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Abstract

We use a generalised Nevanlinna counting function to compute the Hilbert-Schmidt norm of a
composition operator on the Bergman space L2(D) and weighted Bergman spaces L!(dA,) when a is
a nonnegative integer.
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1. Introduction

1.1. Background. Let D denote the unit disc in the complex plane C and let ¢ be
a holomorphic function on D with ¢(D) ¢ D. For every function f analytic in D, the
composition operator C,, is a linear operator defined by Cy,(f) = f o ¢.

Properties of composition operators on various analytic function spaces have been
widely investigated (see, for example, [1, 5, 8, 9]). One of the classical spaces is the
Hardy space H?, the space consisting of the analytic functions f on D such that

271
.~ dl
11, = sup f 0P D <o

0<r<1 JO

Another is the Bergman space L2(D), which is the space consisting of those
holomorphic functions f on D satisfying

122, = fD If @I dA@) < o,

where .
dA(z) = — dxdy = - drdo
T T

is the normalised area measure on D. It is well known that C, is always bounded on
both H? and LZ(D).
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In [7], Shapiro computed the essential norm of C, acting on H? in terms of the
Nevanlinna counting function of ¢. The essential norm of a bounded operator 7 on
a Banach space X, denoted by ||T||.x, is the distance from 7 to the subspace of all
compact operators acting on X in the operator norm. Also, for a self-map ¢ on D, the
Nevanlinna counting function N, is defined on D \ {¢(0)} and given by

1
Ny(w) = log —,
¢ w;W 2
where multiplicities are counted and N,(w) is taken to be zero if w is not in the range
of ¢. The fundamental work of Shapiro [7, Theorem 2.3] asserts that

1ol e = lim sup —oe )
2 = PEre—
P sy Tog(1/wl)
Later, in [4], Luecking and Zhu proved that for 0 < p < oo, C, is in the Schatten class

S, of H? if and only if
Ny(2) )”/ 2
) dA@) <o,
L (log(1/|z|)

where dA(z) = dA(2)/(1 — |z*)? is the Mobius invariant measure on D.
On the Bergman space L2(D), Poggi-Corradini verified in [6] that

i Ngoa(w)
ICollo 12y = lim sup —2———
elleim = L0 P Tog(1/1w))?
where )
1
Neaw = Y (log ), weD\ gL
o= l

Moreover, it is shown in [4] that for 0 < p < oo, Cy is in the Schatten class S, of L2(D)

if and only if
Ngo(z) P2
———] dA 0,
fD (Toaciene) 1@<

1.2. Overview. From the above remarks, we know that the Schatten p-class
membership of composition operators is closely related to the Nevanlinna counting
functions. The Schatten 1-class S; is usually called the trace class and S, is usually
called the Hilbert—Schmidt class.

For any T € S on a separable Hilbert space H, the trace of T is given by

w(T) = Y (Tex, e0),
k=0

where {e;} is any orthonormal basis of H. It is known that the sum is independent of
the choice of the orthonormal basis. The Hilbert—Schmidt norm of T is defined by

IT|3 = te(T*T).

In this paper, we will compute the Hilbert—Schmidt norm of a composition operator
on Lg(D). The following theorem is established.
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TueorEM 1.1. For an analytic self-map ¢ of D, let

Ny(w) = 2N,(w) = »" (1=
p(2)=w

be the general counting function of .
(i) For f,g € Ly(D),

J}; F(@(2))g(¢(2)) dA(z) = f(p(0))g(e(0)) + fD [(D8 @N,(z) dA(z).
(ii) If C, is in the Hilbert—Schmidt class of Lg(]D), then

l(0)(2 — p(0)%) . f Ny(2)(2 + 41z1%)
(1 = |p(0)[2)> p (1—|z2)*

IC, 17 = dA(Z).

2. Proof of Theorem 1.1(i)

The argument is inspired by [3]. For f, g € L2(D), we can use the Littlewood—Paley
formula [2, page 228] to deduce that

fD S((2)g(p(2)) dA(z)
L P

= f (— f(¢(re‘9))g(go(rel9))d9)rdr
0\ Jo

1
= [ 210G+ 7 [ 7Ty (wF log s dAGw) )

wl
=f((0))g(¢(0)) + 2 fo fD I/ @rw)g’ (e(rw))lg’ (rw)l* log 2dA(W))r dr.

Put u = rw in the inner integral. Then

fD F(@(rw)g’ ((rw))lg’ (rw)? log —

m |2 dA(w)
2 -
=2 f (@) ()l () log — dA(u)

|ua]
21 1

2 -
=— f (p(se")g’ (p(se))l¢’ (se™) log - sdsdt.
r 0

Fubini’s theorem implies that

P dA(w))r dr

4 21 1 pr o |
- _f ff £ ((se)g ((sele’ (se")log = sds rdrdt
Tt Jo JoJo .

1
> fo ( fD F W) @l () log ——

4 21 1 I . 1 ;
=—f f'((p(se’t))g’(ga(se”))lgo'(se”)lzf rlog;drsdsdt.

T Jo Jo s
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Using the identity

1
1.1 1

frlogfdr=-1og-——(1—s2) Q.1
B s 2 s 4

in the inner integral yields
4 ot 4 it i ’ iry)2 1 1 1 2
- [ (p(se"))g’ (p(se!))|¢’ (se')| (—10g -—=-(-3 ))sa’sdt
T Jo 0 2 N 4

1
= - (1- sz))sdsdt
s

1 21 1 . B — .
== f f’(so(se”))g’(so(se"))lso’(se”)lz(log
T Jo Jo

- 1
= f f’(np(W))g’(sO(W))Iso’(W)Iz(log—2 - (1~ IWIZ))dA(w)
D [w]
= fD F' @8 @N,(2) dAQ).

This completes the proof.
Taking ¢(z) = z, the identity on D, in Theorem 4.2(i) gives the following corollary.

CoroLLARY 2.1. If f € LX(D), then

1
12,0, = LAOP + fD 1@ (1og s — (1 = ")) dAGo).

2>

3. The Hilbert—-Schmidt norm
In this section, we prove Theorem 1.1(ii). It is well known that
e(x)= Vn+17", n>0,
is an orthonormal basis for L2(D). Thus,

ICIEs = tr(CyCp) = D (CiCperex) = D (Cyer Coerd
k=0 k=0
= 3 (Ve Tp@F, Y+ Tp@)") = 3k + (e, ¢(2)")
k=0 k=0

=1+ Z(k +1) f () )k dA(2).
k=1 D
Now we can use Theorem 1.1(i) to deduce that
ICals =1+ Y (ks D (O + [ P28, dAca)
k=1 D

CO)P2 - [p(O)R) f 3 S
=1 k+ DK N () dA
T a-wope D;( + DIIP 2R, () dA(2)

COPC - 16O [ o Q+4P
(I~ [p(O)P)2 +fDN*”(Z) dAG).

(1 =z
This completes the proof.

=1+
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4. Composition operators on the weighted Bergman space

For a > -1, the weighted Bergman space L2(dA,) is the space of analytic functions
in D satisfying

T fD QP dAq(2) < oo,
where dA,(z) = (@ + 1)(1 — |z]*)* dA(z). In some sense, H? can be treated as lez(dA_l).
We have the following corollary.

CoroLLArY 4.1. If C,, is in the Hilbert—Schmidt class of H?, then

() 1+ [z
Collre n =1+ + N,(z) dA(z).
1Cellis.i =1+ T30 * Jy (T ey e @ 44@

Proor. An orthonormal basis for H? can be given as

e,(x)=7", n=0.

Thus,

||c¢||;S,H2=1+Z(|¢<0>|2"+ f PN () dAG)

0 2
e[S

lp(0)> N 1+ |z
L=lpOF ~ Jp (1 -z
When « is an arbitrary nonnegative integer, we can extend the results of

Theorem 1.1 to the weighted Bergman space case. In the rest of this section, we
discuss the cases when @ = 1 and 2.

N,(2) dA(z). O

THEOREM 4.2. For an analytic self-map ¢ of D, let
N}w) = 2Ny(w) - 5 Z (3 = 4l + L2
QD(Z) w

be the general 1-order counting function of .

(i) For f,g e LX(dA)),
fD Sp(2)g(p(2)) dA1(2) = f(¢(0)g((0)) + fD f’(z)mN;(z)dA(z).

(ii) If C, is in the Hilbert-Schmidt class of L2(dA,), then

1+ PG = 3lp(O) + e(0)[*) 33Iz + 1) o

C
I ||HSL2(dA) (1 = |e(0)]2)3 " p (1 —[z?)?

Ny (2) dA().
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ProOF.

(i) The argument is parallel to the proof of Theorem 1.1, with equation (2.1)
replaced by

1
1 1 1
f r(1 - rz)logrdr =—-log--—@3 — 457 + 5M).
R s 4 s 16

(i1) According to [9, page 78], an orthonormal basis for LZ(dAl) is given by

ea(2) = \/w& n>0.
Thus,
= 1 2 1 2
ICARg pran, = Z< VD gy, J%(w(z))’f}
n=0 L2(dAy)

N D(n+2 —
) CED [ e an

oo 1 2 )
=1+ Z; W(W(O)lzn + fDnzlzlzn_ZNi,(Z) dA(Z))

. (O3 = 3lp(O) + le(0)*)
(1= le(O)P)?

N f S DO D 2R 2 dAc)
D=1

=1

2

(O3 = 3lp(O) + lp(0)[*) N 3GIP+ 1) o

=1 Ni(2) dA(2).
’ (1= ()P L T —py @A

CoroLLARY 4.3. If f € L2(dA,), then

) 11
1 g0, = SO + fD 1@ (tog 75 ~ 53~ 4P + kiY) dAG).
THeEOREM 4.4. For an analytic self-map ¢ of D, let

- 1
NZ(w) = 2Ny (w) — g AT =181 + 91t - 21l
p(z)=w

be the general 2-order counting function of .

()  For f,g € LX(dA>),

fD J(@(2)8(e(2)) dAs(2) = f(¢(0))g(¢(0)) + L f'2)g' DN(2) dA®).
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(ii) If C, is in the Hilbert—Schmidt class of Lﬁ(dAz), then

R =14 QO = 2AeOP + IO
12

HS,LX(dAy) — (O 2(1 = |p(O)R)
OOk + 1) g2
5 (1 =726 N,(2) dA(2).

Proor.
(1) In this case, equation (2.1) should be replaced by

! 1. 1 1
j‘dl—ﬂfkgrdrz—kg——~—ﬂl—1&2+9f—2§)
s s 6 s 12

(ii) An orthonormal basis for L2(dA,) is given by

Jm+mm+mm+mn
en(z) = Z

z , n=0.
Thus,
- 1 2 3 R
IC s z2any = 1+ Z e Xng — LQO(Z)%D(Z)” A
n=1
- 1 2 3 .
— 1+ Z (I’l + )(l’l;— )(l’l + )(|¢(0)|2n + Ln2|Z|2n_2N£(Z) dA(Z))
n=1
:1+M®WQ—W®WW2—ﬂﬂ®F+W®W)
(1 = lp(0)?)*
ﬁ£ZQM+Dm;Dm+$n%W¢@QMM@
:1+J%®W2—M®WX2—ﬂﬂ®F+W®W)
(1 = lp(0)?)*
2
OOk + D) g2 ) 4.

p (1 -1z?)°

CoroLLARY 4.5. If f € Lﬁ(dAz), then
1

I g0, = O + fD @ log 5 -

RemMark 4.6. We can use Maple to compute that

1
£(11 = 181 + Ol - 2IZI6))dA(z)-

fr(l - r)"log Ddr=- 171—61”4 3F2([2,2,-n + 11;[3,3]; 1)
s

; %2((210g£ - 1)2F1([1,—n]; [2];r2)),
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where ,,Fi([ay, ..., an]; [B1,--.,B1]; x) is the hypergeometric function given by
© KT (@)
mFi(er, .. oanli (Bl lix) = ) ————
; KT B
and (@) is the Pochhammer symbol defined by

I'la + k)
Ia)

() =

It is easy to check that if «; is a negative integer for some j e ({l,...,m],
then the hypergeometric function ,,Fi([a1, ..., au]); [B1,--.,B]; X) is a polynomial.
In particular, if n > 2 is a positive integer, 3F>([2,2, —n + 1];[3,3]; x) and
2F1([1, —n]; [2]; x) are polynomials. Thus, if n is a positive integer with n > 2,

J r
f r(1 =2y log — dr

s s
n

1 1
16 32122, - + 113,31 1) + Z(Zlog - 1)2Fy([1, -n]; [2]; 1)

2
- %S43F2([2, 2,—n+ 11;[3,3]; %) + SZ 2F1([1, -n]; [2]; 57).

The corresponding result similar to Theorem 1.1 can then be obtained.

5. The Hilbert-Schmidt norm of Cf;
It is well known that T is in the Schatten-p class S, on a Hilbert space H if and
only if 7" is in §,,. Moreover, ||T"|ls, = |T s,
From [9, Theorem 6.4], the trace of a positive operator 7 on Lﬁ(dAa) can be
expressed as

t(T) = (@ + 1) f T(2) dA(2),
D

where
T(2) = Tk k)2an, Z€D,
is the Berezin transform of 7" and
(1 = |g2) 22

(1- WZ)2+(1/

k(w) =

is the normalised reproducing kernel of Lg(dAa). The reproducing kernel of Lﬁ(dAa)
is given by
1

(1 _ WZ)ZM’ ’

k:(w) = K,(W, 2) [V Ko (2, 2).

K,(w,2) = z,weD.

Obviously,
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For the composition operator C, on L2(dA,), it is easy to check that
CoKa(w,2) = Ko(w, ¢(2))

and
. 1= |Z|2 2+a
CoCh(2) = IC2k 2:(—)
T =6k = (T
Combining these facts together yields

_ |Z|2 )Z-HZ

1
IC, ”HS L2(dAy) =(C,Cy) = (a + l)fD(l — lp(2)]?

In particular, for @ = 0, 1, 2, respectively, we have the following results.

dA(z).

CoROLLARY 5.1. Let ¢ be an analytic self-map of D. Then

[k J?;z da =1+ |¢((01)|2—(|2¢E 0|;|02(;)2>|2> . fDmEzl)(_z';;;LzP) o,
2 () o = 1 EO
5 3((13|f|—TZ|J;)?N (2) dA(2),
o B
A i(flfl—;)lé)ﬁi(@ dA().
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