.3.

Our procedure does not, however, eliminate choice completely. In particular, the

application of the procedure may give rise to choice with respect to the selection of
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wave-fronts (step 1) and sinks (step 3). We use an iterative deepening search strategy

to enable alternative branches within the search space to be explored. Second-order

unification will, in general, lead to a non-terminating sequence of inward directed

wave-fronts. For this reason, projections are used to eagerly terminate inward rip-

ples. A projection is applied whenever an inward directed wave-front occurs as

the immediate super-term of a sink term. The strategy of eager instantiation of

meta-variables may of course give rise to an over-generalization, i.e. a non-theorem.

A counter-example checker is used to filter candidate instantiations of the schematic

conjecture. The checker evaluates ground instances of the conjecture, typically cor-

responding to base cases. On detecting a non-theorem the planner backtracks and

explores alternative branches within the search space. A complementary instanti-

ation strategy is discussed in section 9 which is appropriate when meta-variables

occur out with the scope of our technique.

5.2 List reversal revisited

Returning to the list reversal example, consider again patch (19) which ripples by

wave-rules (6) and (7) to give:

· · · ∀l′ : list(A).M2(reverse(t), l′) = rev(t,M1(l′)) · · · `
M2( app(reverse(t), h :: nil

↑
2
), blc) = rev(t, h ::M1blc

↓
2
)

Now consider the wave-term on the left-hand side of the form:

M2( app(reverse(t), h :: nil)
↑
2
, blc) (20)

Using the annotated unification procedure wave-rule (8) now applies to give:

· · · ∀l′ : list(A). app(reverse(t),M3(t, l′)) = rev(t,M1(l′)) · · · `

app(reverse(t), app(h :: nil,M3( app(reverse(t), h :: nil)
↑
2
, blc))

↓

2

)

= rev(t, h ::M1blc
↓
2
)

Note that M2 is instantiated to be λx.λy.app(x,M3(x, y)). By the process of eager

instantiation M1 becomes λx.x and M3 becomes λx.λy.y giving:

· · · ∀l′ : list(A). app(reverse(t), l′) = rev(t, l′) · · · `
app(reverse(t), bapp(h :: nil, l)c) = rev(t, bh :: lc)

Simplifying the sink on the left-hand-side and instantiating l′ to be h :: l en-

ables the application of induction hypothesis. Note that the resulting generalization

corresponds to conjecture (2).
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5.3 Benefits of meta-level guidance

Using the list reversal example we now consider the benefits of using meta-level

annotations to constrain the unification process. We compare the branching rates

when applying annotated and unannotated rewrite rules. As mentioned in section 2.3

the list reversal example gives rise to 49 wave-rules. In the case of goal-term (20)

the annotated unification procedure eliminates all but the following 4 wave-rules:

app( app(X,Y )
↑
N
, Z) ⇒ app(X, app(Y ,Z)

↓
N

) (21)

app(X, app(Y ,Z)
↑
N

) ⇒ app(app(X,Y ), Z)
↑
N

X :: app(Y ,Z)
↑
N
⇒ app(X :: Y ,Z)

↑
N

app(reverse(Y ), X :: nil)
↑
N
⇒ reverse( X :: Y

↓
N

)

Note that only the first three of these will actually apply since the third is ruled-out

by precondition 4 of the ripple method, i.e. sink-ability. The 3 remaining applicable

wave-rules should then be compared with the results of unannotated unification

which again gives rise to 18 applicable rewrite rules.

While the annotations reduce the number of wave-rules considered for unifi-

cation they also constrain the number of unifiers. To illustrate, consider goal-

term (20) and the left-hand side of wave-rule (21). Unification without the con-

straints of annotations generates two possible unifiers, i.e. λx.λy.app(x,M3(x, y)) and

λx.λy.app(h :: t,M2(x, y)). Note that the first is based upon projection while the

second uses imitation. The imitation, however, violates the key property of rippling,

i.e. skeleton preservation (see section 2.3), so is rejected by the annotated unification

procedure.

6 Organizing the search space

In controlling the search for a generalization we place a number of constraints on

the proof planning process:

• Planning in the context of schematic term structures requires a bounded

search strategy. We use an iterative deepening strategy to explore the space of

alternative ripple proofs.

• Backtracking over the construction of sink terms deals with the choice point

issues raised in section 4.

• Since primary sink terms are more constrained than secondary sink terms

priority is given to the rippling of primary wave-fronts.

7 Implementation and testing

The extensions to the basic critic described above directly address the limitations

highlighted in section 3:
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1. The linkage of blockage terms with the introduction of primary sink terms

within the schematic conjecture addresses the issue of multiple sink variables.

2. The issue of positioning auxiliary sink variables is dealt with by the ability to

revise the construction of secondary sink terms.

3. By extending the meta-logic to include the notions of primary and secondary

wave-fronts we are able to exploit the observation that certain sink terms are

more constrained than others during the search for generalizations.

Our extended critic has been implemented and integrated within the CLAM proof

planner (Bundy et al., 1990). The implementation makes use of the higher-order

features of λ-Prolog (Miller and Nadathur, 1988).

The results presented in Ireland and Bundy (1996) for the basic critic were repli-

cated by the extended critic. The extended critic, however, discovered generalizations

which the basic critic missed. Moreover, a number of new examples were generalized

by the extended critic for which the application of the basic critic resulted in failure.

Our results are documented in the tables given in Appendix B. The example conjec-

tures for which the extended critic improves upon the performance of the basic critic

are presented in Table 1. All the examples require accumulator generalization and

therefore cannot be proved automatically by other inductive theorem provers such

as nqthm (Boyer and Moore, 1979; Boyer and Moore, 1988). The correspondence

between conjectures and generalized conjectures is recorded in Table 2. The time

taken to discover each generalization using the extended critic is also given in Table

2. The lemmata used in motivating the generalizations are presented in Table 3,

while the actual generalized conjectures are given in Table 4. All the generalized

conjectures are computed automatically. Our technique relies upon the existence

of appropriate lemmata. However, as can be seen seen from Table 3, the lemmata

are relatively general purpose, i.e. properties such as associativity and distributivity.

Moreover, we have previously shown how our approach to failure analysis has

enabled us to automatically generate such lemmata (Ireland and Bundy, 1996). This

gives the opportunity for lemmata discovered during one part of a proof effort to

be used to motivate a generalization within another.

To place our contribution within the wider context of functional programming,

we focus upon conjecture C10 (see Table 1), which arose within the parallelising

compiler project mentioned in section 1. C10 is the proof obligation generated by the

verification of a SML transformation rule which specifies an equivalence between a

single and a distributed application of the map function, i.e.

∀t : list(A).∀f : A→ B.∀n : IN.

map(f, t) = reduce(λx.λy.app(x, y), map(λx.map(f, x), split1(1, n, nil, t))) (22)

Such equivalences enable the correspondence which exists between higher-order

functions and generic parallel constructs to be exploited during the parallelisation

of SML code. The definitions associated with (22) are included as rewrite rules

within Appendix A while the corresponding SML code is given in figure 3. An

inductive proof of (22) requires an accumulator generalization. Our extended critic
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fun atend x nil = (x::nil) | fun split x y = split1 1 x nil y;

atend x (y::z) = y::(atend x z); val split = fn:nat -> ’a list

val atend = fn:’a -> ’a list -> -> ’a list list

-> ’a list fun app nil z = z |

app (x::y) z = x::(app y z);

fun split1 v w x nil = (x::nil) | val app = fn:’a list -> ’a list

split1 v w x (y::z) = -> ’a list

if (v > w) fun map x nil = nil |

then map x (y::z) = (x y)::(map x z);

x::(split1 2 w (y::nil) z) val map = fn:(’a -> ’b) -> ’a list

else -> ’b list

(split1 v+1 w (atend y x) z); fun reduce x nil = nil |

val split1 = fn:nat -> nat reduce x (y::z) =

-> ’a list -> ’a list (x y (reduce x z));

-> ’a list list val reduce = fn:(’a -> ’b list ->

’b list) -> ’a list ->

’b list

Fig. 3. SML list processing functions.

generates a schematic conjecture of the form:

∀f : A→ B.∀n : IN.∀l1 : IN.∀l2 : list(A)

map(f,M3(t, l1, l2)) =

reduce(λx.λy.app(x, y), map(λx.map(f, x), split1(M1(l1), n,M2(l2), t)))

The subsequent proof planning instantiates this schematic conjecture giving rise to

a generalized conjecture of the form:

∀t : list(A).∀f : A→ B.∀n : IN.∀l1 : IN.∀l2 : list(A).

map(f, app(l2, t)) =

reduce(λx.λy.app(x, y), map(λx.map(f, x), split1(l1, n, l2, t))) (23)

Note that the generalization involves the introduction of two new universally quan-

tified variables l1 and l2. To summarize, the ripple method in conjunction with the

extended critic is able to automatically generate and verify (23) by analysing the

failure to prove (22) directly.

8 Related work

In Aubin’s thesis (Aubin, 1976) he presents a technique for discovering accumulator

generalizations based upon the failure of an unfolding strategy. Basically he used

the mismatch between the conclusion and hypothesis to suggest the introduction of

what we call primary sinks. With regard to secondary sinks, Aubin appeals to a

notion of an equation being ‘balanced’, i.e. a sink should occur on both sides of an

equality.

Hesketh, in her thesis (Hesketh, 1991), tackled the problem of accumulator gener-

alization in the context of proof planning and rippling. Her approach, however, did
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not deal with multiple sinks. By introducing the primary and secondary classification

of wave-fronts we believe that our approach provides greater control in the search

for generalizations. This becomes crucial as the complexity4 of examples increases.

In addition, we use sink annotations explicitly in selecting potential projections for

higher-order meta-variables. Hesketh’s work, however, was much broader than ours

in that she unified a number of different kinds of generalization. Moreover, she

was also able to synthesize tail-recursive functions given equivalent naive recursive

definitions (Hesketh et al., 1992).

An alternative to our approach of annotated unification is presented in (Hutter

and Kohlhase, 1997) where essentially the structure preservation constraints of

rippling are embedded within the unification algorithm. This approach, however,

has not been applied to the problem of generalization so a direct comparison is not

possible.

9 Future work

A limitation of the technique as implemented is that it only deals with wave-fronts

which contain single wave-holes. This restricts us to proofs which involve a single

induction hypothesis. In principle, we see no reason why this restriction should not

be removed in the future.

One of the goals of parallelizing SML compiler project is the automatic synthesis

of missing transformation rules. We see the work presented here as a starting point

for this synthesis task.

Our technique is not restricted to reasoning about functional programs. For

instance, we believe that it subsumes the procedure described by Pierre (1995) for

generalizing hardware specifications. In addition, by exploiting the close relationship

which exists between induction and iteration we have shown (Ireland and Stark,

1997) how our generalization critic can play a role in the automatic discovery of tail

invariants (Kaldewaij, 1990). We plan to investigate these connections further.

The critic mechanism was motivated by a desire to build an automatic theorem

prover which was more robust than conventional provers. We believe, however, that

the critic mechanism also provides a basis for developing effective user interaction.

An interactive version of the critic mechanism has been implemented (Ireland

et al., 1997) which invites a user to complete the instantiation of meta-variables.

This represents ongoing work which, as observed in section 5.1, complements the

generalization technique presented here.

10 Conclusion

The search for inductive proofs cannot avoid the problem of generalization. In

this paper we describe extensions to a proof critic for automatically generalizing

inductive conjectures. The ideas presented here build upon a technique for patching

proofs reported in Ireland and Bundy (1996). These extensions have significantly

4 That is, as the number of definitions and lemmata available to the prover increases.
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improved the performance of the technique while preserving the spirit of original

proof patch. Our implementation of the extended critic has been tested on the

verification of functional programs with some promising results. More generally,

we believe that our technique has wider application in terms of both software and

hardware verification.
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Appendix A: Definitional rewrite rules5

reverse(nil) ⇒ nil

reverse(X :: Y ) ⇒ app(reverse(Y ), X :: nil)

rev(nil, Z) ⇒ Z

rev(X :: Y ,Z) ⇒ rev(Y ,X :: Z)

atend(X, nil) ⇒ X :: nil

atend(X,Y :: Z) ⇒ Y :: atend(X,Z)

map(X, nil) ⇒ nil

map(X,Y :: Z) ⇒ X(Y ) :: map(X,Z)

reduce(X, nil) ⇒ nil

reduce(X,Y :: Z) ⇒ X(Y , reduce(X,Z))

foldr(W,X, nil) ⇒ X

foldr(W,X, Y :: Z) ⇒ W (Y , foldr(W,X,Z))

filter(X, nil) ⇒ nil

X(Y )→ filter(X,Y :: Z) ⇒ Y :: filter(X,Z)

¬X(Y )→ filter(X,Y :: Z) ⇒ filter(X,Z)

sum(nil) ⇒ 0

sum(X :: Y ) ⇒ sum(Y ) +X

prod(nil) ⇒ 1

prod(X :: Y ) ⇒ prod(Y ) ∗X
tsum(nil, Z) ⇒ Z

tsum(X :: Y ,Z) ⇒ tsum(Y ,Z +X)

5 We assume standard recursive definitions for even and odd as well as for list concatenation (app),
deletion (del) and membership (mem).
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tprod(nil, Z) ⇒ Z

tprod(X :: Y ,Z) ⇒ tprod(Y ,Z ∗X)

sp(nil, Y , Z) ⇒ 〈Y ,Z〉
sp(W :: X,Y , Z) ⇒ sp(X,W + Y ,W ∗ Z)

sp2(nil, Y , Z) ⇒ 〈Y ,Z〉
sp2(W :: X,Y , Z) ⇒ sp2(X,Y +W,Z ∗W )

evenel(nil) ⇒ nil

odd(X)→ evenel(X :: Y ) ⇒ evenel(Y )

even(X)→ evenel(X :: Y ) ⇒ X :: evenel(Y )

oddel(nil) ⇒ nil

odd(X)→ oddel(X :: Y ) ⇒ X :: oddel(Y )

even(X)→ oddel(X :: Y ) ⇒ oddel(Y )

perm(nil, nil) ⇒ true

perm(nil, X :: Y ) ⇒ false

perm(X :: Y ,Z) ⇒ (perm(Y , del(X,Z)) ∧ mem(X,Z))

partition(nil, Y , Z) ⇒ app(Y ,Z)

even(W )→ partition(W :: X,Y , Z) ⇒ partition(X, atend(W,Y ), Z)

odd(W )→ partition(W :: X,Y , Z) ⇒ partition(X,Y , atend(W,Z))

split1(V ,W ,X, nil) ⇒ X :: nil

V > W → split1(V ,W ,X, Y :: Z) ⇒ X :: split1(2,W , Y :: nil, Z)

V 6W → split1(V ,W ,X, Y :: Z) ⇒ split1(V + 1,W , atend(Y ,X), Z)

split(X,Y ) ⇒ split1(1, X, nil, Y )

Appendix B: Experimental results

Table 1. Conjectures

No Conjecture

C1 reverse(X) = rev(X, nil)

C2 rev(rev(X, nil), nil) = reverse(reverse(X))

C3 perm(reverse(X), rev(X, nil))

C4 rev(rev(X, nil), nil) = reverse(reduce(λx.λy.atend(x, y), X))

C5 app(evenel(X), oddel(X)) = partition(X, nil, nil)

C6 app(filter(λx.even(x), X), filter(λx.odd(x), X)) = partition(X, nil, nil)

C7 sp(X, 0, 1) = 〈sum(X), prod(X)〉
C8 〈tsum(X, 0), tprod(X, 1)〉 =

〈foldr(λx.λy.(x+ y), 0, X), foldr(λx.λy.(x ∗ y), 1, X)〉
C9 sp2(X, 0, 1) = 〈foldr(λx.λy.(x+ y), 0, X), foldr(λx.λy.(x ∗ y), 1, X)〉
C10 map(F,X) = reduce(λx.λy.app(x, y), map(λx.map(F, x), split1(1,W , nil, X)))
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Table 2. Performance of the extended generalization critic

No Generalizations (Timings)

C1 G1 (7.9) G2 (7.7)

C2 G3 (25.0) G4 (17.1) G5 (105.8) G6 (15.8) G7 (14.3) G8 (16.5)

G9 (11.4) G10 (15.3)

C3 G11 (8.7) G12 (7.4) G13 (7.6)

C4 G14 (10.2)

C5 G15 (108.1)

C6 G16 (95.4)

C7 G17 (24.7)

C8 G18 (42.9)

C9 G19 (30.1)

C10 G20 (68.3)

The timings are given in CPU seconds and were obtained using a sicstus implementation

of CLAM running on a Sun ultra-sparc. The figures represent the time taken to compute

the alternative instantiations of each conjecture schema. Note that in the case of C1 and C2

the basic critic does not discover G2, G8 and G9 while it fails completely on conjectures C3

through to C10. However, the extended critic succeeds on all the conjectures given in Table 1.

Table 3. Lemmata used to motivate generalizations

No Lemma

L1 app(app(X,Y ), Z) = app(X, app(Y ,Z))

L2 app(app(X,Y :: nil), Z) = app(X,Y :: Z)

L3 reverse(app(X,Y :: nil)) = Y :: reverse(X)

L4 app(X,Y :: Z) = app(atend(Y ,X), Z)

L5 X + (Y + Z) = (X + Y ) + Z

L6 X ∗ (Y ∗ Z) = (X ∗ Y ) ∗ Z
L7 map(W, app(X,Y :: Z)) = app(map(W,X), map(W, app(Y :: nil, Z)))
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Table 4. Generalized conjectures

No Generalization Lemmata

G1 app(reverse(X), Y ) = rev(X,Y ) L1

G2 reverse(rev(Y ,X)) = rev(X,Y )

G3 rev(rev(X,Y ), nil) = app(reverse(Y ), reverse(reverse(X))) L2&L3

G4 rev(rev(X,Y ), nil) = rev(Y , reverse(reverse(X))) L3

G5 rev(rev(X,Y ), nil) = rev(reverse(reverse(Y )), reverse(reverse(X))) L3

G6 rev(rev(X, reverse(Y )), nil) = app(Y , reverse(reverse(X))) L2&L3

G7 rev(rev(X, reverse(reverse(Y ))), nil) = rev(Y , reverse(reverse(X))) L3

G8 rev(rev(X, reverse(Y )), nil) = rev(reverse(Y ), reverse(reverse(X))) L3

G9 rev(rev(X,Y ), nil) = reverse(app(reverse(X), Y )) L1

G10 rev(rev(X,Y ), nil) = reverse(reverse(rev(Y ,X)))

G11 perm(reverse(rev(X,Y )), rev(X,Y ))

G12 perm(reverse(rev(Y ,X)), rev(X,Y ))

G13 perm(app(reverse(X), Y ), rev(X,Y )) L1

G14 rev(rev(X,Y ), nil) = reverse(app(reduce(λx.λy.atend(x, y), X), Y )) L4

G15 app(app(Y , evenel(X)), app(Z, oddel(X))) = partition(X,Y , Z) L4

G16 app(app(Y , filter(λx.even(x), X)), app(Z, filter(λx.odd(x), X))) = L4

partition(X,Y , Z)

G17 sp(X,Y , Z) = 〈sum(X) + Y , prod(X) ∗ Z〉 L5&L6

G18 〈tsum(X,Y ), tprod(X,Z)〉 = L5&L6

〈Y + foldr(λx.λy.(x+ y), 0, X), Z ∗ foldr(λx.λy.(x ∗ y), 1, X)〉
G19 sp2(X,Y , Z) = L5&L6

〈Y + foldr(λx.λy.(x+ y), 0, X), Z ∗ foldr(λx.λy.(x ∗ y), 1, X)〉
G20 map(F, app(Y ,X)) = reduce(λx.λy.app(x, y), L4&L7

map(λx.map(F, x), split1(Z,W, Y ,X)))

The lemmata used to suggest generalizations are indicated in the third column. No

entry appears if the generalization was discovered using purely definitional rewrite

rules.
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