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ON THE ADJOINT GROUP OF A RADICAL RING 

BERNHARD AMBERG AND OLIVER DICKENSCHIED 

ABSTRACT. The relations between the adjoint group and the additive group of a 
radical ring and its nilpotency are investigated. It is shown that certain finiteness con­
ditions carry over from the adjoint group to the additive group and that the converse 
holds for the class of minimax groups. 

1. Introduction. A ring R is called radical if it coincides with its Jacobson radical, 
which means that R forms a group under the operation a o b = a + b + ab for all a and 
b in R. This group is called the adjoint group R° ofR. It is of some interest to study the 
relation between the adjoint group R° and the additive group R+ of a radical ring. Watters 
has shown in [6] that R° satisfies the maximum condition on subgroups if and only if R+ 

satisfies the maximum condition on subgroups and that R is a nilpotent ring in this case. 
In the following we prove a generalization of this result. 

A group G is called a minimax group if it has a series of finite length whose factors 
satisfy the minimum or maximum condition on subgroups. 

THEOREM A. Let %bea class of minimax groups which is closed under the forming 
of subgroups, epimorphic images and extensions. IfR is a radical ring, then the following 
conditions are equivalent: 

(i) The additive group R+ is an %-group, 
(ii) The associated group G(R) is an %-group, 

(Hi) The adjoint group R° is an %-group. 
In this case R is a nilpotent ring. 

In Theorem A, the class 3£ can in particular be the class of minimax groups itself or 
the class of 7r-minimax groups for a set of primes TT in the sense of [3], Volume 2, p. 167. 
The associated group G(R) of a radical ring R which appears in Theorem A is defined 
in the following way (see [4] and [1]). The adjoint group A = R° of a radical ring R 
operates on the additive group M=R+ofR via the rule 

ma = m + ma 

for all a G A, m G M. Let G(R) = A tx M be the semidirect product of A with M and 
identify A and M with its subgroups {(a,0) \ a G R} and {(0,m) | m G R}, respectively. 
If B = {(r,r) | r G R} is the diagonal subgroup of G(R), then 

G(R)=A\XM=BKM = AB and AHB = 1, 
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where the subgroups A and B are isomorphic with R° and the normal subgroup M of G(R) 
is isomorphic with R*. This construction allows us to use results on factorized groups in 
order to study radical rings. 

To explain our second result recall that a group G has finite torsion-free rank if it has 
a finite series whose factors are either periodic or infinite cyclic. The number of infinité 
cyclic factors in any such series is an invariant of G denoted by ro(G). The group G has 
finite abelian subgroup rank if each abelian subgroup of G has finite torsion-free rank 
and each abelian/7-subgroup of G has finite Priifer rank for every prime/?. Here a group 
G is said to have finite Priifer rank r = r(G) if every finitely generated subgroup of G 
can be generated by r elements, and r is the least positive integer with this property. For 
the relation between these finiteness conditions see Chapter 6.3 of [3]. Note in particular 
that any group with finite Priifer rank has finite abelian subgroup rank. 

The additive group of the (commutative) radical subring 

R = J - u is an even and v is an odd integer 1 
I v I J 

of the ring of rationals has Priifer rank 1, but R° has infinite torsion-free rank and R is 
not even a nil ring. Hence there is no analogue of Theorem A for the above finiteness 
conditions. However, the following theorem shows that these finiteness conditions are 
inherited from the adjoint group R° of a radical ring R to its additive group R+ and that 
they imply some nilpotency conditions of the ring R. 

THEOREM B. Let Rhea radical ring. Then the following holds. 
(a) IfR° has finite torsion-free rankn, then also ro(R+) = n, andR is a nil ring. 
(b) IfR° has finite abelian subgroup rank, then so does R+, and R is a two-sided 

T-nilpotent ring of class c\(R) <u + ro(R+). 
(c) IfR° has finite Priifer rank, then so does R+, and r(R+) is bounded by a function 

only depending on r(R°). 

The definition of the ring-theoretical terms used in Theorem B is as follows. The 
transfinite two-sided annihilator series (Ba(jR)) of a ring R is defined by 

Bo(J?) = 0, 

Ba+i(#) = {a G R | aR + Ra C Ba(R)} 

for each ordinal number a and 

BA(J?) = (J Ba(R) 
Ct<\ 

for each limit ordinal A. The ring R is called two-sided T-nilpotent of class cl(R) = a if 
Ba(R) = R and if a is the least ordinal with this property. It is easy to see that the ring R 
satisfies Bn(R) = R for some finite ordinal n if and only if Rn+l = 0. 

The other notation is standard and can for instance be found in [2] and [3]. 
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2. Proof of Theorem A. The following lemma will be used frequently. 

LEMMA 2.1. Let R be a nilpotent ring and £ be a class of groups which is closed 
under the forming of subgroups, epimorphic images and extensions. Then the adjoint 
group R° ofR is an %-group if and only if the additive group R+ ofR is an %-group. 

PROOF. Let Rn+l = 0. Then each factor ring R/R*1 of the chain 

0 = Rn+l Ç Rn Ç • • • C R2 Ç Rl = R 

has trivial multiplication and hence (Ri/B!+l)° = (Ri/S!+l)+. Thus the result follows by 
the hypotheses on the class 3£. • 

The radical join of a subset X of a radical ring R is the intersection of all radical 
subrings of R which contain X. Clearly the radical join of X is likewise a radical ring. 
The following extension of Lemma 3 of [6] will be essential. 

LEMMA 2.2. Let the ring R be the radical join of an element a in R. Then the follow­
ing holds: 

(a) R is commutative. 
(b) If the group R° has finite torsion-free rank, then R is a nilpotent ring. 

PROOF, (a) The centralizer C = {r G R \ ra = ar} of a in R is a radical subring ofR 
containing a, so that C = R. Thus a is contained in the center Z(R) = {r G R \ rs = sr for 
all s £ R} ofR. As Z(R) is a radical subring of R, it follows that R = Z(R) is commutative. 

(b) This runs along the same lines as the proof of Lemma 3 of [6], replacing 'finitely 
generated' by 'finite torsion-free rank'. • 

COROLLARY 2.3. Let 3: be one ofthefiniteness conditions 'minimax ', finite Prufer 
rank', 'finite abelian subgroup rank1 or 'finite torsion-free rank'. Then any radical ring 
R with R° G 36 is a nil ring. 

PROOF. This follows from Lemma 2.2 by considering the radical join of every ele­
ment a ofR. m 

The next lemma establishes a relation between the additive and the adjoint group of 
a nil ring. 

LEMMA 2.4. IfR is a nil ring andp a prime, then the following holds: 
(a) R+ is a p-group if and only ifR° is a p-group. 
(b) R+ is torsion-free if and only ifR° is torsion-free. 

PROOF, (a) For an arbitrary element a ofR, the radical join S of a is commutative 
by Lemma 2.2. Since R is a nil ring, we have an — 0 for some positive integer n. Hence 
Z • a + Sa is a nilpotent subring of S containing a, so that 

S = Z • a + Sa 

is nilpotent. Thus by Lemma 2.1, £* is ap-group if and only if S° is ap-group. Hence (a) 
follows. 
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(b) Let i?+ be torsion-free and assume that R° contains a non-trivial element of finite 
order. Then R° contains an element a of prime order p. Using a formal identity element 
1 this implies that 

1 = (l +af = 1 +paJ2 - (na*-1 +cf, 

where the coefficients -ff) for 1 < i <p are integers. It follows that 

a? = -pa(l+r) 

for the element r = Y^Zl p(j)al~l- Since R is a nil ring, there exists a non-negative 
integer n such that cf" = 0. Let n be minimal with this property. Then n > 1 and as a 
and r commute, it follows that 

0 = cf = ( -Ml+r) f = {-pf-'^il +rf~\ 

Since (1 + rf~ is invertible, we obtain (—pf a? = 0. Hence 

<rx = o, 

since R+ is torsion-free. But this contradicts the minimal choice of n. Thus if R+ is torsion-
free, then so is R°. The converse follows from (a) by considering the ideal T formed by 
the torsion subgroup of R+. The lemma is proved. • 

REMARK 2.5. Let R be a radical ring. Then the torsion subgroup T of R+ and its 
primary components Tp form ideals of R for each prime p. The natural decomposition 

J* = (BTP
+ 

p 

of the additive group T* is also a decomposition 

T=®Tp 
p 

of the ring T as a direct sum of the ideals Tp and hence a decomposition 

p 

of the adjoint group T° as a direct product of the groups 7),°. 
If in this situation R is a nil ring (in particular if R° belongs to one of the classes listed 

in Corollary 2.3), then 7° is a torsion group, each Tp° is a/7-group mdR°/r = (R/T)° 
is a torsion-free group by Lemma 2.4. 

Using this decomposition, we can reduce the study of radical rings R with finiteness 
conditions on R° to the investigation of such rings with R+ and R° being either both 
torsion-free or both/?-groups for some prime p. The first case is treated in the following 
lemma. 
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LEMMA 2.6. Let R be a locally nilpotent ring with a torsion-free additive group. If 
the adjoint group R° ofR has finite torsion-free rank, then R is a nilpotent ring. 

PROOF. Since R is a locally nilpotent ring, R° is a locally nilpotent group. By 
Lemma 2.4, R° is torsion-free of finite torsion-free rank and hence is nilpotent; see [3], 
Volume 2, Corollary 2 on p. 38. We use induction onr = r0(R°), the result being clear 
if this number is zero. Suppose now that r > 0 and that the lemma holds for any locally 
nilpotent ring whose adjoint group has finite torsion-free rank less than r. Since R° is 
nilpotent, it contains a non-trivial central element a which hence belongs to the center 
of the ring R. As the element a of the locally nilpotent ring R is nilpotent, the ideal I of 
R generated by a is nilpotent, and so it remains to prove that R/I is likewise nilpotent. 
Since F is a non-trivial normal subgroup of the torsion-free group R°, it has positive 
torsion-free rank. Thus (R/I)° = R° /F has finite torsion-free rank less than r and the 
result follows from our inductive hypothesis. • 

PROOF OF THEOREM A. Suppose first that the additive group R+ of the radical ring R 
is an 96-group. We have to prove that the group G(R) is an 3E-group. Since G(R) = A\xM 
with A = R° and M = R+, we only need to show that R° is an 3E-group. By Lemma 2.1 
it suffices to show that the ring R is nilpotent. The torsion subgroup of R+ obviously is 
an ideal T of R whose additive group 7^ is a periodic abelian minimax group and hence 
satisfies the minimum condition on subgroups. Thus T is a right artinian radical ring 
and so is nilpotent; see [2], Proposition 3.5.1. Therefore it suffices to show that R/T is 
nilpotent. Hence we may assume that R+ is a torsion-free abelian minimax group. 

For every prime p, the subring/?i? is an ideal of R. Since the Priifer rank n of R+ is 
finite, it follows that 

\R/PR\<pn. 

In particular, R/pR is a nilpotent ring. Since the integerpn has only n+1 positive divisors, 
we have (R/pR)n+l = 0, so that Rn+l Ç pR for any prime p. Hence 

Rn+l Ç f]pR = 0, 
p 

since R+ is a torsion-free abelian minimax group (see [1], Lemma 6.6.3). This shows that 
R is a nilpotent ring and condition (ii) follows. Obviously (ii) implies (iii). 

Suppose now that the adjoint group R° of the radical ring R is an 3£ -group. It has to be 
shown that (i) holds. By Lemma 2.1, it suffices to show that R is a nilpotent ring. First, 
let the ring R be locally nilpotent. Then the additive group T* of the ideal T defined in 
Remark 2.5 is periodic, so that also T° is periodic. Thus every abelian subgroup of T° is a 
periodic minimax group and hence satisfies the minimum condition on subgroups. As R 
is a locally nilpotent ring, R° is a locally nilpotent group. Thus T° satisfies the minimum 
condition on subgroups; see [3], Volume 1, Theorem 3.32. Hence T is a right artinian 
radical ring and so is nilpotent by [2], Proposition 3.5.1. Now R/T is a locally nilpotent 
ring whose additive group is torsion-free and whose adjoint group is a locally nilpotent 
minimax group and hence is nilpotent of finite Priifer rank by [3], Volume 2, Corollary 2 
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on p. 38. In particular (R/T)° has finite torsion-free rank, so that the ring R/ T is nilpotent 
by Lemma 2.6. As T is likewise nilpotent, it follows that R is nilpotent, which completes 
the proof of the special case. 

Consider now the general case. By Zorn's Lemma there exists a maximal locally 
nilpotent subring S ofR, which is nilpotent by the special case. Assume now that S ^ R. 
Then it follows from a result of Szâsz ([5], Theorem 6), that the nilpotent subring S is 
properly contained in its idealizer 

I={reR\rS + SrCS}. 

Hence there exists an element a in the subring / of R which is not in S. The subring S 
generated by S U {a} is contained in the idealizer / of S, and therefore S is an ideal of S 
The quotient ring S/S is generated by a + S. Since R is nil by Corollary 2.3, it follows 
that S/S is nilpotent. Hence S is a nilpotent subring of R containing S properly. This 
contradiction shows that R = S is nilpotent. The proof of Theorem A is completed. • 

3. Proof of Theorem B. Togetherwith Lemma 2.1, the following result establishes 
a bound for the nilpotency class of the rings considered in Lemma 2.6. 

LEMMA 3.1. IfR is a locally nilpotent ring whose additive group R+ is torsion-free 
with finite torsion-free rankn, then Rn+l = 0. 

PROOF. Choose n + 1 arbitrary elements x\ , . . . , xn+\ ofR and let S be the subring of 
R generated by them. Then S is nilpotent by hypothesis and it follows that the set !M of 
all products of finitely many elements of {x\,..., xn+\} is finite. Since S* is the additive 
join of M, it is a free abelian group of finite rank r < n. 

By considering the factor rings S/pS for all primes p, it follows as in the proof of 
Theorem A, that 

^+1 e s r f l çç}pS=Qm 
p 

Hence xi xn+\ = 0, which proves that Rn+l = 0 . • 
The next result is mentioned in [4]. 

LEMMA 3.2. The radical ring R is nilpotent if and only if the group G(R) is nilpotent. 

PROOF. First suppose that R is a nilpotent ring. Then some simple calculations in 
the group G(R) yield the commutator rule 

[(a, b), (x,y)] = (r, s) for all (a, b), (x9y) G G(R\ 

where 
r = (\+a'){\+x'){ax-xa) 

and 
s = bx— ya — (y + b +yd)r\ 

here a' denotes the adjoint inverse of a in R°. 

https://doi.org/10.4153/CMB-1995-039-2 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1995-039-2


268 B. AMBERG AND O. DICKENSCHIED 

Suppose that (a,b) lies in G(Rm) for some positive integer m. Then a and b are 
elements of Rm and hence r G Rm+l. This implies that also s G Rm+l and hence (r,s) G 
G(Rm+l). 

Thus, using induction on m, we obtain 

7WG(*) C G(Rm) 

for all positive integers m, where lmG(R) denotes the m-th term of the lower central series 
of G(R). Since R is nilpotent, it follows that 7nG(R) = 1 for some « and thus G(i?) is 
nilpotent. 

Now suppose that G(R) is a nilpotent group. Then there is a positive integer n such 
that [gi , . . . , gn] = 1 for all gt G G(R). Given arbitrary r\,...,r„ e R, choosegi = (0, r\ ) 
and gt = (r/, 0) for all / > 1. Then it follows by induction on / that 

\gu • • • ,gi] = (0, n r,) for each / < n. 

In particular 

( 0 , 0 ) - l = fei,...,g„] = (0,r! rn). 

Thus 7̂  is a nilpotent ring. • 

PROOF OF THEOREM B. TO prove (a) suppose that the adjoint group R° of the radical 
ring R has finite torsion-free rank. Then R is a nil ring by Corollary 2.3. As in Remark 2.5, 
let T be the ideal formed by the torsion subgroup of R+, so that (R/T)+ is a torsion-free 
group. By Zorn's Lemma, there exists a maximal locally nilpotent subring S ofR/T. Then 
the additive group S* is torsion-free, while 5° has finite torsion-free rank. Hence S is a 
nilpotent ring by Lemma 2.6. As in the proof of Theorem A, this implies that S — R/T 
is a nilpotent ring. Since the torsion-free rank is additive on extensions, it follows as in 
the proof of Lemma 2.1 that the torsion-free ranks of (R/ T)+ and (R/T)° coincide. Since 
T° is a torsion group by Lemma 2.4, we obtain 

r0(R
+) = r0((R/T)+) = r0((R/T)°) = r0(R° /T) = r0(R°). 

This proves (a). 
To prove (b) let the adjoint group R° of the radical ring R have finite abelian subgroup 

rank. We first treat the special case that R is a locally nilpotent ring. Consider the ideals 
T and Tp (for all primes p) which were defined in Remark 2.5. Then the groups (R/T)+ 

and (R/T)° are torsion-free, each Tp
+ and each Tp° is a/?-group and 

p 

Since R is locally nilpotent, it follows that (R/ T)° is a torsion-free locally nilpotent group 
of finite abelian subgroup rank and hence is nilpotent of finite Prufer rank; see [3], Vol­
ume 2, Theorem 6.36. In particular, (R/T)° has finite torsion-free rank, and thus R/T 
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is nilpotent by Lemma 2.6. Hence ro((^/r)+) is finite by Lemma 2.1. Now Lemma 3.1 
yields 

/ = cl(R/T) < r0((R/T)+) = r^/t) = r0(R
+) 

for the nilpotency class / of R/T. For every prime/? the primary/^-component Tp° ofR° 
is a Chernikov-group (see [3], Volume 2, Corollary 1 on p. 38), so that the ideal Tp ofR 
is nilpotent by Theorem A. Therefore B^T) = T. By induction on n, it follows that 

B2ln(R) D Bn(T) 

for every integer n > 1. Forming unions, we obtain BU(R) D 8^(7) = T. Thus R = 
BUJ+I(R). Moreover, since each Tp

+ has finite abelian subgroup rank by Lemma 2.1, it 
follows that T* has likewise finite abelian subgroup rank. As R/T is nilpotent, the group 
R+ /T* = (R/T)+ also has finite abelian subgroup rank by Lemma 2.1, and hence so does 
R+. This proves (b) for the special case of a locally nilpotent ring. 

In the general case let S be a maximal locally nilpotent subring ofR. Then S is two-
sided T-nilpotent by the special case, and it follows as in the proof of Theorem A that 
S = R. Thus (b) is proved. 

To prove (c) let R be a radical ring whose adjoint group has finite Priifer rank r. Then 
R is two-sided 7-nilpotent by (b) and hence locally nilpotent. As in the proof of (b) the 
rings R/T and Tp (for each prime p) are nilpotent. As each Tp° has finite Priifer rank 
r(Tp°) < r, also each Tp

+ has finite Priifer rank by Lemma 2.1. It follows that the groups 

Gp = G{Tp) = APKMP=BPKMP= APBP 

have finite Priifer ranks. Now each group Gp is nilpotent by Lemma 3.2. Hence by a 
theorem of Zaitsev and Robinson (see [1], Theorem 4.3.5), there is an integer k only 
depending on r such that r(Gp) < k for all primes/?. Hence 

r(Tp
+) = r(Mp) < r{Gp) < k 

for all primes p. Since the group J* is the direct sum of the groups Tp
+, it has finite Priifer 

rank. As the ring R/T is nilpotent, the group R+ /T* has likewise finite Priifer rank by 
Lemma 2.1, so that also R+ has finite Priifer rank. Thus the associated group G(R) ofR has 
finite Priifer rank. As the ring R is locally nilpotent, the group G(R) is locally nilpotent 
by Lemma 3.2. Applying the theorem of Zaitsev and Robinson to G(R), we obtain that 
r(R+) is bounded by a function of r(R°). The theorem is proved. • 

Finally we mention a simple example of a radical ring R which is not nilpotent, but 
the two groups R+ and R° are both abelian torsion groups with Priifer rank 1. This shows 
that the bound given in Theorem B(b) can not be replaced by a finite one. 

EXAMPLE. Let (pn)„ be a strictly increasing series of odd primes and let Rn = 
pnZ/pn

nZ for every integer n > 0. Then the ring 

R = ®Rn 
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is obviously two-sided T-nilpotent and its additive group R+ is the direct sum of cyclic pn-
groups and hence has Priifer rank 1. Since each group Rn° is isomorphic with a subgroup 
of the group of units of the ring Z/pn

nZ, which is cyclic, it follows that R° has likewise 
Priifer rank 1. But obviously, R is not a nilpotent ring, so that c\(R) = u. 
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