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Abstract

Background. Electroconvulsive therapy (ECT) is the most effective intervention for patients
with treatment resistant depression. A clinical decision support tool could guide patient selec-
tion to improve the overall response rate and avoid ineffective treatments with adverse effects.
Initial small-scale, monocenter studies indicate that both structural magnetic resonance
imaging (sMRI) and functional MRI (fMRI) biomarkers may predict ECT outcome, but it
is not known whether those results can generalize to data from other centers. The objective
of this study was to develop and validate neuroimaging biomarkers for ECT outcome in a
multicenter setting.
Methods. Multimodal data (i.e. clinical, sMRI and resting-state fMRI) were collected from
seven centers of the Global ECT-MRI Research Collaboration (GEMRIC). We used data
from 189 depressed patients to evaluate which data modalities or combinations thereof
could provide the best predictions for treatment remission (HAM-D score ⩽7) using a sup-
port vector machine classifier.
Results. Remission classification using a combination of gray matter volume and functional
connectivity led to good performing models with average 0.82–0.83 area under the curve
(AUC) when trained and tested on samples coming from the three largest centers (N =
109), and remained acceptable when validated using leave-one-site-out cross-validation
(0.70–0.73 AUC).
Conclusions. These results show that multimodal neuroimaging data can be used to predict
remission with ECT for individual patients across different treatment centers, despite signifi-
cant variability in clinical characteristics across centers. Future development of a clinical deci-
sion support tool applying these biomarkers may be feasible.

Introduction

Electroconvulsive therapy (ECT) is currently the most effective intervention for patients with
treatment resistant depression. Despite its high efficacy, ECT remains underutilized, as only 1–
2% of patients with severe or persistent depression receive ECT (Slade, Jahn, Regenold, & Case,
2017). Although approximately 48% of treatment resistant patients recover with ECT, it is also
associated with adverse cognitive effects and may be regarded as more invasive than other
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treatment options because the use of anesthesia is necessary
(Heijnen, Birkenhager, Wierdsma, & van den Broek, 2010).
Furthermore, ECT is relatively expensive and non-responsiveness
can only be determined after multiple sessions. Information that
better predicts treatment outcome would enable patient selection
thereby further improving the overall response rate and avoiding
ineffective treatment with adverse effects. A personalized recom-
mendation about the expected benefit of ECT could provide a
valuable addition to the treating physician’s clinical judgement
and may increase its use in clinical practice.

Meta-analyses of studies that investigated predictors of ECT
outcome have associated several clinical characteristics with bene-
ficial ECT outcome, in particular no history of treatment resist-
ance, older age, and presence of psychotic symptoms (Haq,
Sitzmann, Goldman, Maixner, & Mickey, 2015; van Diermen
et al., 2018). However, the effect sizes are small, limiting their
use to guide individual patient selection. Recent studies have
started using neuroimaging data to predict ECT outcome at the
individual level using machine learning analysis, which can con-
struct multivariate prediction models using all the available
data. Initial small-scale studies have shown that both structural
magnetic resonance imaging (MRI) and functional MRI findings
can be used to predict ECT outcome with approximately 80%
accuracy (Redlich et al., 2016; van Waarde et al., 2015). These ini-
tial results have been confirmed by subsequent studies, and a
recent meta-analysis showed an average prediction accuracy of
82% and area under the receiver operator characteristic curve
(AUC) of 83% (Cohen, Zantvoord, Wezenberg, Bockting, & van
Wingen, 2021), which is considered to be excellent discrimination
between groups (Hosmer, Lemeshow, & Sturdivant, 2013).
Furthermore, a recent study using routine MRI data to predict
ECT outcome in a relatively large sample of 71 patients reached
an accuracy of 69% accuracy (Gartner et al., 2021).

Despite these promising results, the existing studies have been
limited by small sample sizes and monocenter settings. This
reduces the possibility for models to generalize to new patients
across centers. Although machine learning models typically per-
form better when trained on large samples from the same center,
classification accuracy of larger multicenter studies tends to
decrease, presumably due to increased clinical (e.g. adults
v. elderly) and technological (e.g. different MRI hardware and
protocols) variability across centers (Schnack & Kahn, 2016). In
order to develop robust and generalizable neuroimaging biomar-
kers for ECT outcome, we used data from the Global ECT-MRI
Research Collaboration (GEMRIC) and validated classification
performance in a multicenter setting (Oltedal et al., 2017). We
used multimodal data (i.e. clinical, structural MRI [sMRI], and
resting-state functional MRI [rs-fMRI]) and evaluated which
data modalities or combinations thereof might provide the best
predictions. Remission (17-item Hamilton Depression Rating
Scale (HAM-D) score of ⩽7 after treatment) was used as the pri-
mary outcome criterion. Remission may provide a better outcome
criterion than response (at least 50% HAM-D reduction com-
pared to baseline) and has become the gold standard for depres-
sion treatment, because patients who do not remit have a poorer
prognosis and greater chance of relapse and recurrence than those
who do (McIntyre & O’Donovan, 2004; van Diermen et al., 2018).
Additionally, as most sites only contributed a small sample, we
also evaluated model performance when only data from centers
with ⩾20 patients were used to provide classifiers with a min-
imum of approximately 10 examples per class per center, which
potentially could increase classification performance (Abraham

et al., 2017). Finally, we visualized the brain regions that were
most informative to the classifications, in order to gain insight
into the brain regions predictive of ECT outcome. To adhere to
guidelines on reporting of diagnostic studies, we report our find-
ings based on TRIPOD guidelines (Moons et al., 2015).

Methods

Participants

We performed a retrospective study using data from GEMRIC
(v3.1, DOI:10.17605/OSF.IO/WD436), an international consor-
tium that contains the largest multicenter database of neuroima-
ging scans of patients treated with ECT (Oltedal et al., 2017). All
contributing sites received ethics approval from their local ethics
committee or institutional review board. In addition, the centra-
lized mega-analysis was approved by the Regional Ethics
Committee South-East in Norway (No. 2018/769) (Oltedal
et al., 2018). Analyses contained a selection of sMRI and
rs-fMRI data from seven centers across Europe and North
America, recorded from 189 clinically depressed patients accord-
ing to ICD-10 (167 unipolar, 22 bipolar; see online
Supplementary Table S1 for diagnoses per center) who had
received right unilateral or bilateral ECT (or both). Depressed
patients were eligible for ECT, typically after failure to respond
to first-line treatments with conventional psychotherapy and anti-
depressant medications. The patients were included because of the
availability of both high quality sMRI and rs-fMRI data. ECT
parameters varied between different centers, including electrode
placement. A description of center-specific ECT procedures and
image acquisition is provided elsewhere (Oltedal et al., 2017).
As GEMRIC consists of samples ranging from very small to rela-
tively large (N = 14, 14, 15, 18, 19, 29, 38, 42), we performed all
analyses on the entire cohort and on centers with ⩾20 patients
available (three centers, N = 109) in order to ensure classifiers
were provided with sufficient data per center.

Choice of primary measure

Treatment outcome was measured using the HAM-D or
Montgomery-Åsberg Depression Rating Scale (MADRS) that
was converted to HAM-D (online Supplementary Methods),
which are gold standard ratings for depression severity.
Remission (minimal symptoms) was used as the primary outcome
criterion and defined as post-ECT HAM-D score ⩽7.

MRI data and preprocessing

MRI acquisition parameters are listed in online Supplementary
Tables S2 and S3. Structural T1-weighted scans were acquired
using 1.5 T and 3 T scanners with a minimum resolution of
1.33 mm3 and preprocessed using the CAT12 toolbox (v12.6;
http://www.neuro.uni-jena.de/cat/) for voxel-based morphometry
(VBM). Images were segmented into gray matter (GM), white
matter (WM), and cerebrospinal fluid (CSF), normalized to
MNI space using DARTEL registration, resampled to 1.5 mm3

isotropic and spatially smoothed with an 8 mm isotropic
Gaussian kernel. GM volumes were masked at 0.2 to exclude WM.

150–266 rs-fMRI volumes were acquired with a TR of 1.7–
3.0s, in-plane resolution of 2.4–3.75 mm, and slice thickness
of 3–5 mm. Preprocessing was performed using ANTs
(v2.2.0; https://github.com/ANTsX/ANTs) and FSL (v5.0.10;
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http://fsl.fmrib.ox.ac.uk/), including brain extraction, boundary-
based co-registration, motion correction, spatial smoothing with
a 5 mm isotropic Gaussian kernel, and normalization to a 2 mm
MNI template. Denoising was performed using ICA-AROMA,
and depending on the type of analysis, high-pass ( f > 0.01) or
bandpass filtering (0.009 < f < 0.08) was applied together with
WM and CSF nuisance regression (Pruim et al., 2015).
Denoised rs-fMRI data were resampled to 4 mm isotropic.

Only subjects that passed quality control for both rs-fMRI and
sMRI were included for analysis, leading to a final sample of 189
patients (online Supplementary Fig. S1 for a flowchart). Further
details on MRI preprocessing and quality control are provided
in online Supplementary Methods.

Feature extraction

We extracted commonly used MRI features from the preprocessed
data. For sMRI, we used voxel-wise modulated GM maps
(VBM) and 142 cortical and subcortical parcellations using
the Neuromorphometrics atlas (NMM; provided by
Neuromorphometrics, Inc). For rs-fMRI, we used a high-
dimensional resting-state networks template from the UK
BioBank dataset to extract 100 independent spatial components
that were derived using group independent component analysis
(ICA) (Alfaro-Almagro et al., 2018). 45 components reflecting
non-neural signals and three components mainly located in cere-
bellar regions with insufficient EPI coverage were discarded,
resulting in 52 components for analysis. Group information
guided ICA was used to derive subject-specific time-series and
spatial maps for each of the 52 signal components using the high-
pass filtered preprocessed data (Du & Fan, 2013). Time-series
were used to calculate individual functional connectivity (FC)
matrices that described pairwise connectivity between signal com-
ponents with Pearson correlations (ICA-FC). Additionally, we
used an atlas-based approach from Power et al. and extracted
time-series from 264 functional areas to compute FC matrices
(Power FC) using the bandpass filtered preprocessed data
(Power et al., 2011). Correlations were converted to z-scores
with Fisher r-to-z transformation before performing the classifi-
cation. The total number of features used were: 406 929 for voxel-
wise VBM maps, 142 for NMM parcellations, 37 401 for
Power-based FC, 1378 for ICA-based FC, and 26 629 for each
of the 52 ICA spatial components identified as signal. Further
details on feature extraction are provided in online Supplementary
Methods.

Machine learning

Machine learning classifications were performed using linear sup-
port vector machine classifiers [SVM; LIBSVM for Python
(https://www.csie.ntu.edu.tw/∼cjlin/libsvm/) implemented in
scikit-learn (v0.23.1; https://scikit-learn.org/)] and validated
using stratified shuffle-split cross-validation (CV) with 100 itera-
tions. At each iteration, data were randomly divided into inde-
pendent training (80%) and test (20%) sets while preserving the
proportion of remitters and non-remitters from each center to
obtain maximally homogeneous splits. The model was always
trained only on the training set and evaluated on the test set.
The entire procedure was then repeated 100 times and the test
performance is averaged as the final performance evaluation.
This CV procedure is further referred to as ‘internal validation’.
In addition, we performed leave-one-site-out (LOSO) CV, in

which all but one center was used to train the SVM while the
remaining center was used to assess model performance (further
referred to as ‘external validation’). This procedure was repeated
so that each center was used once for testing. LOSO reduces the
risk of overfitting to data from a single center but may result in
large between-sample heterogeneity of training and test sets,
which could result in lower classification performance compared
to internal validation. Hyper-parameters for the linear SVM were
optimized using nested CV: a grid-search was performed across
different values of C (0.001, 0.01, 0.01, 01, 1, 10, 100) using 10
inner stratified shuffle splits (this was done for both ‘internal’
and ‘external’ validation). We assessed classification performance
using different sets of MRI features (VBM, NMM, ICA-DR FC,
Power FC, and ICA spatial components), as well as using clinical
data only (i.e. age, sex, and pre-ECT HAM-D scores) for baseline
classification. Clinical data were always included for each classifi-
cation. The primary performance metric was the AUC and
reported metrics were averaged across CV iterations. Balanced
accuracy, sensitivity, specificity, positive predictive value (PPV),
and negative predictive value (NPV) are reported in online
Supplementary Tables S6–S13.

Statistical significance of classification performance relative to
chance was assessed using label permutation testing with 1000
iterations (Ojala & Garriga, 2010). Obtained p values were cor-
rected for multiple comparisons using False Discovery Rate
(FDR; two-stage [non-negative]; alpha = 0.05). 95% confidence
intervals (CI) for AUC were computed using the modified
Wald-method (Kottas, Kuss, & Zapf, 2014). To reduce the com-
putational burden, only spatial ICA classifications that resulted
in acceptable discrimination (>0.7 AUC) between groups were
tested for significance (Hosmer et al., 2013). Finally, we assessed
classification performance for multimodal classifications combin-
ing anatomical and functional data using feature concatenation:
regional neuromorphometrics GM volumes with either ICA or
Power-atlas-based FC, and voxel-wise GM with either ICA or
Power-atlas-based FC. FDR correction was applied separately
for classification results obtained using either internal or external
validation; the full dataset or three largest centers only; and for
unimodal, multimodal, and individual ICA spatial components,
leading to 12 distinct families with qFDR set to 0.05/12 =
0.00417. Details on classifier hyperparameter optimization and
statistical significance testing are provided in online
Supplementary Methods.

Anatomical localization

To investigate which regions contributed most to the classifica-
tion, we employed a method to estimate p values for the weights
of the SVM (Gaonkara, Shinohara, & Davatzikos, 2016). A statis-
tic was computed incorporating the SVM weight component
value and the size of the margin, and an analytical approximation
to the null-distribution obtained through permutation testing was
used to calculate p values. We only report p value feature impor-
tances for our best performing unimodal and multimodal models.

Results

Demographic data

Demographic data are presented in Table 1. Of the 189 included
patients, 76 were remitters and 113 non-remitters. In line with
previous literature, remitting patients were older and showed
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more presence of psychotic symptoms (van Diermen et al., 2018).
No significant differences in sex, initial electrode placement,
symptom severity at baseline, and total number of ECT sessions
were observed.

We assessed differences in sample demographics and clinical
characteristics between different centers regardless of ECT out-
come using one-way analysis of variance (ANOVA) and χ2. Age
[F(7181) = 14.08, p < 0.001), pre-treatment HAM-D scores (F
(7181) = 7.40, p < 0.001], post-treatment HAM-D scores [F
(7181) = 5.24, p < 0.001], HAM-D change [F(7181) = 8.65, p <
0.001], number of ECT sessions [F(7178) = 10.78, p < 0.001],
depression type [X2(21, N = 189) = 77.58, p < 0.001], and initial
electrode placement [X2(7, N = 189) = 109.8, p < 0.001] differed
significantly between centers. In contrast, sex did not differ
between centers [X2(7, N = 189) = 3.84, p = 0.80]. Demographic
data for the three largest centers (with N⩾ 20) used for additional
analyses are described in online Supplementary Tables S5 and S6.
Differences in sample demographics and clinical characteristics
between the three largest centers were similar to those seen in
the entire sample. These findings highlight that there is consider-
able clinical heterogeneity between centers.

Remission prediction

All centers
Unimodal neuroimaging: Performance for remission classification
was evaluated with internal (site stratified shuffle splits) cross-
validation across centers using all samples (N = 189). Remission
classification performance was poor with AUCs (averaged across
100 CV iterations) ranging between 0.58 and 0.67 for clinical data
only (i.e. age, sex, and pre-ECT HAM-D scores) and VBM,
NMM, ICA-FC, and Power-FC feature sets that also included
the clinical data in all analyses (Fig. 1a). Nonetheless, these
AUCs—except for NMM—were statistically significant following
permutation testing with multiple comparison correction.
Classification using external (LOSO) cross-validation hardly
exceeded chance-level performance, with AUCs (averaged across
sites) ranging between 0.51 and 0.58 and none were statistically
significant (Fig. 1a). Classification using ICA networks did not
exceed AUC > 0.7 for either internal or external validation.
Notably, one ICA component centered around the anterior tem-
poral lobes that included the amygdala and hippocampus resulted
in 0.70 AUC but did not obtain statistical significance following

Table 1. Demographics of patients included in data analysis, with subject demographics and comparisons between ECT remitters and non-remitters

Total sample (n = 189) Remitters (n = 76) Non-remitters (n = 113)

mean std mean std mean std p

Age 51.7 15.5 56.3 14.2 48.6 15.5 <0.001*

Sex (m/f) 83/106 n.a. 32/44 n.a. 51/62 n.a. 0.79

Laterality (RUL/BL; n = 188) 148/40 n.a. 60/15 n.a. 88/25 n.a. 0.86

HAM-D pre-treatment 25.0 7.7 25.8 8.2 24.5 7.2 0.26

HAM-D post-treatment 11.0 8.3 3.3 2.3 16.2 6.6 <0.001*

HAM-D change 14.0 10.7 22.5 8.3 8.2 7.8 <0.001*

Diagnosis (UP+/UP-/BP+/BP-) 32/135/2/20 n.a. 23/44/1/8 n.a. 9/91/1/12 n.a. <0.001*

Total ECT sessions (n = 186) 13.4 6.2 12.9 6.7 13.8 5.8 0.35

Abbreviations: BL, bilateral ECT initially; BP, bipolar depression with/without psychotic symptoms (BP+/−); f, female; HAM-D, Hamilton Rating scale for depression; m, male; n.a., not
available; RUL, right unilateral ECT initially; UP, unipolar depression with/without psychotic symptoms (UP+/−). Asterisks depict significance using independent t test or χ2 test.

Figure 1. Multicenter predictions for ECT treatment remission using unimodal MR data modalities. Panel a depicts classification performance using data from all
centers and different MR modalities with internal validation (AUC is averaged over 100 stratified cross-validation splits) and external validation (leave-one-site-out
cross-validation, scores are averaged across different centers left out for model testing). Panel b depicts classification performance using data from the three lar-
gest centers with internal and external validation. VBM, voxel-based morphometry; NMM, Neuromorphometrics atlas; FC, functional connectivity; ICA, group infor-
mation guided independent component analysis. Red dashed line depicts chance-level performance (0.5 AUC). Asterisks indicate significant difference from chance
level after permutation testing with false discovery rate correction for multiple comparisons ( p < 0.05, corrected).
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with multiple comparison correction (pFDRcorrected = 0.2078;
puncorrected = 0.0019) (Fig. 2a). More comprehensive classification
results, including balanced accuracy, sensitivity, specificity, PPV,
and NPV, p values for AUC statistical significance and 95%
CIs, are provided in online Supplementary Table S7.

Multimodal neuroimaging: Classification using a combination
of sMRI, fMRI, and clinical data led to a maximum of 0.68 AUC
using internal validation which was significantly different from
chance level and a maximum of 0.64 AUC for external validation
which did not obtain significance (Fig. 3a; online Supplementary
Table S8).

Three largest centers

Unimodal neuroimaging
We next assessed prediction performance only using data from
three centers with N⩾ 20 (N = 109) to provide the machine learn-
ing classifier with sufficient samples per center. Classification per-
formance with internal validation ranged between 0.52 and 0.83
AUC across different features used, and 0.65 AUC was obtained
for classifications using clinical variables only (Fig. 1b). All
these AUCs, except for NMM, showed statistical significance.
Notably, the highest performance was achieved using voxel-wise
GM data with 0.83 AUC. Two out of 52 ICA networks resulted
in AUC > 0.7 (Fig. 2). One component centered around the tem-
poral lobes resulted in 0.75 AUC, and a frontopolar network
resulted in 0.80 AUC, but neither obtained statistical significance
after multiple comparison correction. Classifications performed
with external validation ranged between 0.47 and 0.70 AUC
(Fig. 1b). The performance obtained with voxel-wise GM data
using internal validation was reduced from 0.83 AUC to 0.70
AUC with external validation and failed to obtain statistical sig-
nificance following permutation testing with multiple comparison
correction (pFDRcorrected = 0.0899; puncorrected = 0.0089). None of
the ICA networks resulted in AUC > 0.7 with external validation
(online Supplementary Table S9).

Multimodal neuroimaging
Classification combining voxel-wise GM with ICA-based FC led
to the best performing model, with 0.83 AUC using internal val-
idation and 0.70 AUC using external validation. Classifications
for voxel-wise GM with the Power-atlas FC led to similar perfor-
mances of 0.82 AUC for internal validation and 0.73 AUC for
external validation. All of the aforementioned AUCs were statis-
tically significant for both internal and external validation
(Fig. 3b). Classification performance for regional NMM with
ICA-based FC resulted in 0.75 AUC with internal validation
and 0.51 AUC for external validation. Classifications for regional
NMM with Power-atlas FC led to 0.67 AUC using internal valid-
ation and 0.55 AUC for external validation. AUCs obtained for
classifications using regional neuromorphometrics and FC were
statistically significant for internal validation but not for external
validation (online Supplementary Table S10).

Response and post-ECT severity prediction

As previous predictive studies and clinical trials have used both
remission (HAM-D score of ⩽7 after treatment) and response
(at least 50% HAM-D score reduction compared to baseline) as
outcome criterion, we additionally assessed response classification
performance. Of the 189 included patients, 113 patients were ECT
responders and 76 non-responders. Demographics of the

included sample and results for response prediction are provided
in online Supplementary Results (online Supplementary Figs. S2
and S3; online Supplementary Tables S2, S11–S14). To summar-
ize, the majority of the classification models performed poorly
with AUC < 0.7 with internal validation, and none of the models
remained significant with external validation after permutation
testing with FDR correction.

Additionally, we investigated whether regression could be used
to directly predict post-ECT severity (i.e. HAM-D score) out-
comes. To this end, we applied support vector regression (SVR)
on data used for our best performing classification model (voxel-
wise GM combined with ICA-based FC on the three largest sam-
ples with internal validation). The entire machine learning pro-
cedure, including nested grid-search for hyperparametrization,
was performed identically as above. The results showed a positive
significant correlation (r = 0.33, p < 0.001) between the predicted
and post-ECT HAM-D scores (online Supplementary Fig. S4).
However, other regression performance metrics like the R2
score (0.092) and mean absolute error (5.73 HAM-D scores) indi-
cated poor overall performance.

Learning curves

To evaluate the relation between training sample size and classi-
fication performance, we examined learning curves for the best
performing models (i.e. remission classification using data from
the three largest centers) by using different proportions of train-
ing data. Classification accuracy reached 0.83–0.84 AUC for uni-
modal (voxel-wise GM) and multimodal (voxel-wise GM and
ICA-based FC) classifiers, with averaged AUC > 0.75 for classifi-
cations using 50% of data for training (N = 55) and AUC > 0.8
for 70% of data used for training (N = 76). See online
Supplementary Fig. S5 for full learning curves. Both learning
curves did not appear saturated, suggesting that model perform-
ance could still increase when using larger training samples.

Anatomical localization

We investigated which brain regions contributed most to treat-
ment classification for the best performing unimodal and multi-
modal models. Voxel-wise GM data from the three largest
samples resulted in the best unimodal classification with an
AUC of 0.83. The obtained feature importance p values were plot-
ted for GM weights only as we were interested in brain regions
rather than the influence of covariates. As shown in Fig. 4, regions
located in dorsomedial prefrontal (dmPFC), precuneus and thal-
amus exhibited high contribution to the classification task. The
sign of weights within thalamus was mostly negative, implying
a high chance for non-remission classification, whereas signs of
weights within dmPFC and precuneus were mostly positive,
implying a high chance for remission classification. Note that
these results reflected the contribution of these brain regions to
the multivariate pattern used by the SVM classifier.

Next, we investigated the most contributing brain regions in
our best performing multimodal model (using a combination of
voxel-wise GM and ICA-based FC). The resulting p values
obtained for multimodal voxel-wise GM were visually identical
to those obtained from the unimodal model described above
(online Supplementary Fig. S6) and highly correlated to each
other (r = 0.99, p < 0.001) with a dice similarity coefficient of
0.92. Similarly, the significant feature importances for
ICA-based FC in both the unimodal (online Supplementary
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Fig. S7) and multimodal (online Supplementary Fig. S8) models
were widespread, significantly correlated (r = 0.75, p < 0.001) but
showed less similarity to each other (dice coefficient = 0.32).
These findings seem to indicate that most of the GM features
were retained in the multimodal approach, whereas the similarity
between important features used for the ICA-based FC was lower.

Discussion

The presented results show that neuroimaging data can provide a
good prediction of ECT remission for individual patients across
different centers. In line with recent meta-analyses, older age
and presence of psychotic symptoms at baseline were associated

Figure 2. Visual representation of the two UK BioBank group ICA spatial components that led to AUC > 0.75 for either response or remission classification. Top
panel a depicts a network (#42) centered around the temporal lobes (TL). The second panel b shows a network (#52) located in frontopolar cortex (FPC).
Images are thresholded at Z ⩾ 5 and overlaid on a standard 2 mm MNI template. The figure was made with the nilearn package (http://nilearn.github.io).
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with better ECT outcome (van Diermen et al., 2018). However,
our classification results show that this information is not suffi-
cient for making individual predictions, highlighting the relevance

of obtaining neuroimaging data for accurate predictions.
Remission classification using a combination of voxel-wise GM
and clinical data with either ICA-based FC or Power-atlas-based
FC led to models with excellent discrimination when trained
and tested on samples coming from each center (internal valid-
ation AUC > 0.8) and remained acceptable when validated on
completely new data from other centers (external validation
AUC > 0.7) (Hosmer et al., 2013). These results indicate that
multimodal neuroimaging data may provide a biomarker that
could be used to guide clinical decision making.

Feature importances obtained for voxel-wise GM in the uni-
modal and multimodal approach were visually identical and
more similar compared to those obtained for unimodal and
multimodal ICA-based FC, which could indicate that the multi-
modal classification was mainly driven by GM features.
Although the best performing multimodal model showed higher
performance compared to the best unimodal model using voxel-
wise GM, the observed differences were small. Nonetheless, the
multimodal models showed higher overall performance with
external validation, which could translate into more clinical utility
when deployed on entirely unseen sites. Future research should
investigate whether more advanced data fusion approaches
could further improve the performance of multimodal MRI
data over GM only. Given the costs and human labor associated
with MRI acquisition, the added value compared to conventional
diagnostic tools (e.g. structured interviews and questionnaires)
needs to be further evaluated. By providing patients and clinicians
a patient-specific prognosis, this could ultimately increase the suc-
cess rate of ECT, avoid ineffective treatments and accompanying
adverse effects, and increase the use of the most effective antide-
pressive treatment available.

Our findings show that the prediction of treatment response
was poor, while prediction of remission was good (see online
Supplementary Results). This indicates that ECT outcome

Figure 3. Multimodal multicenter predictions for ECT treatment remission. Panel a depicts classification performance using data from all centers and different
combinations of features with internal validation (AUC is averaged over 100 stratified cross-validation splits) and external validation (leave-one-site-out cross-
validation, scores are averaged across different centers left out for model testing). Panel b depicts classification performance using data from the three largest
centers with internal and external validation. VBM, voxel-based morphometry; NMM, Neuromorphometrics atlas; FC, functional connectivity; ICA, group information
guided independent component analysis. Red dashed line depicts chance-level performance (0.5 AUC). Asterisks indicate significant difference from chance level
after permutation testing with false discovery rate correction for multiple comparisons ( p < 0.05, corrected).

Figure 4. Thresholded-log(p) value maps characterizing the regions important for the
treatment remission classification using voxel-wise GM data of the three largest cen-
ters (thresholded at p < 0.05 uncorrected). Hot colors indicate positive weights and
cold colors indicate negative weights of the SVM. Thal, thalamus, PCu, Precuneus,
dmPFC, dorsomedial prefrontal cortex. The figure was made with the nilearn package
(http://nilearn.github.io).
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prediction is limited to remission and that the remission group
can be best differentiated from the other patients. Remission
may provide a better outcome criterion than response and has
become the gold standard for depression treatment, because
patients who do not remit have a poorer prognosis and greater
chance of relapse and recurrence than those who do (McIntyre
& O’Donovan, 2004; van Diermen et al., 2018). Remission is
also associated with a lower full symptomatic recurrence rate
compared with achieving treatment response (McIntyre &
O’Donovan, 2004). Furthermore, while unimodal and multimodal
models performed comparable for remission classification using
data from the largest centers with internal validation, only the
multimodal classifications remained acceptable with external val-
idation on different centers. We speculate that multimodal data
may increase the probability that either the structural or func-
tional MRI data overlaps across centers.

Previous monocenter studies using neuroimaging data to pre-
dict ECT outcome with either structural or functional MRI were
able to obtain up to 0.83 AUC (Cohen et al., 2021). Here, we
achieved similar classification performance in a multicenter set-
ting. Using data from different samples involves many additional
sources of technological (e.g. different MR hardware and scanner
protocols) and clinical (e.g. different ECT protocols, patient
cohort, and recruitment procedures) variability (Schnack &
Kahn, 2016). These additional sources of variability may decrease
prediction accuracy of MRI measurements for ECT outcome
(Schnack & Kahn, 2016). Conversely, a multicenter study avoids
cohort-specific solutions and so helps test generalizability of the
results across different samples, increasing the likelihood that fea-
tures identified as discriminatory between remitters and non-
remitters reflect generic properties related to treatment outcome
across datasets. Our results showed that generalizability to new
samples came at the cost of lower accuracy, as best performing
classifications with internal validation (AUC≈ 0.83) outper-
formed those using external validation (AUC ≈ 0.73).
Additionally, we found that using a subsample of the data con-
taining three centers with N ⩾ 20 each (N = 109) led to better
model performance compared to using all seven centers (N =
189). This improvement could not be attributed solely to reduced
clinical heterogeneity, as differences in sample demographics and
clinical characteristics between the three largest centers were
found to be similar to those seen in the entire sample (online
Supplementary Tables S5 and S6). We therefore hypothesize
that the exclusion of smaller centers ensured that the model
had sufficient examples per center for training. With regard to
clinical heterogeneity specifically, our sample included patients
with unipolar (UP) and bipolar (BP) depression. We evaluated
whether the classification performance was similar between UP
and BP patients for our best performing model. Both patient
groups showed good classification performance: metrics calcu-
lated for BP only resulted in a balanced accuracy of 0.64 and
AUC of 0.74, whereas results for MDD showed a balanced accur-
acy of 0.74 and AUC of 0.84. We expect that the higher perform-
ance for MDD is due to a better representation of this group in
the training set. As ECT is indicated for both mood disorders
(Bayes & Parker, 2018; Parker, Graham, & Tavella, 2017), we
chose to develop a predictive model that includes both
indications.

Brain regions that contributed most to remission classification
using sMRI data included the dmPFC, precuneus, and thalamus.
The dmPFC is involved in the top-down process that regulates
many emotional and cognitive functions (Bai et al., 2019;

Zhang et al., 2021). Clinical and preclinical studies on depression
have consistently reported functional, structural, and system-level
abnormalities that span many PFC regions (Pizzagalli & Roberts,
2022; Price & Drevets, 2012). Interestingly, the dorsomedial part
of the PFC is integrated in the three large scale functional net-
works that constitute the triple network model implicated in
depression (i.e. central executive, default mode, and salience net-
work) (Menon, 2011; Sheline, Price, Yan, & Mintun, 2010; van
Waarde et al., 2015). The dmPFC cluster found important for
remission classification (displayed in Fig. 4) partly overlaps with
the salience network, and dysfunction in this network is asso-
ciated with emotional dysregulation and negatively biased infor-
mation processing in depression (Hamilton et al., 2016; Menon,
2011). Neuroimaging studies investigating changes in brain struc-
ture and connectivity following ECT have reported significant
correlations between the dmPFC and an overall reduction in
depressive symptom scores (Bai et al., 2019; Dukart et al., 2014;
Li et al., 2022; Perrin et al., 2012; Zhang et al., 2021), as well as
associations between the dmPFC and remission specifically, in
line with our findings (Abbott et al., 2013; van Waarde et al.,
2015). Our results also pointed to an important role of the precu-
neus for remission classification. The precuneus is a posterior
region of the medial parietal cortex with widespread connections
and is regarded as a major association area important for complex
cognition and behavior including visuospatial imagery, episodic
memory retrieval, and self-related processing (Cavanna &
Trimble, 2006; Mulders et al., 2016; Utevsky, Smith, & Huettel,
2014). Importantly, this region (together with the posterior cingu-
late cortex) is considered the core functional hub of the aforemen-
tioned default mode network, and dysregulations within this
network have been associated with symptom severity, and in par-
ticularly with rumination, a core characteristic of depression (Bai
et al., 2019; Li et al., 2022; Peng et al., 2015; Utevsky et al., 2014;
Zhong, Pu, & Yao, 2016). Preliminary evidence links changes in
precuneus structure, network connectivity, and cerebral blood
flow with ECT treatment outcome (Leaver et al., 2019; Mulders
et al., 2016, 2020). Previous studies using structural or functional
MRI to predict ECT outcome have also implicated the precuneus
(Jiang et al., 2018; Li et al., 2022). Our results also pointed to the
thalamus, which is a structure embedded within the
cortico-striatal-thalamo-cortical (CSTC) pathways that mediate
several cognitive, affective, and motivational processes
(Sherman, 2016; Takamiya et al., 2019). It acts as a central hub
within the wider limbic-cortical-striatal-pallidal-thalamic circuit
(overlapping with the salience network) that is thought to play
an important role in emotion dysregulation (Drevets, Price, &
Furey, 2008) and shares direct anatomical connections with
regions implicated in mood disorders like the hippocampus
(also associated with the default mode network) (Hamilton,
Farmer, Fogelman, & Gotlib, 2015; Leaver, Espinoza, Wade, &
Narr, 2022; Price & Drevets, 2012; Sherman, 2016). There is evi-
dence of decreased thalamic volume and hyperactivity during rest
and emotional processing in depression (Arnone et al., 2016;
Bora, Harrison, Davey, Yucel, & Pantelis, 2012; Palmer,
Crewther, Carey, & Team, 2014; Price & Drevets, 2012), and it
has been suggested that abnormal thalamic connectivity may
lead to disruptions in higher-order cortico-cortical connectivity
(Gallo et al., 2023). The thalamus is also considered an important
structure in seizure physiology, and several studies have associated
pre- v. post-ECT changes in thalamic volume, functional connect-
ivity and cerebral blood flow with ECT efficacy (Leaver et al.,
2016, 2019; Sun et al., 2020; Takamiya et al., 2019). A recent
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review proposes a circuit-level model for the mechanisms under-
lying ECT, in which repeated seizure therapy improves symptoms
by correcting or resetting the disrupted limbic-cortical-striatal-
pallidal-thalamic circuit in depression (Leaver et al., 2022). It is
thought that seizure propagation between distant brain regions
through cortical–thalamocortical and direct cortical–cortical con-
nections is pivotal for ECT effectiveness (Fink & Ottosson, 1980;
Leaver et al., 2016, 2019; McNally & Blumenfeld, 2004; Singh &
Kar, 2017; Takamiya et al., 2018). Previous classification studies
using pre-treatment rs-fMRI to predict ECT outcome have
reported thalamic connectivity as an important predictor in line
with these findings (Sun et al., 2020; Takamiya et al., 2019).
Notably, the systematic review of Enneking, Leehr, Dannlowski,
and Redlich (2020) compared studies on biomarkers of response
for the most common antidepressive treatments, namely antide-
pressive pharmacotherapy (AD), electroconvulsive therapy, and
cognitive-behavioral therapy (CBT) (Enneking et al., 2020).
According to this review, pre-treatment GM volume in the thal-
amus is associated with ECT treatment outcome (in line with
our findings) but not for AD and CBT. The precuneus, which
was also found to be important for our GM classifications, was
not associated with outcome for any of the treatments.
However, the anterior cingulate cortex (ACC), which is closely
located to dmPFC, emerged as a predictive region for outcome
prediction in all three treatments (Enneking et al., 2020). These
findings suggest that GM volume in regions surrounding the
ACC might indicate broader treatment responsiveness, while
specific regions such as the thalamus may be more indicative of
treatment outcome to ECT specifically.

Our results further indicated an important role for remission
classification using ICA spatial resting-state components centered
around the anterior temporal lobes and frontopolar cortex that
both resulted in AUC > 0.7. It is important to acknowledge that
although using these components for classification yielded accept-
able discrimination with above chance-level performance
(puncorrected < 0.05), they did not remain significant after applying
multiple comparison correction. Consequently, these results
should be interpreted with caution. The frontopolar cortex
(Brodmann Area 10) plays an important role in integrating cog-
nitive, social, and emotional processes. Its medial parts are mostly
associated with affective processing such as emotional and social
cognition and its lateral parts with working memory and percep-
tion. (Bludau et al., 2014; Gilbert et al., 2006). Previous studies
have reported that depression is associated to reduced medial
frontal pole volume (Bludau et al., 2016), and that decreased
frontal pole volume and FC following ECT was related to thera-
peutic efficacy (Xu et al., 2018). The medial temporal lobes
have been consistently implicated in ECT neuroimaging research
and include the hippocampus and amygdala, which have shown
to undergo structural changes in volume, functional connectivity,
and perfusion following ECT (Leaver et al., 2016; Mulders et al.,
2020; Ousdal et al., 2020; Redlich et al., 2016; Takamiya et al.,
2018; Wilkinson, Sanacora, & Bloch, 2017). The temporal lobes
also show the highest magnitude of electrical current in right uni-
lateral stimulation (Fridgeirsson, Deng, Denys, van Waarde, &
van Wingen, 2021), and increased electrical field strength has
been associated with increased right hippocampal neuroplasticity
and improved antidepressant outcomes (Deng et al., 2021).
Smaller hippocampal volumes, and to a lesser extend the amyg-
dala, are apparent in MDD patients and support the current
hypothesis that mood disorders consist of dysfunction in neural
circuits important for processing and integrating emotional and

cognitive events (Kempton et al., 2011; Schmaal et al., 2016).
Previous classification studies have also highlighted anterior lat-
eral temporal lobe volume, hippocampal and amygdala gray mat-
ter (Abbott et al., 2014; Jiang et al., 2018; Takamiya et al., 2020),
and temporal cortex functional connectivity (Leaver et al., 2018)
as important predictors for ECT outcome.

Altogether, these results provide evidence for the importance
of dmPFC, thalamic and precuneus structure and fronto-temporal
FC for both depression and ECT-related clinical response.
Notably, the identification of brain regions contributing most to
the classification resulted from a multivariate analysis, and the
localization of these regions should therefore be interpreted
with caution as these regions may not only be related to treatment
outcome but also contribute to denoising during the classification
process (Haufe et al., 2014).

Several limitations have to be taken into account when inter-
preting our findings. First, our models were trained on both medi-
cated and unmedicated patients. Medication was usually tapered
before ECT or kept stable during ECT, but was not consistently
registered to enable medication-specific analyses. The current
study design also did not include another treatment (as control
condition), and therefore we do not know whether the predictive
markers are specific for ECT. Future studies on ECT prediction
may explore the effects of concurrent medication use and whether
models do (not) share features with predictive models for other
treatments for treatment resistant depression such as ketamine
or deep brain stimulation. Second, although the sample size in
this study is higher than those typically seen in previous neuroi-
maging studies predicting ECT outcome, it is likely that including
more patients for classifier training would increase the robustness
and performance of the models (see learning curve; online
Supplementary Fig. S2). In addition, our classifiers were trained
using a relatively high ratio of features to participants that could
lead to potential model overfitting, referred to as the ‘curse of
dimensionality’. We employed regularization to avoid overfitting
by tuning the ‘C’ parameter of the SVM (through grid-search).
However, it is possible that some overfitting might still occur,
and only larger sample sizes can guarantee a lower bias towards
overfitting. Nonetheless, our best performing model showed sig-
nificant classification performance with external validation, indi-
cating that the model performs above chance level when applied
to data unseen centers and is unlikely to overfit on data from a
single center. Future studies using even larger samples should fur-
ther investigate the feasibility of using MRI data to predict ECT
outcome. Next, we used a retrospectively pooled sample from
existing data across the world, without harmonized protocols
for scanning, inclusion criteria or demographic and clinical char-
acteristics. Not surprisingly, we found significant differences in
sample demographics and clinical characteristics between the dif-
ferent data collection centers. These sources of heterogeneity may
limit classification performance but also provide an opportunity
for model development using independent data sets and the dis-
covery of generalizable biomarkers that are reproducible across
centers. However, classification performance might be improved
by using standardized acquisition parameters for possible future
clinical utility. Finally, it should be mentioned that artificial
dichotomization of post-ECT scores to remission and response
rates leads to some loss of information. For example, patients
that show partial remission or response (i.e. HAM-D scores of
7% or 49% reduction in symptoms) are considered the same as
those patients that do not improve at all. From a clinical perspec-
tive, regression-based approaches that allow for continuous

Psychological Medicine 503

https://doi.org/10.1017/S0033291723002040 Published online by Cambridge University Press

https://doi.org/10.1017/S0033291723002040


predictions of symptom reduction might provide more clinical
utility in comparison to binary classification (Gartner et al.,
2021). We investigated whether this was the case for the data in
our study, and although we obtained a significant correlation
between the predicted and true post-ECT HAM-D scores, other
regression performance metrics like the R2 score and mean abso-
lute error indicated poor overall performance. Future studies
could further investigate the feasibility of using other models
that provide continuous predictions (e.g. using deep learning)
for ECT outcome in larger, multi-samples.

Taken together, this study suggests that ECT remission can be
predicted with acceptable discrimination using MRI data in a
large, ecologically valid, multicenter sample of patients receiving
ECT, indicating that future development of a clinical decision
support tool might be feasible. MRI could easily be incorporated
during decision making, as ECT is typically provided in a hospital
setting. And as MRI is inexpensive compared to ECT, the add-
itional costs are expected to outweigh the costs of unsuccessful
treatments.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0033291723002040.
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