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1. Introduction

The kernel function method of Bergman and Schiffer (see (1) and (2)) has recently
been used by Colton and Gilbert (see (3) and (4)) in connection with approximation
theory and the numerical treatment of elliptic differential equations. In (5) Gilbert and
Weinacht have successfully extended the kernel function method to elliptic systems
of differential equations. Essential to their work is the concept of a matrix kernel
satisfying the reproducing property. This reproducing kernel is defined initially as the
difference of the Neumann matrix and the Dirichlet matrix. Thus actually to obtain
the kernel matrix from this definition one has to solve both a Neumann problem and a
Dirichlet problem. In view of this restriction, Gilbert and Weinacht derive an in-
genious representation for the reproducing kernel in terms of purely geometric
quantities which are obtained directly from the fundamental matrix for the differential
system.

In this paper a new series representation for the reproducing kernel is given, the
terms of which are more easily calculated than those appearing in the representation
in (5). The terms of the series involve a certain parameter a which we introduce. For
a = 0 the representation is shown to reduce to the one given in (5). We also obtain the
value of a leading to the fastest rate of convergence and make a comparison with the
a = 0 case.

2. Notation and Statement of the Problem

Here we state the problem under consideration and give our notation. Consider the
elliptic system of differential equations

0 (2.1)

where U and C are complex n x n -matrices and A is the Laplacian operator

The domain D for (2.1) is a bounded simply connected region with analytic boundary
D. C is a positive definite Hermitian matrix belonging to class C\D). To avoid
confusion, we adopt the notation of (5). S(Q, P) is the fundamental matrix of L with a
logarithmic singularity for P = Q and is considered a known quantity throughout.
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I(Q, P) denotes the geometric quantity

/«? , P) m f ^ (T, Q)S(T, P) dsT (2.3)

where * is the conjugate-transpose and v is the inner unit normal vector. K(Q, P) is
the reproducing kernel for (2.1), whose representation we seek, and is defined
formally in (5) (see Eqs. (3.1) and (3.2) there). There it is shown that the kernel matrix

= -£- [K(T, Q) - 4/(T, Q)] (2.4)

is continuous i n D x D and furthermore that the homogeneous equation

<*>(Q) = - A f X*(Q, D $ ( T ) dsT (2.5)
JD

has real positive characteristic values A, greater than unity. This particular result is
crucial in what follows.

From (5), the reproducing kernel satisfies the following integral equation

K(Q, P) = 4/(Q, P) + sdK(Q, P) (2.6)
where

s4K{Q,P) = - f X*(Q, T)K(T,P) dsT. (2.7)

From (2.4), we note that the unknown kernel K appears in the kernel matrix 9if*.
Finally let $ denote the identity operator and if V and W are n x n matrices whose
entries are complex valued functions of class C2(D), let

*WX+ V*Wy + V*CW] dxdy. (2.8)

3. A Representation for the Reproducing Kernel

In this section we obtain a series representation for the reproducing kernel. Adding
aK(Q, P) to both sides of (2.6) and dividing by 1 + a we obtain

^ y\. (3.1)

We now establish that (3.1) can be solved by iteration for appropriate values of a and
determine the value of a giving the fastest convergence. This result is analogous to
one for matrices given by Isaacson and Keller (6, pp. 75-77).

Theorem 3.1. The iteration scheme

K(a+1\Q, P) = -r^— I(Q, P) + -r-J— [aKw(Q, P) + s2KM(Q, P)] (3.2)
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converges for a > - 1 . The fastest rate of convergence occurs when a = - 2A0 where Ao

denotes the smallest eigenvalue of (2.5).

Proof. Let

B(a) =
1 + a

+ si).

Letting n, = A;', the eigenvalues for B(a) satisfy

a + n,-
1 + a '

(3.3)

(3.4)

Let B = and m. = n, — 1. Then
1 + a ' '

fMi = 1 + mfi. (3.5)

From (5) we have that

l >1703s i7 I 3=TJ 2 3= - - -Ss0 (3.6)

and since j ^ is a compact operator, lim;-* Vi = 0- For — 2 < a < ° ° , 0 < / 3 < 2 and so

MO = (T?0~ l)/3 + 1 3» /Ay = (T/y - l)/3 + 1 3» 1 - /3. (3.7)

Therefore the spectral radius p(a) of B(a) is

p(a) = max{|l + (T / 0 - D/3|, |1 - B\}. (3.8)

Since 0 < j 8 < 2 and 0=Si70< l ,p (a )< 1. Hence the iteration scheme (3.2) converges
for these values of a.

The fastest rate of convergence occurs for min p(a) = p*. p* occurs when

- l)/3 = B - 1 (3.9)

(see Figure 1). Solving for B we obtain B = 2 / (2 -TJ 0 ) . Thus the value a* for which
B(a) has smallest spectral radius is a = — TJO/2.

- I

Fig. 1.
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In (5), a = 0 is the basis of the representation for the reproducing kernel.
Substituting this value into (3.8), it is seen that the corresponding spectral radius is

1 = A7 ( 3 1 0 )

For a = - TJO/2 we get

TT1—r<T"- (3-11)

Obtaining estimates for Ao is in general hard and thus actually obtaining a* for each
matrix C(x, y) is difficult. Certain approximations for the optimal choice of a,
however, can be made. If Ao— 1, a* — —{ and if ko> 1, a* —0. In any event

-i<a*<0. (3.12)

In what follows it is assumed that a> — {. From (3.2) and using the Binomial
Theorem, we have that

, P) = g o (1 +
 l

a)n+] (a* + rf)"4J(Q, P) (3.13)

The j'-th iterated kernel 3C-, is defined by

X%Q, P ) = f X*(Q, P)Xf.y(T, P) dsT (3.15)
JD

for j 5= 2 with 3ifi(T, P) m 3K(T, P). It can be shown that

s4nI(Q, P) = (-1)" f *•(<?„ 7)7(7; P) dsr. (3.16)
Jo

Hence

K(Q, P) = 2 d + ̂ i § (")«""'(-iy i ^ ^ ' r ) 4 /<r ' p) dsr (3.17)

and using Green's identities and (2.8) we have

*«?, P) = 2 ( i+L)^ ' j | (y )«n"'^{Mf(T, <?), 47(7, P)} (3.18)

where

M/(7, Q) = £{M(0, 7), JWj_,(O, <?)}
Mt(T, Q) s K(T, Q)-47(7, (?) (3.19)

Following (5) we introduce the pure geometric quantities

i i«?,P)=47«?,P)

/*((?, P ) ^ £{/?-,«?, 7), 47(7, P} k
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and satisfy

M,(Q. P) = Jo(-D*(j)'i«?.p)- (3-21)

From (3.18), (3.20) and (3.21) we have

'p) - I O T ^ I ©«-' i<Mi)kM p) (l22)

which involves only integrals of the fundamental matrix S. In the limiting case a = 0
this coincides with the representation obtained by Gilbert and Weinacht (5, Eq. (4.8)).

We now put (3.22) in a more usable form. From Green's identities and the fact that
LI = 0, it can be shown that

E{if(Q, T), 4/(7, P)} = - f ik(Q, T) -£-4/(T, P) dsT. (3.23)

Let 55 denote the following integral operator

@g(Q, P ) = - f g(Q, T) -j- 4/(T, P) dsT. (3.24)
Jo dvr

By induction

ik+i(Q,P) = ®"4I(Q,P). (3.25)

Substituting (3.25) into (3.22) and applying the Binomial Theorem, we have

, P) = i ( l +
 l
ar+ll (")«n-'G? - ay4/(Q, P) (3.26)

and again applying the Binomial Theorem we obtain the following important
representation

( 3 2 7 )

which involves only integrals of the fundamental matrix S.

REFERENCES

(1) S. BERGMAN and M. SCHIFFER, Kernel Functions and Elliptic Differential Equations in
Mathematical Physics (Academic Press, New York, 1953).

(2) S. BERGMAN and M. SCHIFFER, Kernel functions in the theory of partial differential
equations of elliptic type, Duke J. Math. 15 (1948), 535-560.

(3) D. L. COLTON and R. P. GILBERT, Rapidly convergent approximations to Dirichlet's
problem for semilinear elliptic equations, Applicable Analysis 2 (1972), 229-240.

(4) D. L. COLTON and R. P. GILBERT, New results on the approximation of solutions to
partial differential equations, in Analytic Theory of Differential Equations (Lecture Notes in
Mathematics, Vol. 183, Springer-Verlag, Heidelberg, 1971), 213-220.

https://doi.org/10.1017/S0013091500016382 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500016382


232 JOHN F. AHNER AND EUGENE P. HAMILTON

(5) R. P. GILBERT and R. J. WEINACHT, Reproducing kernels for elliptic systems, /.
Approx. Theory 15 (1975), 243-255.

(6) E. ISAACSON and H. KELLER. Analysis of Numerical Methods (John Wiley and Sons,
Inc., New York, 1966).

DEPARTMENT OF MATHEMATICS CENTER FOR NAVAL ANALYSES

VANDERBILT UNIVERSITY ARLINGTON
NASHVILLE, VIRGINIA

TENNESSEE

https://doi.org/10.1017/S0013091500016382 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500016382

