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ON HARMONIC AND PSEUDOHARMONIC MAPS
FROM PSEUDO-HERMITIAN MANIFOLDS

TIAN CHONG, YUXIN DONG, YIBIN REN and GUILIN YANG

Abstract. In this paper, we give some rigidity results for both harmonic

and pseudoharmonic maps from pseudo-Hermitian manifolds into Riemannian

manifolds or Kähler manifolds. Some foliated results, pluriharmonicity and Siu–

Sampson type results are established for both harmonic maps and pseudohar-

monic maps.

§1. Introduction

In 1980, Siu [20] studied the strong rigidity of compact Kähler manifolds

by using the theory of harmonic maps. The basic discovery by Siu was a

new Bochner-type formula for harmonic maps between Kähler manifolds,

which does not involve the Ricci curvature tensor of the domains. Using

the modified Bochner formula, he proved that all harmonic maps from a

compact Kähler manifold to a Kähler manifold with strongly seminegative

curvature are actually pluriharmonic and some curvature expressions vanish.

When the target manifolds are Kähler manifolds with strongly negative

curvature or compact quotients of irreducible bounded symmetric domains,

the vanishing curvature terms, under the assumption of sufficiently high

rank, force the maps to be either holomorphic or antiholomorphic. Later,

Sampson [19] showed that all harmonic maps from compact Kähler mani-

folds into Riemannian manifolds with nonpositive Hermitian curvature are

also pluriharmonic, which generalized the pluriharmonicity result of Siu

to more general targets. Pluriharmonic maps, holomorphic maps and Siu–

Sampson type results have many important applications in geometry and

topology of Kähler manifolds. The readers are referred to [23] for details.

In 2002, Petit [16] established some rigidity results for harmonic maps

from strictly pseudoconvex CR manifolds, endowed with a positively ori-

ented contact form, to Kähler manifolds and Riemannian manifolds by

using tools of spinorial geometry. First, he proved that any harmonic map
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φ :M →N from a compact Sasakian manifold to a Riemannian manifold

with nonpositive sectional curvature satisfies that dφ(T ) = 0, where T is the

characteristic direction of (M, θ). A map with this property will be called

foliated. Next he proved that under suitable rank conditions the harmonic

map from a compact Sasakian manifold to a Kähler manifold with strongly

negative curvature is (J, JN )-holomorphic or anti-(J, JN )-holomorphic.

However, Petit [16] did not specifically discuss the relevant notions of

pluriharmonicity. On the other hand, Barletta et al. in [1] introduced the so-

called pseudoharmonic maps from nondegenerate CR manifolds which are a

natural generalization of harmonic maps. In his thesis [4], Chang discussed

some fundamental properties of pseudoharmonic maps.

In this paper, we establish some rigidity results for both harmonic

maps and pseudoharmonic maps from pseudo-Hermitian manifolds by using

the moving frame method. First, we find a result about the relationship

between harmonic maps and pseudoharmonic maps from pseudo-Hermitian

manifolds, which claims that these two kinds of maps are actually equivalent

if the maps are foliated. By the moving frame method, we not only recapture

Petit’s result about harmonic maps from compact Sasakian manifolds to

Riemannian manifolds with nonpositive curvature (Theorem 5.2), but also

show that the result is still valid for pseudoharmonic maps (Theorem 5.1).

The usual Bochner-type formula for the energy density of harmonic maps

was given in [10]. In [4], Chang derived the CR Bochner-type formula

for the horizontal energy density of a pseudoharmonic map φ. Unlike the

Bochner formula of harmonic maps, there is a mixed term
√
−1(φiαφ

i
ᾱ0 −

φiᾱφ
i
α0) appearing in the CR Bochner formula for the pseudoharmonic map

(cf. Lemma 4.1). When φ is a function, it is known that the CR Paneitz

operator, which is a divergence of a third order differential operator P ,

is a useful tool to treat such kind of term. One important property of

the CR Paneitz operator is its nonnegativity when the dimension of the

CR manifold >5 (cf. [5]). We generalize the operator P to a differential

operator, still denoted by P , acting on maps from a pseudo-Hermitian

manifolds into a Riemannian manifold, and establish similar nonnegativity

under the assumptions that the domain manifold has dimension >5 and the

target manifold is of nonpositive Hermitian curvature (Theorem 4.1). This

enables us to establish a CR Bochner-type result for pseudoharmonic maps

(Theorem 4.2).

As mentioned previously, the notion of “pluriharmonicity” is important

for Siu–Sampson type results and other potential applications. We shall
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discuss suitable notion of pluriharmonic maps from pseudo-Hermitian

manifolds. On a pseudo-Hermitian manifold, we have two canonical con-

nections, that is, the Levi-Civita connection of the Webster metric and

the Tanaka–Webster connection of the pseudo-Hermitian structure. As a

result, there are two kinds of second fundamental forms for a map from

a pseudo-Hermitian manifold to a Riemannian manifold: the usual second

fundamental form B and a new second fundamental form β(φ). The later

one is defined with respect to the Tanaka–Webster connection of the domain

pseudo-Hermitian manifold and the Levi-Civita connection of the target

Riemannian manifold (see Section 2). Using B, Ianus and Pastore [13]

defined two kinds of pluriharmonic notions. In [8], Dragomir and Kamishima

introduced the notion of ∂̄b-pluriharmonic map by means of β(φ). It turns

out that a ∂̄b-pluriharmonic map is pseudoharmonic and foliated, and

thus it is harmonic too. In addition, when the target manifold is Kähler,

the ∂̄b-pluriharmonic maps in [8] are more compatible with the (J, JN )-

holomorphic maps in the sense that all (J, JN )-holomorphic maps are

automatically ∂̄b-pluriharmonic. Next, using the Siu–Sampson technique,

we prove that all harmonic maps or pseudoharmonic maps from compact

Sasakian manifolds to Riemannian manifolds with nonpositive Hermitian

curvature or Kähler manifolds with strong seminegative curvature are ∂̄b-

pluriharmonic (Theorems 6.1, 6.2). If the target is a Kähler manifold with

strongly negative curvature and the rank of the map >3 at some point,

then the harmonic map or the pseudoharmonic map is (J, JN )-holomorphic

or anti-(J, JN )-holomorphic (Theorem 7.3). In [16], Petit proved a similar

result for harmonic maps using different technique. When the target is a

locally Hermitian symmetric space of noncompact type whose universal

cover does not contain the hyperbolic plane as a factor, we show that the

harmonic or pseudoharmonic maps are (J, JN )-holomorphic under some

explicit rank conditions (Theorem 7.1). These generalize some similar results

in [3] to the pseudo-Hermitian case. To derive the above results, we also

investigate the conic extensions of harmonic maps, ∂̄b-pluriharmonic maps

and (J, JN )-holomorphic maps from Sasakian manifolds respectively, and

establish also a unique continuation theorem for (J, JN )-holomorphicity

(Proposition 7.2). Using a technique in [17], we consider harmonic maps

and pseudoharmonic maps from complete noncompact pseudo-Hermitian

manifolds too. Under some decay conditions, some foliated results and ∂̄b-

pluriharmonicity results are given.
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Finally, we would like to mention that Yuxin Dong in [7] has established

similar rigidity results including Siu type results for pseudoharmonic maps

between pseudo-Hermitian manifolds.

§2. Preliminaries

2.1 Pseudo-Hermitian structures

A smooth manifold M of real (2m+ 1)-dimension is said to be a CR

manifold (of type (m, 1)) if there exists a smooth m-dimensional complex

subbundle T1,0(M) of the complexifed tangent bundle TC(M) = T (M)⊗ C,

such that

T1,0(M) ∩ T0,1(M) = {0}

and

Z, W ∈ Γ∞(U, T1,0(M))⇒ [Z, W ] ∈ Γ∞(U, T1,0(M))

for any open subset U ⊂M . Here T0,1(M) = T1,0(M) denotes the complex

conjugate of T1,0(M). The subbundle T1,0(M) is called a CR structure

on M . Equivalently, the CR structure may also be described by the

Levi distribution H(M) = Re{T1,0(M)⊕ T0,1(M)}, which carries a complex

structure J :H(M)→H(M) given by

J(Z + Z̄) =
√
−1(Z − Z̄),

for any Z ∈ T1,0(M).

Hereafter we assume M is orientable. Let us set

Ex = {ω ∈ T ∗x (M) : Ker(ω)⊇Hx(M)},

for any x ∈M . Then E→M becomes an orientable real line subbundle

of the cotangent bundle T ∗(M), and thus there exist globally defined

nonvanishing sections θ ∈ Γ∞(E). Any such a section θ is called a pseudo-

Hermitian structure on M . The Levi form Gθ of θ is defined by

Gθ(X, Y ) = dθ(X, JY ),

for any X, Y ∈H(M). A CR manifold (M, T1,0(M)) is said to be a strictly

pseudoconvex CR manifold if the Levi form Gθ is positive definite for

some pseudo-Hermitian structure θ on M . Standard examples of strictly

pseudoconvex CR manifolds are the odd-dimensional spheres and the

Heisenberg groups.
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When (M, T1,0(M)) is strictly pseudoconvex, it is natural to orient

E by declaring a pseudo-Hermitian structure θ to be positive if Gθ is

positive definite. Henceforth we shall assume that (M, T1,0(M)) is strictly

pseudoconvex and θ is a positive pseudo-Hermitian structure. The triple

(M, T1,0(M), θ) is called a pseudo-Hermitian manifold.

Let (M, T1,0(M), θ) be a pseudo-Hermitian manifold. Then there exists

a unique nonvanishing vector field T on M , transverse to H(M), satisfying

θ(T ) = 1 and Ty dθ = 0. The vector field T is referred to as the characteristic

direction or the Reeb vector field of (M, T1,0(M), θ). Then we can extend

Gθ to a Riemannian metric gθ, called the Webster metric, on M as follows:

gθ(X, Y ) =Gθ(πHX, πHY ) + θ(X)θ(Y ),

for any X, Y ∈ T (M), where πH : T (M)→H(M) is the projection associ-

ated to the direct sum decomposition T (M) =H(M)⊕ RT . Let us extend J

to a (1, 1) tensor field on M by requesting that JT = 0. Then the two-form

Ω defined by Ω(X, Y ) = gθ(X, JY ) coincides with the two-form −dθ. Thus

the pseudo-Hermitian manifold (M, T1,0(M), θ) carries a contact metric

structure (J,−T,−θ, gθ) (cf. [9]).

On a pseudo-Hermitian manifold, there exists a canonical linear connec-

tion preserving both the CR structure and the Webster metric.

Lemma 2.1. (cf. [9, 22, 26]) Let (M, T1,0(M), θ) be a pseudo-Hermitian

manifold and gθ the Webster metric of (M, T1,0(M), θ). Then there exists a

unique linear connection ∇ on M , called the Tanaka–Webster connection,

such that:

(1) the Levi distribution H(M) is parallel with respect to ∇;

(2) ∇gθ = 0, ∇J = 0, ∇θ = 0 (hence ∇T = 0);

(3) the torsion T∇ of ∇ satisfies T∇(X, Y ) =−2Ω(X, Y )T and

T∇(T, JX) =−JT∇(T, X), for any X, Y ∈H(M).

Unlike the Levi-Civita connection, the torsion T∇ of the Tanaka–Webster

connection ∇ is always nonzero. The pseudo-Hermitian torsion of ∇,

denoted by τ , is defined by τ(X) = T∇(T, X), for any X ∈ T (M). Note

that τ is trace-free and self-adjoint with respect to the Webster metric gθ
(cf. [9]). Let us set

A(X, Y ) = gθ(τX, Y ),

for any X, Y ∈ T (M). Then we have A(X, Y ) =A(Y, X).
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Theorem 2.1. (cf. [9]) Let (M, T1,0(M), θ) be a pseudo-Hermitian

manifold. Then the Webster metric gθ is Sasakian if and only if the Tanaka–

Webster connection of (M, T1,0(M), θ) has vanishing pseudo-Hermitian

torsion, that is, τ = 0.

Remark 2.1. In the following of this paper, a pseudo-Hermitian mani-

fold (M, T1,0(M), θ) is said to be a Sasakian manifold, if the Webster metric

gθ is Sasakian. The quadruple (J,−T,−θ, gθ) is referred to as a Sasakian

structure on M . The readers are referred to [2] for the original definition of

Sasakian metrics.

Let (M, T1,0(M), θ) be a pseudo-Hermitian manifold. Let {Tα : 1 6 α6
m} be a local frame of T1,0(M) defined on an open set U ⊂M and {θα : 1 6
α6m} the corresponding admissible local coframe, that is, θα(Tβ) = δαβ ,

θα(Tβ̄) = 0, θα(T ) = 0. Clearly Lemma 2.1 implies that there exist unique

locally defined complex 1-forms ωαβ ∈ Γ∞(T ∗(M)⊗ C) such that

∇Tα = ωβα ⊗ Tβ, ∇Tᾱ = ωβ̄ᾱ ⊗ Tβ̄,

where Tᾱ = Tα and ωᾱ
β̄

= ωαβ . These are the connection 1-forms of the

Tanaka–Webster connection ∇. Since τ(T1,0(M))⊂ T0,1(M), there are

uniquely defined smooth functions Aβ̄α : U → C such that

τ(Tα) =Aβ̄αTβ̄.

Writing Aαβ =A(Tα, Tβ) and hαβ̄ = gθ(Tα, Tβ̄), we have Aαβ =Aγ̄αhγ̄β. Let

us define the local 1-forms τα ∈ Γ∞(T ∗(M)⊗ C) by setting τα =Aα
β̄
θβ̄.

Then τ = τα ⊗ Tα + τ ᾱ ⊗ Tᾱ, where τ ᾱ = τα.

The Tanaka–Webster connection induces a covariant differential operator

∇ on tensors on M . We denote components of covariant derivatives

with indices preceded by a comma; for instance, Aαβ,γ̄ = (∇Tγ̄A)(Tα, Tβ)

and Aβ̄α,γ = θβ̄[(∇Tγτ)(Tα)]. The indices {0, α, ᾱ} indicate derivatives with

respect to {T, Tα, Tᾱ}. For derivatives of a scalar function, we omit

the comma; for example, uαβ̄ = ūᾱβ = Tβ̄Tαu− ω
γ
α(Tβ̄)Tγu and u00 = TTu.

Then we have the following structure equations for the Tanaka–Webster

connection ∇.
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Lemma 2.2. (cf. [9, 26]) The structure equations for the Tanaka–

Webster connection of (M, T1,0(M), θ) in terms of local coframe {θ, θα, θᾱ}
are

(2.1)

dθ = 2
√
−1hαβ̄θ

α ∧ θβ̄,
dθα = θβ ∧ ωαβ + θ ∧ τα, dhαβ̄ = ωγαhγβ̄ + hαγ̄ω

γ̄

β̄
,

dωαβ = −ωαγ ∧ ω
γ
β + Πα

β ,

where

Πα
β = Rαβγδ̄θ

γ ∧ θδ̄ +Wα
βγθ

γ ∧ θ −Wα
βγ̄θ

γ̄ ∧ θ

+ 2
√
−1θβ ∧ τα − 2

√
−1τβ ∧ θα,(2.2)

with

(2.3)

W β
αγ̄ = hδ̄βAγ̄δ̄,α, W β

αγ = hδ̄βAαγ,δ̄, τα = hαβ̄τ
β̄, θα = hαβ̄θ

β̄,

and (hαβ̄) is the inverse matrix of the matrix (hαβ̄).

Let us set by definition Rαβ̄λµ̄ = gθ(R(Tλ, Tµ̄)Tα, Tβ̄) = hγβ̄R
γ
αλµ̄, where

R is the curvature tensor of ∇. From (2.1), one may derive that (cf. [26]):

Rαβ̄λµ̄ =Rλβ̄αµ̄. The pseudo-Hermitian Ricci tensor is given by Rλµ̄ =

Rαλαµ̄ =Rααλµ̄, which satisfies Rλµ̄ =Rµ̄λ. Since the Tanaka–Webster con-

nection can be viewed as a connection in T1,0(M), the pseudo-Hermitian

Ricci tensor and the torsion tensor on T1,0(M) are also denoted by

Ric(X, Y ) =Rαβ̄X
αY β̄

and

Tor(X, Y ) =
√
−1(Aᾱβ̄X

ᾱY β̄ −AαβXαY β)

for any X =XαTα, Y = Y βTβ ∈ T1,0(M).

The divergence of a vector field X on (M, T1,0(M), θ) is defined by

LXΨ = div(X)Ψ,

where LX denotes the Lie derivative and Ψ = θ ∧ (dθ)m is, up to a constant,

the volume form on (M, gθ). The divergence div(X) can be computed in

another way, that is,

div(X) = tracegθ{Y ∈ T (M) 7→ ∇YX}.
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If Z = ZαTα, then div(Z) = Tα(Zα) + Zβωαβ (Tα). For a 1-form σ on M , we

denote by Xσ its dual vector field, that is, gθ(Xσ, Y ) = σ(Y ) for any Y ∈
T (M). The divergence of σ denoted by δb(σ) is defined by δb(σ) = div(Xσ).

If σ = σαθ
α, then δb(σ) = σα,β̄h

αβ̄. The sublaplacian of (M, T1,0(M), θ) is

the differential operator ∆b on functions defined by

∆bu=−div(∇Hu),

for any u ∈ C2(M). Here ∇Hu= πH∇u is the horizontal gradient, and ∇u
is the ordinary gradient of u with respect to the Webster metric gθ, that

is, gθ(∇u, X) =X(u) for any X ∈ T (M). With respect to the local frame

{T, Tα, Tᾱ}, the sublaplacian ∆b can be expressed as ∆bu=−(hαβ̄uαβ̄ +

hᾱβuᾱβ).

We denote by ∇θ the Levi-Civita connection of (M, gθ). From [9,

Lemma 1.3], we know that the Levi-Civita connection ∇θ is related to the

Tanaka–Webster connection ∇ by

(2.4) ∇θ =∇+ (Ω−A)⊗ T + τ ⊗ θ + 2θ � J,

where 2(θ � J)(X, Y ) = θ(X)JY + θ(Y )JX. By (2.4), we have ∇θXT =

τ(X) + JX. In particular, ∇θTT = 0. If X, Y ∈H(M), then

(2.5) ∇θXY =∇XY + [Ω(X, Y )−A(X, Y )]T.

Since ∇θ −∇ is a (1, 2) tensor field on M and ∇θTT =∇TT = 0, we can

define a vector field V on M given by

V = tracegθ(∇
θ −∇) = traceGθ(∇

θ −∇).

Actually we have V =−tracegθ(τ)T = 0. On the Riemannian manifold

(M, gθ), the Laplace–Beltrami operator is given by ∆u=−tracegθ{Y ∈
T (M) 7→ ∇θY (∇u)} for any u ∈ C2(M). Since V = 0, we have ∆u=

−div(∇u) and ∆u=−(hαβ̄uαβ̄ + hᾱβuᾱβ + u00).

2.2 Harmonic maps and pseudoharmonic maps

Let (M, T1,0(M), θ) be a pseudo-Hermitian manifold (gθ is positive

definite). Let us denote by ∇ and ∇θ the Tanaka–Webster connection of

(M, T1,0(M), θ) and the Levi-Civita connection of the Webster metric gθ,

respectively. Let (N, h) be a Riemannian manifold with the Levi-Civita

connection ∇h. For a smooth map φ :M →N , there are two induced
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connections ∇θ ⊗ φ−1∇h and ∇⊗ φ−1∇h on T ∗(M)⊗ φ−1T (N). Using

these two connections, one may define the usual second fundamental form

B(φ) and a new second fundamental form β(φ) (cf. [16]) for the map φ as

follows:

(2.6) B(φ)(X, Y ) =∇hY (dφ(X))− dφ(∇θYX)

and

(2.7) β(φ)(X, Y ) =∇hY (dφ(X))− dφ(∇YX),

for any X, Y ∈ T (M), where φ−1∇h is written as ∇h for simplicity. While

B(φ) is symmetric on T (M)⊗ T (M), β(φ) is, in general, nonsymmetric.

For any bilinear form C on T (M), we denote by πHC the restriction of C

to H(M)⊗H(M). Recall that φ : (M, T1,0(M), θ)→ (N, h) is pseudohar-

monic if the vector field along φ given by τ(φ) = traceGθ(πHβ(φ)) vanishes.

In [1], the pseudoharmonic map is the critical point of the horizontal energy

functional

(2.8) EH,Ω(φ) =

∫
Ω
eH(φ)Ψ,

for any Ω⊂⊂M , where eH(φ) = (1/2)traceGθ(πHφ
∗h) is the horizontal

energy density and Ψ = θ ∧ (dθ)m. Let τ θ(φ) be the usual tension field of φ

given by τ θ(φ) = tracegθB(φ). Then φ : (M, gθ)→ (N, h) is harmonic if and

only if τ θ(φ) = 0 (cf. [10]). Due to V = 0, we have

(2.9) τ(φ) = traceGθ(πHβ(φ)) = traceGθ(πHB(φ)),

and

(2.10) τ θ(φ) = tracegθB(φ) = tracegθβ(φ).

A smooth map φ : (M2m+1, T1,0(M), θ)→ (N, h) is said to be a foliated map

if dφ(T ) = 0.

Proposition 2.1. (cf. [25]) Let (M, T1,0(M), θ) be a pseudo-Hermitian

manifold and (N, h) a Riemannian manifold. Let φ :M → (N, h) be a

smooth map. Then

τ θ(φ) = τ(φ) +∇hT dφ(T ).

If in addition φ is foliated, then φ is harmonic if and only if it is

pseudoharmonic.
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Definition 2.1. Let (M, T1,0(M), θ) be a pseudo-Hermitian manifold

and (N, h) a Riemannian manifold. Let φ :M →N be a smooth map. We

say that:

(i) [13] φ is J-pluriharmonic, if B(φ)(X, Y ) +B(φ)(JX, JY ) = 0, for any

X, Y ∈ T (M);

(ii) [13] φ is H(M)-pluriharmonic, if B(φ)(X, Y ) +B(φ)(JX, JY ) = 0, for

any X, Y ∈H(M);

(iii) [8] φ is ∂̄b-pluriharmonic, if β(φ)(X, Y ) + β(φ)(JX, JY ) = 0, for any

X, Y ∈H(M);

(iv) [11] when (N, h) is a Kähler manifold with complex structure JN , φ is

called a (J, JN )-holomorphic (resp. anti-(J, JN )-holomorphic) map, if

(2.11) dφ ◦ J = JN ◦ dφ, (resp. dφ ◦ J =−JN ◦ dφ).

Obviously, both the J-pluriharmonic map and the (J, JN )-holomorphic

map are harmonic (cf. [11, 13]). By (2.9), the H(M)-pluriharmonic map

is pseudoharmonic. Dragomir and Kamishima in [8] proved that every ∂̄b-

pluriharmonic map is a pseudoharmonic map. Actually, we get that any

∂̄b-pluriharmonic map is foliated.

Proposition 2.2. Let (M, T1,0(M), θ) be a pseudo-Hermitian manifold

and (N, h) a Riemannian manifold. If φ :M →N is ∂̄b-pluriharmonic, then

φ is a foliated map.

Proof. For any Z =X −
√
−1JX, W = Y −

√
−1JY ∈ T1,0(M), we have

β(φ)(Z, W ) = β(φ)(X, Y ) + β(φ)(JX, JY )

+
√
−1[β(φ)(X, JY )− β(φ)(JX, Y )],

and

β(φ)(Z, W ) = β(φ)(X, Y ) + β(φ)(JX, JY )

−
√
−1[β(φ)(X, JY )− β(φ)(JX, Y )].

Thus we get that φ is ∂̄b-pluriharmonic if and only if β(φ)(Z, W ) =

β(φ)(Z, W ) = 0 for any Z, W ∈ T1,0(M). Therefore, any ∂̄b-pluriharmonic

map is pseudoharmonic.
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If φ :M →N is ∂̄b-pluriharmonic, then we have

0 = β(φ)(Z, W )− β(φ)(W, Z)

= dφ(T∇(Z, W ))

= −2Ω(Z, W ) dφ(T )

= 2
√
−1gθ(Z, W ) dφ(T ).(2.12)

If we take Z =W 6= 0, then gθ(Z, W ) 6= 0, thus we have dφ(T ) = 0.

Proposition 2.3. Let (M, T1,0(M), θ) be a pseudo-Hermitian manifold

and (N, h) a Kähler manifold with complex structure JN . Suppose φ :→N

is a ±(J, JN )-holomorphic map. Then φ is ∂̄b-pluriharmonic.

Proof. Without loss of generality, we assume that φ is (J, JN )-

holomorphic. Since JN dφ(T ) = dφ(JT ) = 0, we get that φ is foliated.

Because of the following identity

β(φ)(X, Y )− β(φ)(Y, X) = dφ(T∇(X, Y )) =−2Ω(X, Y ) dφ(T ),

for any X, Y ∈H(M), we get that β(φ) is symmetric on H(M)⊗H(M).

On the other hand, we have

β(φ)(JX, Y ) = ∇hY (dφ(JX))− dφ(∇Y JX)

= ∇hY (JN dφ(X))− dφ(J(∇YX))

= JN∇hY (dφ(X))− JN dφ(∇YX)

= JNβ(φ)(X, Y ),(2.13)

for any X, Y ∈H(M). Thus we have

β(φ)(JX, JY ) = JNβ(φ)(X, JY ) = JNβ(φ)(JY, X)

= −β(φ)(Y, X) =−β(φ)(X, Y ).

Therefore, the (J, JN )-holomorphic map φ is ∂̄b-pluriharmonic.

§3. Commutation relations

Let (M2m+1, T1,0(M), θ) be a pseudo-Hermitian manifold. Let (N, h) be

a Riemannian manifold with the Levi-Civita connection ∇h. Let φ :M →N

be a smooth map. Choose a local admissible coframe {θα} on M and a local

orthonormal coframe field {σi} on N . Throughout this paper we employ the
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index conventions

A, B, C = 0, 1, . . . , m, 1̄, . . . , m̄,

α, β, γ = 1, . . . , m,

i, j, k = 1, . . . , n,

and use the summation convention on repeating indices. The structure

equations for the Levi-Civita connection ∇h of (N, h) in terms of local

orthonormal coframe field {σi} are

dσi =−ηij ∧ σj , ηij + ηji = 0,

(3.1) dηij =−ηik ∧ ηkj + Ωi
j ,

where Ωi
j = (1/2)R̂ijklσ

k ∧ σl are the curvature forms of ∇h.

Under the map φ :M →N , we denote the components of dφ, the covariant

derivatives ∇ dφ and ∇2 dφ with respect to the local frames {θ, θα, θᾱ} and

{σi} by φiA, φiAB and φiABC respectively, that is,

dφ = φiAθ
A ⊗ Ei,

∇ dφ = φiABθ
A ⊗ θB ⊗ Ei,

∇2 dφ = φiABCθ
A ⊗ θB ⊗ θC ⊗ Ei,

where θ0 = θ and {Ei} is the dual vector field of {σi}. Thus we have

(3.2) φ∗σi = φiαθ
α + φiᾱθ

ᾱ + φi0θ.

Hereafter we drop φ∗ in such formulas when their meaning is clear from the

context.

By taking the exterior derivative of (3.2) and making use of the structure

equations (2.1) and (3.1), we get

(3.3) DφiB ∧ θB + 2
√
−1φi0hαβ̄θ

α ∧ θβ̄ − φiαAαβ̄θ
β̄ ∧ θ − φiᾱAᾱβθβ ∧ θ = 0,

where

Dφiα ≡ dφiα − φiβθβα + φjαη
i
j = φiαBθ

B,(3.4)

Dφiᾱ ≡ dφiᾱ − φiβ̄θ
β̄
ᾱ + φjᾱη

i
j = φiᾱBθ

B,(3.5)
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Dφi0 ≡ dφi0 + φj0η
i
j = φi0Bθ

B.(3.6)

Then (3.3) gives

(3.7) φiαβ = φiβα, φiαβ̄ − φ
i
β̄α = 2

√
−1φi0hαβ̄, φi0α − φiα0 = φiβ̄A

β̄
α.

Then the map φ is harmonic if and only if

hαβ̄φiαβ̄ + hᾱβφiᾱβ + φi00 = 0,

and φ is pseudoharmonic if and only if

hαβ̄φiαβ̄ + hᾱβφiᾱβ = 0.

Differentiating the equation (3.4) and using the structure equations in M

and N , we have

DφiαB ∧ θB + 2
√
−1φiα0hλµ̄θ

λ ∧ θµ̄ − φiαβA
β

λ̄
θλ̄

∧ θ − φiαβ̄A
β̄
λθ

λ ∧ θ =−φiβΠβ
α + φjαΩi

j ,(3.8)

where

Dφiαβ = dφiαβ − φiαγθ
γ
β − φ

i
γβθ

γ
α + φjαβη

i
j = φiαβBθ

B,

Dφiαβ̄ = dφiαβ̄ − φ
i
αγ̄θ

γ̄

β̄
− φiγβ̄θ

γ
α + φj

αβ̄
ηij = φiαβ̄Bθ

B,

Dφiα0 = dφiα0 − φiγ0θ
γ
α + φjα0η

i
j = φiα0Bθ

B.

From (3.8), we get the following commutation relations

φiαβγ = φiαγβ − φjαφkβφlγR̂ijkl + 2
√
−1φiβAαγ − 2

√
−1φiγAαβ,(3.9)

φiαβ̄γ̄ = φiαγ̄β̄ − φ
j
αφ

k
β̄φ

l
γ̄R̂

i
jkl + 2

√
−1φiλhαβ̄A

λ
γ̄ − 2

√
−1φiλhαγ̄A

λ
β̄,(3.10)

φiαβγ̄ = φiαγ̄β − φjαφkβφlγ̄R̂ijkl + φiλR
λ
αβγ̄ + 2

√
−1φiα0hβγ̄ ,(3.11)

φiαβ0 = φiα0β − φjαφkβφl0R̂ijkl + φiλh
λµ̄Aαβ,µ̄ − φiαγ̄A

γ̄
β,(3.12)

φiαβ̄0 = φiα0β̄ − φ
j
αφ

k
β̄φ

l
0R̂

i
jkl − φiλhλµ̄Aβ̄µ̄,α − φiαγA

γ

β̄
.(3.13)

Similarly the exterior derivative of (3.6) yields

(3.14)

Dφi0B ∧ θB + 2
√
−1φi00hαβ̄θ

α ∧ θβ̄ − φi0αAαβ̄θ
β̄ ∧ θ − φi0ᾱAᾱβθβ ∧ θ = φj0Ωi

j ,
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where

Dφi0α = dφi0α − φi0βθβα + φj0αη
i
j = φi0αBθ

B,

Dφi0ᾱ = dφi0ᾱ − φi0β̄θ
β̄
ᾱ + φj0ᾱη

i
j = φi0ᾱBθ

B,

Dφi00 = dφi00 + φj00η
i
j = φi00Bθ

B.

We get from (3.14) the commutation relations

φi0αβ = φi0βα − φ
j
0φ

k
αφ

l
βR̂

i
jkl,(3.15)

φi0αβ̄ = φi0β̄α − φ
j
0φ

k
αφ

l
β̄R̂

i
jkl + 2

√
−1φi00hαβ̄,(3.16)

φi00α = φi0α0 − φ
j
0φ

k
0φ

l
αR̂

i
jkl + φi0β̄A

β̄
α.(3.17)

From (3.7), we can derive:

φiαβ̄γ = φiβ̄αγ + 2
√
−1hαβ̄φ

i
0γ ,(3.18)

φiαβ̄γ̄ = φiβ̄αγ̄ + 2
√
−1hαβ̄φ

i
0γ̄ ,(3.19)

φi0αβ = φiα0β + φiγ̄βA
γ̄
α + φiγ̄A

γ̄
α,β,(3.20)

φi0αβ̄ = φiα0β̄ + φiγ̄β̄A
γ̄
α + φiγ̄A

γ̄

α,β̄
.(3.21)

If (N, h) is a Kähler manifold, we choose a local orthonormal coframe field

{ω̃i, ω̃ī = ω̃i} on N . The structure equations for the Levi-Civita connection

of (N, h) in terms of local orthonormal frame {ω̃i, ω̃ī} are

(3.22)
dω̃i =−ω̃ij ∧ ω̃j , ω̃ij + ω̃j̄

ī
= 0,

dω̃ij =−ω̃ik ∧ ω̃kj + Ω̃i
j ,

where Ω̃i
j = R̃i

jkl
ω̃k ∧ ω̃ l̄. Similar to the above discussions, we may obtain

the following commutation formula:

φiαβ̄γ̄ = φiαγ̄β̄ − φ
j
αφ

k
β̄φ

l̄
γ̄R̃

i
jkl̄ + φjαφ

k
γ̄φ

l̄
β̄R̃

i
jkl̄

+ 2
√
−1φiλhαβ̄A

λ
γ̄ − 2

√
−1φiλhαγ̄A

λ
β̄.(3.23)

§4. CR Bochner-type result

Let (M2m+1, T1,0(M), θ) be a compact pseudo-Hermitian manifold and

(N, h) a Riemannian manifold. Let φ : (M, T1,0(M), θ)→ (Nn, h) be a
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smooth map. We choose a local orthonormal admissible coframe {θα} on

M , a local orthonormal coframe field {σi} on N . We still use the notations

of the last section. Denote

dbφ= dφ|H(M) = φiαθ
α ⊗ Ei + φiᾱθ

ᾱ ⊗ Ei,

∇bτ(φ) =∇τ(φ)|H(M) = (φiαᾱβ + φiᾱαβ)θβ ⊗ Ei + (φi
αᾱβ̄

+ φi
ᾱαβ̄

)θβ̄ ⊗ Ei,

where {Ei} is the dual vector field of {σi}.
We first derive the following CR Bochner formula.

Lemma 4.1. Set R̂ijkl = hjpR̂
p
ikl = δjpR̂

p
ikl = R̂jikl. Then

−∆b(eH(φ)) = 2
∑
α,β

(|φiαβ|2 + |φiαβ̄|
2) + 〈〈dbφ,∇bτ(φ)〉〉+ 2φiαφ

i
β̄Rᾱβ

− 2
√
−1m(φiαφ

i
βAᾱβ̄ − φiᾱφiβ̄Aαβ)− 4

√
−1(φiαφ

i
ᾱ0 − φiᾱφiα0)

− 2(φiαφ
j

β̄
φkᾱφ

l
βR̂jikl + φiαφ

j
βφ

k
ᾱφ

l
β̄R̂jikl),(4.1)

where 〈〈·, ·〉〉 is the metric in T ∗(M)⊗ φ−1T (N) induced by gθ and h.

Proof. From the definition of the components of ∇ dφ and ∇2 dφ, it is

easy to get that

−∆b(eH(φ)) = 2(φiαβφ
i
ᾱβ̄ + φiαβ̄φ

i
ᾱβ) + φiαφ

i
ᾱβ̄β + φiᾱφ

i
αββ̄

+ φiαφ
i
ᾱββ̄ + φiᾱφ

i
αβ̄β .

By the commutation relations of Section 3, we have

−∆b(eH(φ)) = 2(φiαβφ
i
ᾱβ̄ + φiαβ̄φ

i
ᾱβ) + φiαφ

i
β̄ᾱβ + φiᾱφ

i
βαβ̄

+ φiαφ
i
βαβ̄ + φiᾱφ

i
β̄αβ − 2

√
−1(φiαφ

i
0ᾱ − φiᾱφi0α)

= 2(φiαβφ
i
ᾱβ̄ + φiαβ̄φ

i
ᾱβ)

+ φiα(φiβ̄βᾱ − φ
j

β̄
φkᾱφ

l
βR̂

i
jkl + φiλ̄R

λ̄
β̄ᾱβ − 2

√
−1φiᾱ0)

+ φiᾱ(φiββ̄α − φ
j
βφ

k
αφ

l
β̄R̂

i
jkl + φiλR

λ
βαβ̄ + 2

√
−1φiα0)

+ φiα(φiββ̄ᾱ − φ
j
βφ

k
ᾱφ

l
β̄R̂

i
jkl + 2

√
−1φiλA

λ
ᾱ − 2m

√
−1φiλA

λ
ᾱ)

+ φiᾱ(φiβ̄βα − φ
j

β̄
φkαφ

l
βR̂

i
jkl − 2

√
−1φiλ̄A

λ̄
α + 2m

√
−1φiλ̄A

λ̄
α)

− 2
√
−1(φiα(φiᾱ0 + φiλA

λ
ᾱ)− φiᾱ(φiα0 + φiλ̄A

λ̄
α))
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= 2(φiαβφ
i
ᾱβ̄ + φiαβ̄φ

i
ᾱβ)

+ (φiαφ
i
β̄βᾱ + φiᾱφ

i
ββ̄α + φiαφ

i
ββ̄ᾱ + φiᾱφ

i
β̄βα)

+ 2φiαφ
i
λ̄Rλᾱ

− 2m
√
−1(φiαφ

i
λAᾱλ̄ − φiᾱφiλ̄Aαλ)

− 4
√
−1(φiαφ

i
ᾱ0 − φiᾱφiα0)

− 2(φiαφ
j

β̄
φkᾱφ

l
βR̂jikl + φiαφ

j
βφ

k
ᾱφ

l
β̄R̂jikl).

The main difficulty in applications of Lemma 4.1 comes from the mixed

term
√
−1(φiαφ

i
ᾱ0 − φiᾱφiα0). It is known that the CR Paneitz operator is a

useful tool to deal with such a term. In [12, 14] the authors introduced the

following differential operator acting on functions

Pf = (fᾱαβ + 2
√
−1mAβαfᾱ)θβ = (Pβf)θβ,

which characterizes CR pluriharmonic functions on M (cf. also [9, Chap-

ter 5]). In [5] Chang and Chiu discussed the CR Paneitz operator

P0f = 4δb(Pf + Pf),

where δb is the divergence operator that takes 1-forms to functions, and they

proved that when m> 2, the corresponding CR Paneitz operator is always

nonnegative, that is∫
M
P0f · fΨ =−4

∫
M
gθ(Pf + Pf, dbf)Ψ > 0.

We generalize the operator P to an operator, still denoted by P , acting

on maps from compact pseudo-Hermitian manifolds into Riemannian man-

ifolds. Define

Pφ= (P jβφ)θβ ⊗ Ej ,

where P jβφ= φjᾱαβ + 2
√
−1mAβαφ

j
ᾱ. From the definition of φiA, φiAB and

φiABC , we can see that the definition of the operator P is independent of

the choice of the local admissible coframe {θα} and local frame field {Ei},
thus the operator P is well-defined.

Lemma 4.2.

√
−1(φiαφ

i
ᾱ0 − φiᾱφiα0) =

1

m
〈〈Pφ+ Pφ, dbφ〉〉 −

1

2m
〈〈dbφ,∇bτ(φ)〉〉

+
√
−1(φiαφ

i
βAᾱβ̄ − φiᾱφiβ̄Aαβ).(4.2)
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Proof. From (3.19), we have

(4.3)
√
−1φi0ᾱ =

1

2m
(φiββ̄ᾱ − φ

i
β̄βᾱ).

Then (3.7) and (4.3) imply

√
−1φiαφ

i
ᾱ0 =

√
−1φiα(φi0ᾱ − φiβAᾱβ̄)

=
1

2m
φiα(φiββ̄ᾱ − φ

i
β̄βᾱ)−

√
−1φiαφ

i
βAᾱβ̄

=
1

2m
P iαφ · φiα −

1

2m
φiαφ

i
β̄βᾱ.

After taking the conjugation of the above formula, we obtain

−
√
−1φiᾱφ

i
α0 =

1

2m
P iαφ · φiᾱ −

1

2m
φiᾱφ

i
ββ̄α.

Consequently, we get

√
−1(φiαφ

i
ᾱ0 − φiᾱφiα0) =

1

2m
(P iαφ · φiα + P iαφ · φiᾱ)

− 1

2m
(φiαφ

i
β̄βᾱ + φiᾱφ

i
ββ̄α)

=
1

2m
〈〈Pφ+ Pφ, dbφ〉〉 −

1

2m
(φiαφ

i
β̄βᾱ + φiᾱφ

i
ββ̄α).(4.4)

On the other hand, one can derive the following:

〈〈dbφ,∇bτ(φ)〉〉 = φiαφ
i
β̄βᾱ + φiαφ

i
ββ̄ᾱ + φiᾱφ

i
β̄βα + φiᾱφ

i
ββ̄α

= (φiαφ
i
β̄βᾱ + φiᾱφ

i
ββ̄α) + 〈〈Pφ+ Pφ, dbφ〉〉

+ 2
√
−1m(φiαφ

i
βAᾱβ̄ − φiᾱφiβ̄Aαβ).

Therefore, we have

φiαφ
i
β̄βᾱ + φiᾱφ

i
ββ̄α = 〈〈dbφ,∇bτ(φ)〉〉 − 〈〈Pφ+ Pφ, dbφ〉〉

− 2
√
−1m(φiαφ

i
βAᾱβ̄ − φiᾱφiβ̄Aαβ).

We complete the proof by substituting the above formula into (4.4).

Thus the CR Bochner formula could be refreshed by the following

corollary.
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Corollary 4.1.

−∆b(eH(φ)) = 2
∑
α,β

(|φiαβ|2 + |φiαβ̄|
2)

+

(
1 +

2

m

)
〈〈dbφ,∇bτ(φ)〉〉+ 2φiαφ

i
β̄Rᾱβ

− 2
√
−1(m+ 2)(φiαφ

i
βAᾱβ̄ − φiᾱφiβ̄Aαβ)

− 4

m
〈〈Pφ+ Pφ,∇bφ〉〉

− 2(φiᾱφ
j
βφ

k
αφ

l
β̄R̂ijkl + φiαφ

j
βφ

k
ᾱφ

l
β̄R̂ijkl).(4.5)

In order to apply the above CR Bochner formula, we want to investigate

the sign of the integral of the term 〈〈Pφ+ Pφ,∇bφ〉〉. We now state two

lemmas.

Lemma 4.3.

√
−1

∫
M

(φiαφ
i
ᾱ0 − φiᾱφiα0)Ψ = 2m

∫
M

(φi0)2Ψ

−
√
−1

∫
M

(φiαφ
i
βAᾱβ̄ − φiᾱφiβ̄Aαβ)Ψ.(4.6)

Proof. From (3.7) we can derive the following equality:
√
−1(φiαφ

i
ᾱ0 − φiᾱφiα0) =

√
−1(φiαφ

i
0ᾱ − φiᾱφi0α)

−
√
−1(φiαφ

i
βAᾱβ̄ − φiᾱφiβ̄Aαβ).

Integrating both sides of the above formula and using the divergence

theorem, we obtain

√
−1

∫
M

(φiαφ
i
ᾱ0 − φiᾱφiα0)Ψ = −

√
−1

∫
M

(φiαᾱφ
i
0 − φ

j
ᾱαφ

i
0)Ψ

−
√
−1

∫
M

(φiαφ
i
βAᾱβ̄ − φiᾱφiβ̄Aαβ)Ψ.

By (3.7), we have

−
√
−1

∫
M

(φiαᾱφ
i
0 − φ

j
ᾱαφ

i
0)Ψ = 2m

∫
M

(φi0)2Ψ.

The proof is completed by combining the above two formulas.
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Lemma 4.4.

2

∫
M
φiαφ

i
β̄RᾱβΨ = −2

∫
M

∑
α,β

(|φiαβ|2 − |φiαβ̄|
2)Ψ

+ 2
√
−1m

∫
M

(φiαφ
i
ᾱ0 − φiᾱφiα0)Ψ

+ 2

∫
M
φiαφ

j
ᾱφ

k
β̄φ

l
βR̂jiklΨ.(4.7)

Proof. From (3.11), we have

φiαββ̄ = φiαβ̄β − φ
j
αφ

k
βφ

l
β̄R̂jikl + φiλR

λ
αββ̄ + 2

√
−1mφiα0.

Hence

φiᾱφ
i
αββ̄ − φ

i
ᾱφ

i
αβ̄β + φiαφ

i
ᾱβ̄β − φ

i
αφ

i
ᾱββ̄

= 2φiαφ
i
β̄Rᾱβ − 2φiαφ

j
ᾱφ

k
β̄φ

l
βR̂jikl − 2

√
−1m(φiαφ

i
ᾱ0 − φiᾱφiα0).

Using the divergence theorem, we derive∫
M

(φiᾱφ
i
αββ̄ − φ

i
ᾱφ

i
αβ̄β + φiαφ

i
ᾱβ̄β − φ

i
αφ

i
ᾱββ̄)Ψ

=−2

∫
M

∑
α,β

(|φiαβ|2 − |φiαβ̄|
2)Ψ.

Consequently

−2

∫
M

∑
α,β

(|φiαβ|2 − |φiαβ̄|
2)Ψ = 2

∫
M
φiαφ

i
β̄RᾱβΨ− 2

∫
M
φiαφ

j
ᾱφ

k
β̄φ

l
βR̂jiklΨ

− 2
√
−1m

∫
M

(φiαφ
i
ᾱ0 − φiᾱφiα0)Ψ.

This completes the proof of Lemma 4.4.

We can establish the nonnegative property of the generalized operator

P under suitable conditions. Recall that a Riemannian manifold (Nn, h) is

said to have nonpositive Hermitian curvature if

(4.8) h(R̂(X, Y )Y, X) 6 0,

for any X, Y ∈ T (N)⊗ C (cf. [19]).
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Theorem 4.1. Let (M2m+1, T1,0(M), θ) be a compact pseudo-Hermitian

manifold with m> 2 and (N, h) a Riemannian manifold with nonpositive

Hermitian curvature. Suppose φ :M →N is a smooth map, then

−
∫
M
〈〈Pφ+ Pφ, dbφ〉〉Ψ > 0.

Proof. Integrating (4.1) on M and substituting (4.7) into it, we have

0 = 4

∫
M

∑
α,β

|φiαβ̄|
2Ψ−

∫
M
|τ(φ)|2Ψ + 2

√
−1(m− 2)

∫
M

(φiαφ
i
ᾱ0 − φiᾱφiα0)Ψ

− 2
√
−1m

∫
M

(φiαφ
i
βAᾱβ̄ − φiᾱφiβ̄Aαβ)Ψ

− 2

∫
M

(φiᾱφ
j
βφ

k
αφ

l
β̄R̂jikl + φiαφ

j
βφ

k
ᾱφ

l
β̄R̂jikl − φ

i
αφ

j
ᾱφ

k
β̄φ

l
βR̂jikl)Ψ

= 4

∫
M

∑
α,β

|φiαβ̄|
2Ψ−

∫
M
|τ(φ)|2Ψ + 2

√
−1(m− 2)

∫
M

(φiαφ
i
ᾱ0 − φiᾱφiα0)Ψ

− 2
√
−1m

∫
M

(φiαφ
i
βAᾱβ̄ − φiᾱφiβ̄Aαβ)Ψ− 4

∫
M
φiαφ

j
βφ

k
ᾱφ

l
β̄R̂jiklΨ,

(4.9)

where the second equality follows from the Bianchi identity. Integrating both

sides of (4.2) and using the divergence theorem, we get

√
−1

∫
M

(φiαφ
i
ᾱ0 − φiᾱφiα0)Ψ =

1

m

∫
M
〈〈Pφ+ Pφ, dbφ〉〉Ψ +

1

2m

∫
M
|τ(φ)|2Ψ

+
√
−1

∫
M

(φiαφ
i
βAᾱβ̄ − φiᾱφiβ̄Aαβ)Ψ.(4.10)

Calculating (4.10)× 2(m− 1)− (4.6)× 2 and substituting the result into

(4.9), we have

0 = 4

∫
M

∑
α,β

|φiαβ̄|
2Ψ− 1

m

∫
M
|τ(φ)|2Ψ− 4m

∫
M

(φi0)2Ψ

+
2(m− 1)

m

∫
M
〈〈Pφ+ Pφ, dbφ〉〉Ψ− 4

∫
M
φiαφ

j
βφ

k
ᾱφ

l
β̄R̂jiklΨ.(4.11)

Since ∑
α,β

|φiαβ̄|
2 >

1

m

∣∣∣∑ φiαᾱ

∣∣∣2 =
1

4m
|τ(φ)|2 +m(φi0)2,
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we conclude

(4.12) −
∫
M
〈〈Pφ+ Pφ, dbφ〉〉Ψ >− 2m

m− 1

∫
M
φiαφ

j
βφ

k
ᾱφ

l
β̄R̂jiklΨ > 0.

Combing this theorem with Corollary 4.1, we obtain the following CR

Bochner-type result.

Theorem 4.2. Let (M, T1,0(M), θ) be a compact pseudo-Hermitian

manifold with m> 2 and (N, h) a Riemannian manifold with nonpositive

Hermitian curvature. Let φ :M →N be a pseudoharmonic map. Suppose

that

(4.13) (Ric− (m+ 2)Tor)(Z, Z) > 0,

for any Z ∈ Γ∞(T1,0M), then φiαβ = φi
αβ̄

= 0 for any α, β. In particular, φ

is ∂̄b-pluriharmonic.

Proof. From (4.5), we have

0 = 2

∫
M

∑
α,β

(|φiαβ|2 + |φiαβ̄|
2)Ψ−

(
1 +

2

m

) ∫
M
|τ(φ)|2Ψ

− 4

m

∫
M
〈〈Pφ+ Pφ, dbφ〉〉Ψ

+ 2

∫
M

(Ric− (m+ 2)Tor)((∇bφi)C, (∇bφi)C)Ψ

− 2

∫
M

(φiᾱφ
j
βφ

k
αφ

l
β̄R̂jikl + φiαφ

j
βφ

k
ᾱφ

l
β̄R̂jikl)Ψ,

where (∇bφi)C = φiαTα. By Theorem 4.1, the third term on the right-hand

side of the preceding equation is nonnegative. Because of the curvature

condition of N , the last term on the right-hand side is nonnegative. Since φ

is pseudoharmonic, from (4.13) we get

0 >
∫
M

∑
α,β

(|φiαβ|2 + |φiαβ̄|
2)Ψ.

Hence φiαβ = φi
αβ̄

= 0. From φi
αβ̄

= 0, we see that φ is ∂̄b-pluriharmonic.

Corollary 4.2. If the manifold M in Theorem 4.2 is Sasakian and

Ric(Z, Z) > 0, then we have β(φ)≡ 0.
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§5. Foliated results of harmonic and pseudoharmonic maps

Let φ : (M2m+1, T1,0(M), θ)→ (Nn, h) be a smooth map from a pseudo-

Hermitian manifold into a Riemannian manifold. To obtain the foliated

results for the map φ :M →N , we consider the sublaplacian and the

Laplacian of the square norm of dφ(T ), respectively.

We choose a local orthonormal admissible coframe {θα} on M and a

local orthonormal coframe field {σi} on N . By the commutation relations

of Section 3, we have

Lemma 5.1.

−1

2
∆b|dφ(T )|2 = 2

∑
α

|φi0α|2 + 〈〈dφ(T ),∇T τ(φ)〉〉+ 2φi0φ
j
αφ

k
ᾱφ

l
0R̂jikl

+ 2(φi0φ
i
βAβ̄ᾱ,α + φi0φ

i
β̄Aβα,ᾱ + φi0φ

i
αβAβ̄ᾱ + φi0φ

i
ᾱβ̄Aβα);(5.1)

−1

2
∆|dφ(T )|2 = 2

∑
α

|φi0α|2 + |φi00|2

+ 〈〈dφ(T ),∇T τ θ(φ)〉〉+ 2φi0φ
j
αφ

k
ᾱφ

l
0R̂jikl

+ 2(φi0φ
i
βAβ̄ᾱ,α + φi0φ

i
β̄Aβα,ᾱ + φi0φ

i
αβAβ̄ᾱ + φi0φ

i
ᾱβ̄Aβα).(5.2)

Proof. Using (3.21), (3.13), (3.7) and their complex conjugate, we

compute

−1
2∆b|dφ(T )|2 = (φi0φ

i
0α),ᾱ +(φi0φ

i
0ᾱ),α

= φi0ᾱφ
i
0α + φi0φ

i
0αᾱ + φi0αφ

i
0ᾱ + φi0φ

i
0ᾱα

= 2φi0αφ
i
0ᾱ + φi0φ

i
α0ᾱ + φi0φ

i
β̄ᾱAβα + φi0φ

i
β̄Aβα,ᾱ

+ φi0φ
i
ᾱ0α + φi0φ

i
βαAᾱβ̄ + φi0φ

i
βAβ̄ᾱ,α

= 2φi0αφ
i
0ᾱ + φi0(φiαᾱ0 + φjαφ

k
ᾱφ

i
0R̂jikl + φiβAᾱβ̄,α + φiαβAβ̄ᾱ)

+ φi0(φiᾱα0 + φjᾱφ
k
αφ

l
0R̂jikl + φiβ̄Aαβ,ᾱ + φiᾱβ̄Aβα)

+ φi0φ
i
β̄ᾱAβα + φi0φ

i
β̄Aβα,ᾱ + φi0φ

i
βαAᾱβ̄ + φi0φ

i
βAβ̄ᾱ,α

= 2φi0αφ
i
0ᾱ + φi0(φiαᾱ0 + φiᾱα0) + 2φi0φ

j
αφ

k
ᾱφ

l
0R̂jikl

+ 2φi0φ
i
βAβ̄ᾱ,α + 2φi0φ

i
β̄Aβα,ᾱ + 2φi0φ

i
αβAβ̄ᾱ + 2φi0φ

i
ᾱβ̄Aβα.

Since the formula for −(1/2)∆|dφ(T )|2 can be derived similarly, we omit

the details.
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Lemma 5.2. Let (M2m+1, T1,0(M), θ) be a compact pseudo-Hermitian

manifold and (N, h) a Riemannian manifold. Let φ :M →N be a smooth

map. If the second fundamental form satisfies

β(φ)(T, X) = 0 for any X ∈H(M),

then φ is foliated.

Proof. By the integration by parts and the commutation formulas (3.7),

we have

0 =
√
−1

∫
M

(φiαφ
i
0ᾱ − φiᾱφi0α)Ψ = −

√
−1

∫
M

(φiαᾱφ
i
0 − φiᾱαφi0)Ψ

= m

∫
M
|φi0|2Ψ.

Thus we have φi0 = 0, that is, dφ(T ) = 0.

First, we prove the following result by the moving frame method.

Theorem 5.1. Let (M2m+1, T1,0(M), θ) be a compact Sasakian man-

ifold and (N, h) be a Riemannian manifold with nonpositive curvature.

Suppose φ :M →N is a pseudoharmonic map. Then φ is foliated.

Proof. Since φ is pseudoharmonic, we have τ(φ) = 0. The Sasakian

condition for M implies that Aαβ = 0, for any α, β. Thus (5.1) becomes

−1

2
∆b|dφ(T )|2 = 2

∑
α

|φi0α|2 + 2φi0φ
j
αφ

k
0φ

l
ᾱR̂jikl.

Since the sectional curvature of N is nonpositive, we take Tα = (1/
√

2)(eα −
iJeα) and Tᾱ = (1/

√
2)(eα + iJeα) and compute the following curvature

term to find

φi0φ
j
αφ

k
ᾱφ

l
0R̂jikl = h(R̂(dφ(Tᾱ), dφ(T )) dφ(Tα), dφ(T ))

= 1
2h(R̂(dφ(eα + iJeα), dφ(T )) dφ(eα − iJeα), dφ(T ))

= 1
2 [h(R̂(dφ(eα), dφ(T )) dφ(eα), dφ(T ))

+ h(R̂(dφ(Jeα), dφ(T )) dφ(Jeα), dφ(T ))]

> 0.(5.3)
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Hence we have

(5.4) −1

2
∆b|dφ(T )|2 > 2

∑
α

|φi0α|2.

The divergence theorem yields

φi0α = φi0ᾱ = 0.

The fact that φ is foliated can be easily obtained by Lemma 5.2.

The next result gives another proof of Petit’s result.

Theorem 5.2. (cf. [16]) Let (M2m+1, T1,0(M), θ) be a compact

Sasakian manifold and (N, h) be a Riemannian manifold with nonpositive

curvature. Suppose φ :M →N is a harmonic map. Then φ is foliated.

Proof. Since φ is harmonic, we have τ θ(φ) = 0. By (5.2), we get

(5.5) −1

2
∆|dφ(T )|2 > 2

∑
α

|φi0α|2 + |φi00|2.

Using the divergence theorem, we derive φi00 = φi0α = φi0ᾱ = 0. By Lemma 5.2

again, we find that the map φ is foliated.

Remark 5.1. From Theorems 5.1 and 5.2, we get that if M is a compact

Sasakian manifold and N is a Riemannian manifold with nonpositive

curvature, then the map φ :M →N is harmonic if and only if it is

pseudoharmonic.

Now we use a technique in [17] to treat harmonic maps or pseudoharmonic

maps from complete noncompact pseudo-Hermitian manifolds. Here the

completeness of a pseudo-Hermitian manifold is with respect to the Webster

metric. Let r be the Riemannian distance on the complete noncompact

pseudo-Hermitian manifold (M, T1,0(M), θ) from a fixed point x0 ∈M . Set

BR = {x ∈M : r(x)<R}.
For a measurable function u defined on R, we use the notation u /∈

L1(+∞) to mean that |u| /∈ L1((K,+∞)) for any positive number K.
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Proposition 5.1. Let (M, T1,0(M), θ) be a complete noncompact

Sasakian manifold of dimension 2m+ 1 and (N, h) be a Riemannian man-

ifold with nonpositive curvature. Suppose φ :M →N is either a harmonic

map or a pseudoharmonic map. If φ satisfies

(5.6)

(∫
∂Br

|dφ(T )|2H
)−1

/∈ L1(+∞),

where H is the 2m-dimensional Hausdorff measure on ∂Br, which coincides

with the Riemannian measure induced on the regular part of ∂Br, then the

second fundamental form satisfies β(φ)(T, X) = 0 for any X ∈H(M).

Proof. We consider only the case φ is a harmonic map, because the other

case is analogous. By the divergence theorem, (5.5) gives∫
Br

(
2
∑
α

|φi0α|2 + |φi00|2
)

Ψ 6 −1

2

∫
Br

∆|dφ(T )|2Ψ

=
1

2

∫
∂Br

gθ

(
∇|dφ(T )|2, ∂

∂r

)
H.(5.7)

Here the quantity
∑

α |φi0α|2 is well-defined, since it is independent of

the choice of the local frame fields on M and N . Recalling ∇|dφ(T )|2 =

2
∑

α(φi0φ
i
0αTᾱ + φi0φ

i
0ᾱTα) + 2φi0φ

i
00T we have

1

2

∫
∂Br

gθ

(
∇|dφ(T )|2, ∂

∂r

)
H

6

{∫
∂Br

|φi0|2H
}1/2

{∫
∂Br

(
2
∑
α

|φi0α|2 + |φi00|2
)
H

}1/2

.(5.8)

Let

ζ(r) =

∫
Br

(
2
∑
α

|φi0α|2 + |φi00|2
)

Ψ.

Then by the co-area formula, we get

ζ ′(r) =
d

dr

{∫ r

0

∫
∂Bt

(
2
∑
α

|φi0α|2 + |φi00|2
)
H dt

}

=

∫
∂Br

(
2
∑
α

|φi0α|2 + |φi00|2
)
H.
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Putting together (5.7) and (5.8) and squaring we finally get

(5.9) ζ(r)2 6

(∫
∂Br

|φi0|2H
)
ζ ′(r).

Next, we reason by contradiction and we suppose φi0α 6= 0 for some α. It

follows that there exists a R> 0 sufficiently large such that ζ(r)> 0, for

every r >R. Fix such an R. From (5.9) we then derive

ζ(R)−1 > ζ(R)−1 − ζ(r)−1 >
∫ r

R

dt∫
∂Bt
|φi0|2H

,

and letting r→+∞ we contradict (5.6).

Corollary 5.1. Let (M, T1,0(M), θ) be a complete noncompact

Sasakian manifold and (N, h) be a Riemannian manifold with nonpositive

curvature. Suppose φ :M →N is either a harmonic map or a pseudohar-

monic map. If φ satisfies

(5.10)

∫
Br

|dφ(T )|2Ψ 6 Cr2,

then the second fundamental form satisfies β(φ)(T, X) = 0 for any X ∈
H(M).

Proof. Set

h(r) =

∫
Br

|dφ(T )|2Ψ.

So, by the co-area formula, we have

h′(r) =

∫
∂Br

|dφ(T )|2H.

From of [18, Proposition 3.1], we know that

r

h(r)
/∈ L1(+∞) implies

1

h′(r)
/∈ L1(+∞).

Suppose that φ satisfies (5.10), this implies

r

h(r)
/∈ L1(+∞).

Thus we deduce 1/h′(r) /∈ L1(+∞), that is, φ satisfies (5.6). Hence we prove

the corollary.
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Proposition 5.2. Let (M, T1,0(M), θ) be a complete noncompact

pseudo-Hermitian manifold and (N, h) a Riemannian manifold. Let φ :

M →N be a smooth map. If the second fundamental form satisfies

β(φ)(T, X) = 0 for any X ∈H(M) and

(5.11)

(∫
∂Br

eH(φ)H
)−1

/∈ L1(+∞),

then φ is foliated.

Proof. By the property of β(φ) and the divergence theorem, we have

m

∫
Br

|φi0|2Ψ = −
√
−1

∫
Br

δb(φ
i
0φ

i
αθ

α − φi0φiᾱθᾱ)Ψ

6 2

{∫
∂Br

|φi0|2H
}1/2

{∫
∂Br

∑
α

|φiα|2H

}1/2

.

Set η(r) =
∫
Br
|φi0|2Ψ. Then we have

m2

4
η(r)2 6

(∫
∂Br

eH(φ)H
)
η′(r).

If φ is not foliated, then for r > R,

η(R)−1 − η(r)−1 >
∫ r

R

dt∫
∂Bt

eH(φ)H
,

where R is large enough such that η(R)> 0, and letting r→+∞ we

contradict (5.11).

Theorem 5.3. Let (M2m+1, T1,0(M), θ) be a complete noncompact

Sasakian manifold and (N, h) be a Riemannian manifold with nonpositive

curvature. Suppose φ :M →N is either a harmonic map or a pseudohar-

monic map. If φ satisfies

(5.12)

(∫
∂Br

e(φ)H
)−1

/∈ L1(+∞),

where e(φ) = (1/2)tracegθ(φ
∗h) is the energy density of φ, then φ is a foliated

map.
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Proof. Since e(φ) = eH(φ) + (1/2)|dφ(T )|2, the condition (5.12) implies

both (5.6) and (5.11). It follows from Propositions 5.1 and 5.2 that φ is

foliated.

Corollary 5.2. Let (M, T1,0(M), θ) be a complete noncompact

Sasakian manifold and (N, h) be a Riemannian manifold with nonpositive

curvature. Suppose φ :M →N is either a harmonic map or a pseudohar-

monic map. If φ satisfies

(5.13)

∫
Br

e(φ)Ψ 6 Cr2,

then φ is foliated.

§6. ∂̄b-pluriharmonicity results

In this section, we give some conditions to ensure the ∂̄b-pluriharmonicity

for both harmonic and pseudoharmonic maps from either a compact

Sasakian manifold or a complete Sasakian manifold. Recall that Petit [16]

gave similar results for harmonic maps from a compact Sasakian manifold

by using tools of spinorial geometry, although he did not mention the notion

of ∂̄b-pluriharmonicity. The moving frame method, which enables us to treat

both cases of harmonic maps and pseudoharmonic maps, seems closer to the

classical methods in differential geometry. Let φ : (M2m+1, T1,0(M), θ)→
(Nn, h) be a smooth map from a pseudo-Hermitian manifold M into a

Riemannian manifold N . Inspired by Sampson’s technique (cf. [6, 19]), we

introduce a global 1-form on M given by

(6.1) θW1 = φiαφ
i
βᾱθ

β + φiᾱφ
i
β̄αθ

β̄,

in terms of the local orthonormal admissible coframe {θα} on M and the

local orthonormal coframe field {σi} on N .

Lemma 6.1.

δb(θW1) = 2
∑
α,β

|φiαβ̄|
2 + φiαφ

i
ββ̄ᾱ + φiᾱφ

i
β̄βα − 4m(φi0)2 − 2φiαφ

j
βφ

k
ᾱφ

l
β̄R̂jikl

− 2
√
−1(m− 1)(φiαφ

i
βAᾱβ̄ − φiᾱφiβ̄Aαβ).(6.2)
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Proof. By the definition of the divergence of 1-forms on M , we have

δb(θW1) = (φiαφ
i
βᾱ),β̄ +(φiᾱφ

i
β̄α),β̄

= φiαβ̄φ
i
βᾱ + φiαφ

i
βᾱβ̄ + φiᾱβφ

i
β̄α + φiᾱφ

i
β̄αβ .

Using (3.7), (3.10) and their complex conjugate, we get

δb(θW1) = φiαβ̄(φiᾱβ + 2
√
−1φi0δαβ) + φiᾱβ(φiαβ̄ − 2

√
−1φi0δαβ)

+ φiα(φiββ̄ᾱ − φ
j
βφ

k
ᾱφ

l
β̄R̂jikl + 2

√
−1δαβφ

i
λAλ̄β̄ − 2m

√
−1φiλAλ̄ᾱ)

× φiᾱ(φiβ̄βα − φ
j

β̄
φkαφ

l
βR̂jikl − 2

√
−1δαβφ

i
λ̄Aλβ + 2m

√
−1φiλ̄Aλα)

= 2φiαβ̄φ
i
ᾱβ + 2

√
−1φi0(φiαᾱ − φiᾱα) + φiαφ

i
ββ̄ᾱ + φiᾱφ

i
β̄βα

− 2φiαφ
j
βφ

k
ᾱφ

l
β̄R̂jikl − 2

√
−1(m− 1)(φiαφ

i
λAλ̄ᾱ − φiᾱφiλ̄Aλα)

= 2φiαβ̄φ
i
ᾱβ − 4m(φi0)2 + φiαφ

i
ββ̄ᾱ + φiᾱφ

i
β̄βα − 2φiαφ

j
βφ

k
ᾱφ

l
β̄R̂jikl

− 2
√
−1(m− 1)(φiαφ

i
βAᾱβ̄ − φiᾱφiβ̄Aαβ).

Theorem 6.1. Let (M2m+1, T1,0(M), θ) be a compact Sasakian mani-

fold of and (Nn, h) be a Riemannian manifold with nonpositive Hermitian

curvature. Suppose φ :M →N is either a harmonic map or a pseudohar-

monic map. Then φ is ∂̄b-pluriharmonic and

(6.3)
n∑

i,j,k,l

φiαφ
j
βφ

k
ᾱφ

l
β̄R̂ijkl = 0, for any α, β.

Proof. The fact that N has a nonpositive Hermitian curvature implies

that the sectional curvature of N is nonpositive. According to Theorems 5.1

and 5.2, we know that the condition that φ is harmonic is equivalent to

that φ is pseudoharmonic. Besides, we get that the map is foliated in this

circumstance. By (3.7), we have φi
αβ̄

= φi
β̄α

for any α, β. Thus we have

τ(φ) = 2φi
ββ̄
Ei, where {Ei} is the dual vector field of {σi}.

From (6.2), we get

δb(θW1) = 2
∑
α,β

|φiαβ̄|
2 +

1

2
〈〈dbφ,∇bτ(φ)〉〉 − 2φiαφ

j
βφ

k
ᾱφ

l
β̄R̂jikl

= 2
∑
α,β

|φiαβ̄|
2 − 2φiαφ

j
βφ

k
ᾱφ

l
β̄R̂jikl.(6.4)
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Since N has nonpositive Hermitian curvature, we have

(6.5) φiαφ
j
βφ

k
ᾱφ

l
β̄R̂jikl 6 0 for any fixed α, β.

By the divergence theorem, we derive from (6.4) that φ is a ∂̄b-pluriharmonic

map with property (6.3).

Then consider the case that the target manifold (N, h) is a Kähler

manifold. The curvature operator Q̃ of N is defined by

〈Q̃(X ∧ Y ), Z ∧W 〉= 〈R̃(X, Y )W, Z〉

for any X, Y, Z, W ∈ T (N). The complex extension of Q̃ to ∧2TC(N) is also

denoted by Q̃. Let us set

〈〈Q̃(X ∧ Y ), Z ∧W 〉〉= 〈Q̃(X ∧ Y ), Z ∧W 〉.

The Kähler identity of N yields

Q̃|∧(2,0)TC(N) = Q̃|∧(0,2)TC(N) = 0.

Set

Q̃(1,1) = Q̃ : ∧(1,1)TC(N)→∧(1,1)TC(N).

Definition 6.1. (cf. [20]) Let (N, h) be a Kähler manifold. The curva-

ture tensor of N is said to be strongly negative (resp. strongly seminegative)

if

〈〈Q̃(1,1)(ξ), ξ〉〉= 〈Q̃(1,1)(ξ), ξ〉< 0 (resp. 60)

for any ξ = (Z ∧W )(1,1) 6= 0, Z, W ∈ Γ∞(TC(N)).

Let φ : (M2m+1, T1,0(M), θ)→ (Nn, h) be a smooth map from a pseudo-

Hermitian manifold M into a Kähler manifold N . Similar to (6.1) (cf. [19]

and [6]), we introduce a global 1-form on M defined as

(6.6) θW2 = φīαφ
i
ᾱβθ

β + φiᾱφ
ī
αβ̄θ

β̄,

in terms of the local orthonormal admissible coframe {θα} on M and the

local orthonormal frame field {Ẽi} on N . By (3.7), (3.23) and their complex
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conjugate, we have

δb(θW2) = φīαβ̄φ
i
βᾱ + φīαφ

i
βᾱβ̄ + φiᾱβφ

ī
β̄α + φiᾱφ

ī
β̄αβ̄

= φīαβ̄(φiᾱβ + 2
√
−1δαβφ

i
0) + φiᾱβ(φīαβ̄ − 2

√
−1δαβφ

ī
0)

+ φīα(φiββ̄ᾱ − φ
j
βφ

k
ᾱφ

l̄
β̄R̃jīkl̄ + φjβφ

k
β̄φ

l̄
ᾱR̃jīkl̄

+ 2
√
−1δαβφ

i
λAλ̄β̄ − 2

√
−1mφiλAλ̄ᾱ)

+ φiᾱ(φīβ̄βα − φ
j̄

β̄
φk̄αφ

l
βR̃j̄ik̄l + φj̄

β̄
φk̄βφ

l
αR̃j̄ik̄l

− 2
√
−1δαβφ

ī
λ̄Aλβ + 2

√
−1mφīλ̄Aλα)

= 2
∑
α,β

|φiαβ̄|
2 + φīαφ

i
ββ̄ᾱ + φiᾱφ

ī
β̄βα − 2

√
−1(φi0φ

ī
αᾱ − φī0φiᾱα)

− 〈〈Q̃(φα ∧ φβ), φα ∧ φβ〉〉

− 2
√
−1(m− 1)(φīαφ

i
βAᾱβ̄ − φiᾱφīβ̄Aαβ).(6.7)

Theorem 6.2. Let φ : (M, T1,0(M), θ)→ (N, h) be a harmonic or pseu-

doharmonic map from a compact Sasakian manifold into a Kähler manifold

with strongly seminegative curvature. Then φ is a ∂̄b-pluriharmonic map

and

(6.8) 〈〈Q̃(φα ∧ φβ), φα ∧ φβ〉〉= 0, for any α, β

where φα = dφ(Tα).

Proof. Since strongly seminegative curvature implies nonpositive sec-

tional curvature, we get that φ must be pseudoharmonic and foliated. Then

we have φi
αβ̄

= φi
β̄α

and φi0 = 0. So we get τ(φ) = 2(φi
ββ̄
Ẽi + φī

ββ̄
Ẽī) = 0, that

is, φi
ββ̄

= φī
ββ̄

= 0. As M is Sasakian, by (6.7) we have

(6.9) δb(θW2) = 2
∑
α,β

|φiαβ̄|
2 − 〈〈Q̃(φα ∧ φβ), φα ∧ φβ〉〉.

The divergence theorem and the curvature condition of N imply that φ is

∂̄b-pluriharmonic and 〈〈Q̃(φα ∧ φβ), φα ∧ φβ〉〉= 0, for any α, β.

Now we attempt to give some conditions to ensure ∂̄b-pluriharmonicity for

harmonic and pseudoharmonic maps from complete noncompact Sasakian

manifolds.
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Theorem 6.3. Let (M, T1,0(M), θ) be a complete noncompact Sasakian

manifold and (N, h) be a Riemannian manifold with nonpositive Hermitian

curvature. Suppose φ :M →N is either a harmonic map or a pseudohar-

monic map. If φ satisfies

(6.10)

(∫
∂Br

e(φ)H
)−1

/∈ L1(+∞),

then φ is a ∂̄b-pluriharmonic map with the property (6.3).

Proof. By Theorem 5.3, we get that φ is foliated and pseudoharmonic.

From (6.4) and (6.5), we have

δb(θW1) > 2
∑
α,β

|φiαβ̄|
2.

Using the divergence theorem, we get

(6.11)

∫
∂Br

θW1

(
∂

∂r

)
H> 2

∫
Br

∑
α,β

|φiαβ̄|
2Ψ.

On the other hand, by the definition of θW1 , we have

(6.12)∫
∂Br

θW1

(
∂

∂r

)
H6 2

{∫
∂Br

eH(φ)H
}1/2


∫
∂Br

∑
α,β

|φiαβ̄|
2H


1/2

.

Putting together (6.11) and (6.12) and squaring we finally get

(6.13) γ(r)2 6

(∫
∂Br

eH(φ)H
)
γ′(r),

where we have set

γ(r) =

∫
Br

∑
α,β

|φiαβ̄|
2Ψ.

Next suppose that φ is not ∂̄b-pluriharmonic. Then there exists a R> 0

sufficiently large such that γ(R)> 0. For any r >R, from (6.13) we can

deduce

γ(R)−1 − γ(r)−1 >
∫ r

R

dt∫
∂Bt

eH(φ)H
,

and letting r→+∞ we contradict (6.10). Hence φ is ∂̄b-pluriharmonic and

θW1 ≡ 0. Then (6.2) implies that φ satisfies (6.3).
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Corollary 6.1. Let (M, T1,0(M), θ) be a complete noncompact

Sasakian manifold and (N, h) be a Riemannian manifold with nonpositive

Hermitian curvature. Suppose φ :M →N is either a harmonic map or a

pseudoharmonic map. If φ satisfies∫
Br

e(φ)Ψ 6 Cr2,

then φ is a ∂̄b-pluriharmonic map with the property (6.3).

Theorem 6.4. Let φ : (M, T1,0(M), θ)→ (N, h) be a harmonic or pseu-

doharmonic map from a complete noncompact Sasakian manifold into a

Kähler manifold with strongly seminegative curvature. If φ satisfies

(6.14)

(∫
∂Br

e(φ)H
)−1

/∈ L1(+∞),

then φ is a ∂̄b-pluriharmonic map with the property (6.8).

Proof. Obviously, the map φ is foliated, and hence φi
αβ̄

= φi
β̄α

. It follows

from (6.7) that

2

∫
Br

∑
α,β

|φiαβ̄|
2Ψ 6

∫
Br

δb(θW2)Ψ =

∫
∂Br

θW2

(
∂

∂r

)
H.

By the definition of θW2 , we have

∫
∂Br

θW2

(
∂

∂r

)
H6 2

{∫
∂Br

eH(φ)H
}1/2


∫
∂Br

∑
α,β

|φiᾱβ|2H


1/2

.

Set

ρ(r) =

∫
Br

∑
α,β

|φiᾱβ|2Ψ.

Then

(6.15) ρ(r)2 6 ρ′(r)

(∫
∂Br

eH(φ)H
)
.

Suppose that φ is not ∂̄b-pluriharmonic, then there exists a R> 0 sufficiently

large such that ρ(r)> 0 for any r > R. Fix such a R. From (6.15) we deduce
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the following

ρ(R)−1 − ρ(r)−1 >
∫ r

R

dt∫
∂Br

eH(φ)H
,

and letting r→+∞ we contradict (6.14). Hence φ is ∂̄b-pluriharmonic and

θW2 ≡ 0. Then (6.7) implies that φ satisfies (6.8).

Corollary 6.2. Let φ : (M, T1,0(M), θ)→ (N, h) be a harmonic or

pseudoharmonic map from a complete noncompact Sasakian manifold into

a Kähler manifold with strongly seminegative curvature. If φ satisfies∫
Br

e(φ)Ψ 6 Cr2,

then φ is a ∂̄b-pluriharmonic map with the property (6.8).

§7. Siu–Sampson type results

In this section, we establish some results of Siu–Sampson type for

both harmonic maps and pseudoharmonic maps from compact Sasakian

manifolds. Similar to the results for harmonic maps from Kähler manifolds

in [3, 19, 20], we may derive (J, JN )-holomorphicity under rank conditions

for harmonic and pseudoharmonic maps from compact Sasakian manifolds

by analysing the curvature equations (6.8). Note that Petit [16] also

gave the (J, JN )-holomorphicity results for harmonic maps from Sasakian

manifolds using spinorial geometry. As mentioned previously, our method is

different from his. Besides recapturing Petit’s results by using the moving

frame method, we also add some new results which include the results for

pseudoharmonic maps, the conic extension of harmonic maps from Sasakian

manifolds and a unique continuation theorem for (J, JN )-holomorphicity.

First, we consider the case where the target manifold N is a locally

symmetric space of noncompact type (cf. [3, 19]). The universal covering

manifold of N is a symmetric space G/K, where K is a connected and

closed subgroup of the noncompact connected Lie group G, and G/K is

given the invariant metric determined by the Killing form 〈, 〉 on g. If the

corresponding Cartan decomposition of the Lie algebra of G is g = k + p,

then the real tangent space of N at any point can be identified with p. The

Killing form 〈, 〉 is positive definite on p and negative definite on k. The

curvature tensor of N is given by

R̂(X, Y )Z =−[[X, Y ], Z],
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for any X, Y, Z ∈ p, and the Hermitian curvature of N is given by

(7.1) 〈R̂(X, Y )Y, X〉= 〈[X, Y ], [X, Y ]〉,

which is nonpositive, and zero if and only if [X, Y ] = 0, because of [p, p]⊂ k.

By Theorem 6.1, we get

(7.2) [dφ(Tα), dφ(Tβ)] = 0,

for any α, β. Thus we have

Proposition 7.1. Let (M, T1,0(M), θ) be a compact Sasakian manifold

and N a locally symmetric space of noncompact type. If φ :M →N is either

a harmonic map or a pseudoharmonic map, then φ is ∂̄b-pluriharmonic and

for any x ∈M , dφx maps T1,0(M)x onto an abelian subspace W of p⊗ C.

Under the assumption of Proposition 7.1, the image under dφx of real

tangent space Tx(M) is the subspace of real points of space W +W ⊂
TC
φ(x)(N), so that

dimR dφx(Tx(M)) = dimC(W +W ) 6 2 dimC W.

If G/K is a Hermitian symmetric space, then corresponding to any

invariant complex structure on G/K we have the decomposition

p⊗ C = p1,0 ⊕ p0,1,

and the integrability condition [p1,0, p1,0]⊂ p1,0 is equivalent, in view of

[p, p]⊂ k, to [p1,0, p1,0] = 0, thus p1,0 is an abelian subalgebra of p⊗ C.

Lemma 7.1. (cf. [3]) Let G/K be a symmetric space of noncompact

type. Let W ⊂ p⊗ C be an abelian subspace. Then dimW 6 (1/2) dim p⊗ C.

Equality holds in this inequality if and only if G/K is Hermitian symmetric

and W = p1,0 for an invariant complex structure on G/K.

From Lemma 7.1, we get immediately the following result.

Corollary 7.1. Let φ :M →N be as in Proposition 7.1 and suppose

that N is not locally Hermitian symmetric. Then rank dφ < dimN .

The above corollary use only the case of strict inequality in Lemma 7.1.

We have treated the case of equality in such detail in order to obtain the

following theorem.
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Theorem 7.1. Let (M, T1,0(M), θ) be a compact Sasakian manifold and

N a locally Hermitian symmetric space of noncompact type whose universal

cover does not contain the hyperbolic plane as a factor. If φ :M →N is

either a harmonic map or a pseudoharmonic map, and there is a point

x ∈M such that dφ(Tx(M)) = Tφ(x)(N), then φ is (J, JN )-holomorphic.

Proof. Since dφ(T1,0(M)) is an abelian subspace of half the dimen-

sion, it must be p1,0 for an invariant complex structure on N , that is,

dφx(T1,0(M)x) = p1,0. Consequently this property must hold on a neighbor-

hood U of x. By Proposition 7.1 and Proposition 2.2, we have dφ(T ) = 0.

Therefore, the map φ is (J, JN )-holomorphic on U . We get that the

map φ is (J, JN )-holomorphic on M by the following unique continuation

Proposition 7.2.

Then, we give some fundamental knowledge about the warped product.

Let (B, gB) and (S, gS) be two Riemannian manifolds and f be a positive

smooth function onB. Consider the product manifoldB × S with its natural

projections πB :B × S→B and πS :B × S→ S. The warped product B ×f
S is the manifold B × S furnished with the following Riemannian metric

(7.3) g̃ = π∗B(gB) + (f ◦ πB)2π∗S(gS).

The Levi-Civita connection of B ×f S can now be related to those of B and

S as follows.

Lemma 7.2. (cf. [15, p. 206]) Let ∇̃, B∇ and S∇ be the Levi-Civita

connections on B ×f S, B and S respectively. If V , W are vector fields

on B, and X, Y are vector fields on S, the lift of X, Y, V, W to B ×f S are

also denoted by the same notations, then

(i) ∇̃VW is the lift of B∇VW ;

(ii) ∇̃VX = ∇̃XV = (V f/f)X;

(iii) (∇̃XY )B =−(g̃(X, Y )/f) grad f ;

(iv) (∇̃XY )S is the lift of S∇XY on S.

We consider the special case: let (M, T1,0(M), θ) be a pseudo-Hermitian

manifold and C(M) be the manifold R+ ×rM endowed with the metric

g̃ = dr2 + r2gθ. Therefore, by Lemma 7.2, we have

(7.4)

∇̃∂/∂r
∂

∂r
= 0, ∇̃∂/∂rX = ∇̃X

∂

∂r
=

1

r
X,

∇̃XY =∇θXY − rgθ(X, Y )
∂

∂r
.
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Theorem 7.2. (cf. [2]) If (M, T1,0(M), θ) is a Sasakian manifold, then

(C(M), g̃) is Kähler.

Proof. Set ζ = r(∂/∂r) and define smooth section of End TC(M) by the

formula

(7.5) J̃Y = JY − θ(Y )ζ, J̃ζ = T.

It is easy to see that J̃ is an almost complex structure on C(M) and the

metric g̃ is Hermitian. From (7.4) and (7.5) we can show that ∇̃J̃ = 0. Thus

C(M) is Kähler.

Lemma 7.3. Let (M, T1,0(M), θ) be a pseudo-Hermitian manifold,

(C(M), g̃) its cone manifold, (Nn, h) a Riemannian manifold. If φ :M →N

is a harmonic map, then the conic extension φ̃ : C(M)→N defined by

(7.6) φ̃(x, r) = φ(x)

is also harmonic.

Proof. We take a local orthonormal frame field {T, eα, Jeα} on T (M),

then {(1/r)T, (1/r)eα, (1/r)Jeα, ∂/∂r} is an orthonormal local frame field

on T (C(M)). By (7.4), we get that the usual tension field of φ̃ is equivalent

to (1/r2)τ θ(φ). Thus, the harmonicity of φ̃ follows that of φ.

Lemma 7.4. Let φ : (M, T1,0(M), θ)→ (N, h, JN ) be a smooth map from

a Sasakian manifold to a Kähler manifold, (C(M), g̃) the cone manifold

of M . Then:

(i) φ is a (J, JN )-holomorphic (resp. anti-(J, JN )-holomorphic) map if and

only if the conic extension φ̃ is holomorphic (resp. antiholomorphic);

(ii) if φ :M →N is a ∂̄b-pluriharmonic map, then the conic extension φ̃ is

a pluriharmonic map.

Proof. (i) It can be proved by (7.5). We omit the details.

(ii) If φ is ∂̄b-pluriharmonic, then by Proposition 2.2 we have dφ(T ) = 0.

Let B(φ̃) be the usual second fundamental form for φ̃. From (7.5), (7.4) and

(2.4) we get

B(φ̃)(X̃, Ỹ ) +B(φ̃)(J̃X̃, J̃ Ỹ ) = 0,

for any X̃, Ỹ ∈ T (C(M)). Therefore, the map φ̃ is pluriharmonic.

In [20], Siu derived the following unique continuation theorem for

holomorphicity.
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Lemma 7.5. (cf. [20]) Suppose M, N are two Kähler manifolds (M is
connected) and φ :M →N is a harmonic map. Let U be a nonempty open
subset of M . If φ is holomorphic (resp. antiholomorphic) on U , then φ is
holomorphic (resp. antiholomorphic) on M .

From the Lemmas 7.3–7.5, we get the following unique continuation
theorem.

Proposition 7.2. Let φ : (M, T1,0(M), θ)→ (N, h) be a harmonic map
from a connected Sasakian manifold to a Kähler manifold. Let U be a
nonempty open subset of M . If φ is (J, JN )-holomorphic (resp. anti-(J, JN )-
holomorphic) on U , then φ is (J, JN )-holomorphic (resp. anti-(J, JN )-
holomorphic) on M .

Proof. From Lemma 7.3, we get that φ̃ : C(M)→N is harmonic.
Suppose φ is (J, JN )-holomorphic on U . It follows from Lemma 7.4 that φ̃
is holomorphic on R+ ×r U . By Lemma 7.5, we have that φ̃ is holomorphic
on C(M) and thus, from Lemma 7.4, φ is (J, JN )-holomorphic on M .

Now we may establish the following Siu type results.

Theorem 7.3. Let (M, T1,0(M), θ) be a compact Sasakian manifold
and N be a Kähler manifold with strongly negative curvature. Suppose
φ :M →N is either a harmonic map or a pseudoharmonic map, and
rankR dφ> 3 at some point of M , then φ is (J, JN )-holomorphic or anti-
(J, JN )-holomorphic on M .

Proof. From Theorem 6.2 and Lemma 7.3, we know that φ̃ is harmonic.
By Siu’s results, we have φ̃ is ±holomorphic on C(M). By Lemma 7.4, we
conclude that φ is ±(J, JN )-holomorphic on M .

Keeping in mind Udagawa’s proof to Theorem 4 of [24] the following
result is relevant.

Theorem 7.4. Every ∂̄b-pluriharmonic map φ : (M, T1,0(M), θ)→
(N, h) from a Sasakian manifold M into an irreducible Hermitian sym-
metric space N of compact or noncompact type is ±(J, JN )holomorphic if
MaxM rankR dφ> 2P (N) + 1, where P (N) is the degree of strong nonde-
generate of the bisectional curvature of N (cf. [21] for the definition of the
degree of strong nondegenerate of the bisectional curvature of N).

Proof. By Lemma 7.4, we get that φ̃ is pluriharmonic. Since
MaxM rankR dφ> 2P (N) + 1 implies that MaxC(M)rankR dφ̃> 2P (N) + 1,

it follows from [24, Theorem 4] that φ̃ is ±holomorphic. From Lemma 7.4,
we have that φ is ±(J, JN )-holomorphic.
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