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1. A number of formulae are known which exhibit the asymptotic behaviour as t^-oo of
the solutions of

x+F(t)x = 0, (t^t0, -=dldt) (1.1)

The aim of this note is to unify a group of such formulae, relating to the case in which F(t) is

on the whole positive, and suitably continuous though not necessarily analytic.
The two special cases in which F(t) approximates closely to a positive constant as <-»oo,

and in which log F(t) is of bounded variation over (t0, oo), are summed up in a result due to
Ascoli [1, 2]. Writing F (t) =f(t) + g{t), where log / is of bounded variation over (t0, oo) and g
absolutely integrable over (t0, oo),/being positive and /and g suitably continuous, we have as
<->-oo the asymptotic formula

x=A cos(f/*dt+B+o{\)\, (1.2)
U to J

where A and B are constants of integration, A being positive for a non-trivial solution. An
extension to the complex field is due to Levinson [3].

The validity of (1.2) admits of some extension beyond the above conditions (see for example
[4]), but modifications seem essential for cases in which F(t)^-oo or F(t)-^--0 as £->-oo. Under
various conditions there hold formulae of the type

f k(t)dt+B +o(l)\, (1.3)
'o )

where we may have, as previously, as for example in Wintrier [5],

k(t)=Fi, (1.4)

or (Atkinson [6, p. S4], extended by Hartman and Wintner [7]f).

k{t)={F-F2l(\6F*)}i, (1.5)
or again ([6, p. 86]),

k(t) = (F-ltr*)i (1.6)

In Theorem 1 I give a result which includes and extends these formulae.
Finally, I show that certain boundedness criteria are also included.
2. In order to formulate the main result, we split F(t) into a " smooth " part/(<) and a

" small " part g(t), so that (1.1) takes the form

x+{f(t)+g(t)}x=Q (t^t0) (2.1)
We have then

THEOREM 1. Let f(t) be positive and continuously differentiable, g{t) continuous and such
that

J /"-- I dt<cc (2.2)
<0

f An error in sign in [7, p. 83] is corrected on p. 932.
H G.M.A.
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Let
ff-%=h(t) + ^ ( 0 (2.3)

where h (t) is continuously differentiate and such that

\h\dt<co, -4<ft(oo)<4, (2.4-5)

and ^(t) satisfies
(•00

I hji | dt<oo (2.6)
J to

Then the general solution of (2.1) admits as t^-co the asymptotic representation

x =Af* cos \\ p(l-h2llQ)idt+B+o{l)}, (2.7)

where A >0 for a non-trivial solution.
For the proof we introduce a new independent variable by putting u= \ ftdt, so that

J t0
(2.1) transforms to

On putting yx =x, y2= dxjdu, this may be written

or, in vector-matrix notation, in the form

.(2.8)

where y = (yv y2) and

A =

and

0 1

- 1 -|/i(oo)

C =
0

in which form we may apply a powerful result due to Levinson [3].f
In verifying that Levinson's hypotheses are satisfied, we have first to show that w->oo as

t-+co. In the contrary event, if

f
J t

(2.9)

I* 00

it would follow from (2.3), (2.4) and (2.6) that | / / - 1 1 dt< oo, so tha t / would have a positive
J to

limit as t^-co, in contradiction to (2.9).
f This result is also accessible in the text of Bellman [8, p. 50]. Actually it would be possible, at the

cost of further calculations, to deduce Theorem 1 from a more primitive result than that of Levinson, for the
case of a system with absolutely integrable coefficients.
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We next observe that A is a constant matrix, thatB is continuously differentiable and of
bounded variation near rt = oo, with B(oo)=0, and that C is absolutely integrable over
(0, oo) with respect to u. These statements all follow from the hypotheses of Theorem 1.
Finally, the characteristic roots of A + B are

(2.10)

which have the same real part (cf. [3, (1.3)]).
In applying Levinson's result, we need the characteristic vectors of A, which we may take

to be
1, -i-A(oo) ± i{l -

If we seek an approximation to x only, and not to x, we may disregard the second element of
these vectors. From Levinson's result we deduce that (2.8) has solutions such that, as t—>co,

{- lh ± i (f-fh?ll6)i}dt\ ....(2.11)

But

J to J (0 J 'o

and the latter integral on the right converges as t^-co, by (2.6). Hence for some positive
constant D the pair of solutions satisfying (2.11) are such that

so that (2.1) has a pair of solutions satisfying

which is equivalent to the assertion of Theorem 1.
3. Three of the asymptotic integrations referred to in § 1 are immediately derivable from

Theorem 1 as special cases.
To obtain Ascoli's result (1.2) we take h(t) =0.
To obtain (1.3) with (1.5) we take/(<) =F{t), g(t) =0, and h1{t)=O. The conditions of the

theorem require that F should be positive and F continuous, that FF~i should be of bounded

variation over (t0, oo) and such that a=lim FF~^ should satisfy - 4 < a < 4 .

Actually, if F~% is to have its positive value, the last restriction can be replaced by
-4<<x<0. For if FF~^-+a *0 an integration shows that F~^ - \od as £->-oo, so that a must
be negative. So far as real F are concerned, Hartman and Wintner's conditions ([7, (171) and
(172)] with due correction as regards sign) also confine us to such cases. The case a < - 4
could also be included in the above investigation, using a different case of Levinson's result,
though an exponential form would be more appropriate than (2.7). The case <x= - 4 is more
delicate.

To obtain the case of (1.3) with (1.6) we take/(<) =F(t), g(t)=O, and h(t) = - 2«-1J-i. The

conditions require that F should be positive with F continuous, that tF^ should be of bounded
variat^on o v e r Co> °°)> tending as <->co to a limit greater than J.
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4. To show that Wintner's result of (1.3) with (1.4) is included, and to obtain a comparison
with other results, I require the

LEMMA. Letf(t) be positive for t^t0, with f continuous, and, for some constant j8 with /S<$, let

J t0

i / j 8< l , it follows that

f>* (4.2)f
(o

and further that ff~~* is of bounded variation over (t0, oo), tending to 0 as £->-oo.
If l^jS<f, then either the previous conclusions hold, or else

r
J u.

tf dt< ao.- (4.3)

Assume first that (4.2) holds. Since
d , , ... :

it follows from (4.1-2) tha t / /"* is of bounded variation over (t0, oo). Denoting limff~§ by a,
(-s-co

we must have a = 0. For if / / ^ - > a # 0, we must have / ~ ^ ~ - |a£, whence /2/"^~' - 2a/t, in
contradiction to (4.2).

Assume next that (4.2) does not hold, so that

Jt.
(4.5)

we show that this is impossible if jS< 1, which will prove the first part of the Lemma. We also
show that (4.5), together with the other assumptions of the Lemma, implies (4.3), thus com-
pleting the proof of the Lemma.

Integrating (4.4) over (t0, t) and making <->oo, we have, in view of (4.1) and (4.5),

//""""-»• - oo as t-*- oo, (4.6)
so that ultimately

and iurther
f->0 a s i ^ o o , (4.8)

since/is non-negative and cannot, in view of (4.6), tend to a positive constant as <->oo.
Write now

/rf-/3/2/-f=yW> (4.9)
so that by (4.1)

Jt,
y(t) I dt<oo (4.10)

j t.

We have then

(4.U)

From (4.8) and (4.10) it follows that ff~p tends to a limit, S say, as t-+ao. Furthermore,
integrating (4.11) over (t, oo), we have, in view of (4.7) and (4.10), for large t,

ff-S+oV*-') (4.12)
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Here 8 cannot vanish, since that would imply ff~% =o(l), in contradiction to (4.6). Moreover
8 cannot be positive, in view of (4.7) and (4.8). Hence

//~"-*8<0 (4.13)
as t—>co.

Now if )S ¥= 1, an integration of (4.13) gives

/ ! - 0 ~ (l-/3)8«, (4.14)

as t-^-co. This is impossible if /}< 1, since it would imply that/is ultimately negative, contrary
to hypothesis ; we have therefore shown that (4.5) does not hold if J8<1 , and thereby proved
the first half of the lemma.

If 1</J<f, then (4.14) can occur, and implies that

/ ~ const. £-i/u-0>}

which establishes (4.3).
If yS = 1, an integration of (4.13) gives

log/~8«,

and since 8<0 this again ensures (4.3). This completes the proof of the lemma.
As a special case of Theorem 1 we have now

THEOREM 2. Let F be positive, F continuous, and for some constant j8 with / ?< | let

[" \FF-*-pF*F-*\dt< ao (4.15)

let also

= oo (4.16)il'
Then the general solution of (1.1) admits as <->oo the asymptotic representation

x=AF~i cost {' Fidt+B+o(l)\ (4.17)

In view of the lemma, (4.15) and (4.16) ensure the validity of the asymptotic integration
(1.3) with (1.5), sufficient conditions for which were enumerated in § 3. However, here (1.5)
is equivalent to (1.4), since the extra term in (1.5) contributes to the phase an amount

r
Jk

which is asymptotic to a constant as £->-oo, by (4.2).
Wintner's result [5] is the special case /3=f, the actual value of jS in the range

being immaterial if (4.16) is postulated. The effect of the restriction (4.16) is to exclude cases
in which F^-0 as t^-co so rapidly that the solutions of (1.1) are asymptotically constant.

5. The question of the boundedness of the solutions of (1.1) is often discussed under
assumptions which ensure, not merely the boundedness of solutions, but the existence of an
asymptotic expression for them. Here I note sufficient conditions for boundedness which
follow from Theorem 2, and give its relation to two other such sets of conditions. Naturally,
more general boundedness conditions could be deduced from Theorem 1. We have
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THEOEEM 3. Let F have a 'positive lower bound, and let F be continuous. For some ft loith
/3<-£ let

J. | | dt<ao (5.1)
h

Then all solutions of (1.1) are bounded as £->-oo.
This follows directly from Theorem 2, the condition (4.16) being superfluous since F has a

positive lower bound. The conditions (5.1) for varying /3<f are mutually equivalent, again
since F has a positive lower bound.

Bellman [9] has recently given a fresh proof of a set of boundedness conditions, which he
attributes to Gusarov [10], namely

.F3*const.>0, and P°|.F|d«oo (5.2, 3)

Sobol' [11, p. 710], requires in addition to (5.2) that F$ should have a derivative of bounded
variation over (t0, oo), i.e. that

J t«
dt< oo, (5.4)

where we have added to Sobol"s assumptions the continuity of F.
Apart from the latter point, I show that Theorem 3 includes the conditions of Sobol',

which in turn include those of Gusarov.
As to the first assertion, it follows from (5.2) and (5.4) that

r
and this is one of the (mutually equivalent) conditions (5.1).

We have next to show that (5.2, 3) imply (5.4). I t is clear that they imply

J"' < 0

We show that this implies, subject to (5.2),

| dt<co (5.5)

J, (5.6)
to

Suppose that we have (5.5), and the contrary to (5.6). From the result

FF- - FF~* dt - J F2F~^ dt
I ' X Ju "J<.

it then follows that

J<Jf -—> — o o (5.7)

as /->oo. This implies that F is ultimately monotonically decreasing, and this by (5.2) implies
that F tends to a positive constant. By (5.7) this implies that F-> - oo, which is clearly
contradictory. Hence (5.5) and (5.2) imply (5.6), which imply (5.4), as asserted.

As an example, we cite the case of x + t"x = 0, the solutions of which are easily seen to be
bounded for all m>0. The conditions of Gusarov work here for 0<ra<l , while those of Sobol'
work for 0 < « < 2 . The conditions of Theorem 3, e.g. with /? = 0, work for all
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INFINITE INTEGRALS INVOLVING PRODUCTS
OF LEGENDRE FUNCTIONS

by K. C. SHARMA
(Received 1st November, 1956)

1. In this paper we evaluate a few infinite integrals involving products of Legendre
functions. The results obtained herein are quite general and include, as particular cases, some
known results.

We shall evaluate these integrals with the help of a theorem in operational calculus proved
in § 2.

We write

when

p [me-™j{x)dx, (1)
Jo

and

=/(*),
when

r (2)

Formula (2) is a generalisation of (1) as given by Meijer [7] and it reduces to (1) when
v = ± i, since

KA =(£)'«-•
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