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We study tropical line arrangements associated to a three-regular graph G that we
refer to as tropical graph curves. Roughly speaking, the tropical graph curve
associated to G, whose genus is g, is an arrangement of 2g − 2 lines in tropical
projective space that contains G (more precisely, the topological space associated
to G) as a deformation retract. We show the existence of tropical graph curves when
the underlying graph is a three-regular, three-vertex-connected planar graph. Our
method involves explicitly constructing an arrangement of lines in projective space,
i.e. a graph curve whose tropicalization yields the corresponding tropical graph curve
and in this case, solves a topological version of the tropical lifting problem
associated to canonically embedded graph curves. We also show that the set of
tropical graph curves that we construct are connected via certain local operations.
These local operations are inspired by Steinitz’ theorem in polytope theory.
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1. Introduction

Tropical Geometry provides a framework to translate questions about an alge-
braic variety to questions about a polyhedral object associated to it called its
tropicalization. In its most basic form, the framework is as follows.

Let K be a non-archimedean field, i.e. an algebraically closed field with a non-
trivial non-archimedean valuation val and complete with respect to it. Let X be a
very affine variety over K, i.e. a subvariety of the split torus (K�)n. The tropicaliza-
tion map trop takes a point (p1, . . . , pn) in (K�)n to its coordinatewise valuations
(val(p1), . . . , val(pn)) ∈ R

n. The tropicalization of X, denoted by trop(X) is then
obtained by applying the map trop to every point in X and taking the closure with
respect to the Euclidean topology on R

n.
The notion of tropicalization can be extended in two ways: i. For very affine

varieties over arbitrary algebraically ground fields equipped with the trivial valua-
tion, the notion of tropicalization described above is not satisfactory. In this case,
either an alternative description of tropicalization in terms of initial ideals [23, Item
(2),Theorem 3.2.3] or a base change to a field with a non-trivial valuation extending
this trivial valuation is used [23, Theorem 3.2.4] ii. the notion of tropicalization has
been extended to arbitrary subvarieties of toric varieties (over algebraically closed,
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2 M. Manjunath

valued fields), referred to as the Kajiwara-Payne extended tropicalization [29], [23,
Chapter 6].

Tropical Graph Curves: The protagonists in this paper are tropical graph
curves. Informally, a tropical graph curve TG associated to a three-regular, con-
nected, simple graph G of genus g (also known as the first Betti number) is an
arrangement of 2g − 2 tropical lines in tropical projective space TP

g−1 (equipped
with the Euclidean topology) that contains G as a deformation retract. Tropical
graph curves are tropical line arrangements in tropical projective space. Tropical
hyperplane arrangements have recently received considerable attention in literature,
see for example [1, 20]. On the other hand, tropical line arrangements have not
received as much attention. We refer to [9, Theorem C] for a ‘universality’ property
of tropical line arrangements in the plane. Our main result (see corollary 1.4) can
be viewed as a construction of tropical line arrangements that are homeomorphic
to a given simple, three-regular, three-connected planar graph.

Our main motivation for studying tropical graph curves arises from the tropical
lifting problem that we introduce in the following.

Tropical Lifting: The Bieri-Groves theorem [6], [23, Chapter 3, Section 3], a
fundamental theorem in tropical geometry, states that trop(X) is a piecewise linear
subset of R

n. Hence, trop(X) can be studied via polyhedral geometry. Furthermore,
applications of tropical geometry crucially use this polyhedral structure. For most of
these applications, an understanding of piecewise linear subsets of R

n that arise as
tropicalizations is essential, see [31] for more details. This gives rise to the tropical
lifting problem.

Problem 1.1 (Tropical Lifting Problem). Let K be an algebraically closed, valued
field. Characterize piecewise linear subsets of R

n (with finitely many pieces) that
can be lifted, i.e. obtained as the tropicalization of a very affine variety over K or
more generally, as the Kajiwara-Payne extended tropicalization of a subvariety of
a toric variety over K.

The one-dimensional case, i.e. lifting piecewise linear subsets of R
n of dimension

one is already highly non-trivial. Two necessary conditions are that every edge
must have rational slope and that the set must satisfy the balancing condition (also
known as the zero-tension condition): there is an assignment of a positive integer
called multiplicity to each edge such that at every vertex, the sum of the outgoing
slopes (where each outgoing slope is represented by a primitive point in Z

2) of the
edges incident on it weighted by the corresponding multiplicity must be zero. A
piecewise linear subset of R

n satisfying these two necessary conditions is called a
tropical curve [24, Section 2] and [23, Section 1.3]. By the genus of a tropical curve,
we mean its first Betti number when viewed as a metric graph (allowing infinite
edge lengths), see [24, Definition 2.9].

The tropical lifting problem for tropical curves is wide open in general. The case
of genus zero tropical curves is relatively well understood owing to the work of
Mikhalkin [24, Corollary 3.16] for n = 2 and to the works of Nishinou and Siebert
[26, Section 7] and Speyer [31, Theorem 3.2] for arbitrary n. Lifting genus one
tropical curves was initiated by Speyer [31, Theorem 3.2], also see Nishinou [27,
Theorem 2], Tyomkin [32], Ranganathan [30, Theorems B and C] for further work.
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Tropical Graph Curves 3

Katz [21, Theorem 1.1] introduced necessary conditions for lifting tropical curves of
arbitrary genus that generalizes Speyer’s condition and Nishinou’s condition (both
for genus one tropical curves and both called ‘well-spacedness’). Another flavour of
the tropical lifting problem is to fix an ambient algebraic variety S (for instance,
an algebraic surface) and investigate lifting of tropical curves contained in the
tropicalization of S to algebraic curves contained in S, we refer to [7, 8, 11] for
more in this direction.

Since the tropical lifting problem is still wide open, studying weaker versions of
the problem seems natural. One such weakening is the following: Classify metric
graphs Γ such that there is a tropical curve T that contains Γ as a deformation
retract and can be lifted to a smooth algebraic curve over K. Using the work of
Baker, Payne and Rabinoff [3, Theorem 1.1 and Theorem 5.20]1, it follows that any
metric graph Γ whose edge lengths are in the value group of K satisfies this property
with the corresponding tropical curve T being contained in R

n for a possibly “high”
n. Cheung, Fantini, Park and Ulirsch [13, Theorem 1.2] further refined this result
by showing an effective upper bound on n: the maximum of three and the valence of
a vertex v minus one over all vertices v of Γ. In [13], the ground field K is the field of
Puiseux series with coefficients in C and hence, the edge lengths are required to be
rational. Jell [19] introduced a strengthening of the notion of faithful tropicalization
to so called fully faithful tropicalization and showed that every Mumford curve over
K admits such a fully faithful tropicalization.

Tropical Lifting for Canonical Curves: From the viewpoint of applications
of tropical geometry, lifting to specific classes of algebraic curves is important. One
such class is that of smooth canonical curves: embeddings of a smooth, proper,
non-hyperelliptic algebraic curve into projective space via the global sections of its
canonical line bundle. Recall that for any integer g � 3, a smooth curve in projective
space P

g−1 is a canonical curve of genus g if and only if it is non-degenerate (not
contained in any hyperplane) and has degree 2g − 2 [14, Theorem 9.3 and Section
9C, Exercise 5]. We refer to [14, Chapter 9] for more information on canonical
curves and to [16] for a recent combinatorial application thereof.

The lifting problem of metric graphs to smooth canonical curves takes the fol-
lowing form: Classify metric graphs Γ such that there is a smooth canonical curve
whose tropicalization deformation retracts to Γ. A classification is wide open: the
techniques for arbitrary smooth curves are not directly applicable in this case,
we refer to [10] and [18] for progress in the case of genus three metric graphs.
A further weakening leads to a topological version of the problem where only the
topological space underlying the metric graph is taken into account. Given an undi-
rected, connected graph G (possibly with multiedges but with no loops), we denote
the topological space underlying (any of) its geometric realizations (metric graphs
whose underlying graph is G) by Gtop.

Problem 1.2 (Topological Tropical Lifting Problem for Smooth Canonical Curves).
Classify graphs G such that there exists a smooth canonical curve whose tropical-
ization (in the extended sense) deformation retracts to Gtop.

1These results are stated in terms of ‘faithful tropicalization”, an important notion in the
interplay between tropical geometry and non-archimedean geometry.
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4 M. Manjunath

Even in this topological version, a complete classification is wide open. We refer
to [12, Theorem 3.2] for the case when G is the complete graph on four vertices.
In the current article, we study the topological tropical lifting problem for certain
non-smooth canonical curves, namely canonical embeddings of certain reducible
nodal curves called graph curves. We refer to the work of Bayer and Eisenbud [4]
for an introduction to this topic and to [17] for a recent combinatorial perspective.

For a simple2 , three-regular, connected graph G, the graph curve XG associated
to it is the totally degenerate, nodal curve whose dual graph is G. By totally degen-
erate, we mean that each irreducible component is isomorphic to the projective line.
The dual graph of a (reducible) curve is the graph whose vertices correspond to
its irreducible components and there is an edge between two vertices if their corre-
sponding components intersect. The three-regularity condition on the dual graph G
ensures that the graph curve XG is independent of the choice of the nodes (thanks
to the three transitivity of the action of the automorphism group of P

1 on P
1).

We address the topological tropical lifting problem for canonical embeddings of the
graph curve XG where G is any three-regular, three-edge-connected planar graph.
Before this, note that tropical projective space carries the Euclidean topology (see
§§ 2.1 for more details) and hence, every extended tropicalization into it carries the
induced topology. Our main theorem is the following:

Theorem 1.3 (Tropical Lifting for Canonically Embedded Planar Graph Curves).
Let κ be an algebraically closed, valued field. For every three-regular, three-edge-
connected planar graph G, there is a canonical embedding of the corresponding graph
curve XG over κ whose extended tropicalization (with respect to the given valuation
on κ) is homeomorphic to Gtop.

To the best of our knowledge, the tropical lifting problem for singular algebraic
curves has not been studied before and we emphasize that the graph curve XG in
theorem 1.3 is canonically embedded. We say that a canonical embedding of XG

admits a weakly faithful tropicalization or equivalently, that the tropicalization of
this canonical embedding is weakly faithful if its tropicalization (in the extended
sense and with respect to the given valuation on κ) contains Gtop as a deformation
retract. Furthermore, note that the Berkovich analytification (XG)Berk of XG con-
tains Gtop as a deformation retract. The space (XG)Berk is constructed as follows:
consider one copy of the Berkovich projective line (P1

Berk)u for each vertex u of
G. For each edge e = (u, v) of G, note that there is a node ne of XG, and iden-
tify (P1

Berk)u and (P1
Berk)v at the type I points corresponding to ne [5, Chapter 4]

and [2].
The extended tropicalization of the canonical embedding of XG promised by

theorem 1.3 is an example of a tropical graph curve. As a corollary, we obtain
the existence of tropical graph curves corresponding to three-regular, three-edge-
connected planar graphs.

Corollary 1.4. Any three-regular, three-edge-connected planar graph has a tropi-
cal graph curve associated to it.

2we shall keep this hypothesis throughout the article.
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For a three-regular graph, three-edge-connectivity is equivalent to three-vertex-
connectivity [4, Lemma 2.6]. Hence, in this context we will use the term ‘three-
connected’ for three-edge-connected. In the following, we outline the key steps in
the proof of theorem 1.3.

1.1. Key ingredients of the proof of theorem 1.3

We explicitly construct a canonical embedding of XG and show that its extended
tropicalization is weakly faithful. We refer to this embedding as the Schön embed-
ding3 of XG, denoted by Xsch

G . The Schön embedding can be described in geometric
terms as follows. Since G is a three-vertex-connected planar graph, by Steinitz’
theorem ([34, Chapter 4]), it is the one-skeleton of a three-dimensional polytope P .
Furthermore, since G is three-regular, the polar P∨ of P is a simplicial polytope.
Consider the Stanley–Reisner surface of the simplicial complex associated to P∨.
The Schön embedding is a hyperplane section of this surface. We refer to proposi-
tion 3.2 for more details. We also refer to Bayer and Eisenbud [4, Section 6] where
general hyperplane sections of this Stanley–Reisner surface have been studied.

We study the extended tropicalization of Xsch
G in terms of the primary decompo-

sition of its defining radical ideal. The following explicit description of this primary
decomposition plays an important role. The primary decomposition of the Schön
embedding is constructed in terms of a planar embedding of G. The Euclidean clo-
sure of the unique unbounded component in the complement of G in R

2 is called
the exterior face. The Euclidean closures of the other components are called inte-
rior faces. By Euler’s formula for planar graphs, there are precisely g interior faces
of a planar embedding of G, where g is the genus (also known as the first Betti
number) of G. We identify the homogenous coordinate ring of P

g−1
κ with κ[xF | over

all interior faces F of G] (equipped with its standard grading). Furthermore, any
canonical embedding of a graph curve XG of arithmetic genus g (also, equal to the
genus of G) is an arrangement of 2g − 2 lines in P

g−1
κ [4, Proposition 1.1 (and its

proof)]. A three-regular graph of genus g has 2g − 2 vertices and 3g − 3 edges. The
2g − 2 vertices are in bijection with the irreducible components of XG.

To each vertex v of G, we associate a line in P
g−1
κ defined by an ideal Lv corre-

sponding to it. This line is the irreducible component of XG corresponding to v.
Note that Lv is given by g − 2 linearly independent linear forms. We distinguish
between two types of vertices, namely interior and the exterior vertices. An interior
vertex is a vertex that is not incident on the exterior face. Otherwise, the vertex
is called an exterior vertex. Note that an interior vertex has precisely three inte-
rior faces incident on it whereas an exterior vertex has precisely two interior faces
incident on it.

For an interior vertex v, the line Lv is cut out by the linear form xFi
+ xFj

+ xFk

where Fi, Fj , Fk are the three interior faces that are incident on it and by the
variables xF over all interior faces F /∈ {Fi, Fj , Fk}. Note that we have specified
g − 2 linearly independent linear forms. For an exterior vertex v, the line Lv is
generated by the variables xF over all interior faces F that are not incident on v.
Here again, we have specified g − 2 linearly independent linear forms.

3This is not to be confused for Schön compactifications [23, Definition 6.4.19.]
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6 M. Manjunath

Figure 1. A planar embedding of the cube.

Example 1.5. Consider the one-skeleton of a cube (as shown in Fig. 1). Here g = 5
and any canonical embedding of the associated graph curve is an arrangement of
eight lines in P

4
κ. In this case, v1, v2, v3 and v4 are interior vertices and the others

are exterior vertices. The eight lines are the following:

Lv1 = 〈xF1 + xF2 + xF3 , xF4 , xF5〉,
Lv2 = 〈xF1 + xF3 + xF4 , xF2 , xF5〉,
Lv3 = 〈xF1 + xF4 + xF5 , xF2 , xF3〉,
Lv4 = 〈xF1 + xF2 + xF5 , xF3 , xF4〉,
Lv5 = 〈xF1 , xF3 , xF4〉, Lv6 = 〈xF1 , xF4 , xF5〉,
Lv7 = 〈xF1 , xF2 , xF5〉, Lv8 = 〈xF1 , xF2 , xF3〉.

We consider the extended tropicalization tropproj(Xsch
G ) of the resulting arrange-

ment of lines. This is an arrangement of 2g − 2 tropical lines {tropproj(Lv)}v in
TP

g−1 that we denote by T . We refer to figure 11 for examples. We identify TP
g−1

with a (g − 1)-simplex, see §§ 2.1 for more details. We construct a homeomorphism
φ between Gtop and T (§§ 4.1). In the following, we identify key properties of T
that go into the construction of φ. The tropical lines tropproj(Lu) and tropproj(Lv)
intersect if and only if u and v are adjacent in G (Lemma 4.1). If u is an interior
vertex, then tropproj(Lu) contains precisely one branch point and this is of valence
three. If u is an exterior vertex, then tropproj(Lu) is an edge of TP

g−1 and hence,
consists only of bivalent points. These properties lead to the following classification
of the points of T (Lemma 4.2) that we summarize in the following. The points
of T are either bivalent or trivalent. The trivalent points of T are exclusively of
the following two types: i. Branch point bu of tropproj(Lu) where u is an interior
vertex. ii. The intersection point ζ(u,ι(u)) of tropproj(Lu) and tropproj(Lι(u)) where
u is an exterior vertex and ι(u) is the unique interior vertex adjacent to it (Item 4,
proposition 2.4). With this information at hand, we define φ on the vertex set of
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Gtop as follows:

φ(u) =

{
bu, if u is an interior vertex,

ζ(u,ι(u)), if u is an exterior vertex.
(1.1)

With some additional effort, this definition can be extended to Gtop yielding the
homeomorphism φ, we refer to §§ 4.1 for more details.

1.2. Connectivity between tropicalizations

Steinitz’ theorem ([34, Chapter 4], theorem 5.1) states that a graph is the
one-skeleton of a three-polytope if and only if it is simple, planar and three-
vertex-connected. A standard proof of this theorem shows a connectivity property
of three-vertex-connected planar graphs with respect to an operation called the
ΔY -transformation. Motivated by this, we prove a connectivity result between the
extended tropicalizations of Schön embeddings (§ 5). We define a tropical analogue
of the notion of ΔY (and Y Δ) transformations. A tropical ΔY transformation is an
operation that transforms a (certain type) of tropical line arrangement to another.
We also use another operation called the contraction-elongation operation due to
Pachner [28] (although in the dual form) and define its tropical analogue. We show
the following connectivity property.

Theorem 1.6. Let G1 and G2 be three-regular, three-connected planar graphs, and
let TG1 and TG2 be the extended tropicalizations of Xsch

G1
and Xsch

G2
, respectively.

There exists a finite sequence consisting of tropical ΔY , tropical Y Δ and tropical
contraction-elongation transformations that transforms TG1 to TG2 .

One potential application of this connectivity result is in carrying out inductive
arguments on the set {TG}G.

A Future Direction: An approach to tropical lifting for (certain) smooth canon-
ical curves by ‘deforming’ the Schön embedding of XG. It seems plausible that this
deformation can be carried out via deformations of the associated Stanley–Reisner
surface.

A Suggestion to the Reader: The construction of the Schön embedding and
the connectivity result (theorem 1.6) nicely lend themselves to illustration. We
recommend skimming over figures 4, 10 and 11 at this point.

2. Preliminaries

2.1. A brief interlude into tropical projective space

We start by briefly recalling tropical projective space, we refer to [23, Chap-
ter 6, Section 2] for a detailed discussion. Analogous to its classical counterpart,
tropical projective space in n-dimensions TP

n can be constructed in different ways,
we describe the one via compactification here. This mimics the construction of
projective space as a torus compactification.

Let (1, . . . , 1)⊥ denote the hyperplane {(y0, . . . , yn)|
∑n

i=0 yi = 0} ⊆ R
n+1. We

consider (1, . . . , 1)⊥ as a model for the tropical torus in n-dimensions. Each point
in (1, . . . , 1)⊥ is a representative of an orbit of tropical multiplication of R on
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R
n+1 via λ � (q0, . . . , qn) = (λ + q0, . . . , λ + qn). We compactify it with the (n + 1)-

coordinate hyperplanes. It is convenient to think of these hyperplanes H0, . . . ,Hn,
say as living at ‘infinity’. In particular, Hi is the intersection of the affine copy
of the hyperplane (0, . . . , 0, 1︸︷︷︸

i

, 0, . . . , 0)⊥ ∩ (1, . . . , 1)⊥ at ‘infinity’. Hence, TP
n

is homeomorphic to the n-simplex, also see [23, Example 6.2.4 and remark 6.2.5].
For each i, the i-dimensional faces of TP

n are in bijection with the i-dimensional
orbits of the standard torus action on P

n. This identification is particularly useful
for visualization purposes. Note that TP

n inherits a topology from the Euclidean
topology on R

n that we also refer to as the Euclidean topology on TP
n.

2.1.1. Tropicalizing into TP
n. In the following, we briefly discuss tropicalization of

a subvariety of projective space into tropical projective space to fit our needs in the
future sections. We refer to [23, Subsection 6.2] for a more thorough treatment of
this topic.

Given a graded ideal I of κ[x1, . . . , xn+1] where κ is an algebraically closed and
valued field, the extended (Kajiwara-Payne) tropicalization tropproj(I) of I (into
TP

n) is defined as the union of the tropicalizations of I when restricted to each
torus orbit of P

n.
Note that each torus orbit of P

n corresponds to a (possibly) empty subset V of
[1, . . . , n + 1]. Its coordinate ring is identified with the Laurent polynomial ring
κ[x±1

j |j /∈ V]. The restriction of I = 〈g1, . . . , gr〉 to this torus orbit is the ideal
Ĩ = 〈g̃1, . . . , g̃r〉 of κ[x±1

j |j /∈ V] where g̃j is obtained from gj by setting each variable
xj where j ∈ V to zero.

Recall that a generating set B of I is called a tropical basis for I if ∩f∈Btrop(f) =
trop(I) [23, Definition 2.6.3]. A homogenous generating set B of I is called an
extended tropical basis for I if ∩f∈Btropproj(f) = tropproj(I).

2.1.2. Linear subspaces of tropical projective space. We primarily encounter
tropicalizations of linear subspaces of projective space, in particular lines.

Definition 2.1 [23, Definition 4.2.1]. A k-dimensional tropicalized linear subspace
in TP

n is defined as the extended tropicalization tropproj(I) of the defining ideal I
of a k-dimensional linear subspace of P

n.

In order to tropicalize an ideal into TP
n, knowing an extended tropical basis

apriori is particularly useful. The linear subspaces we encounter in this paper are
all defined by a set of linear forms with mutually disjoint support. For instance,
the ideal Lv2 = 〈xF1 + xF3 + xF4 , xF2 , xF5〉 from the introduction. Such a linear
subspace has a particularly simple extended tropical basis.

Lemma 2.2. Suppose that the ideal I is generated by non-zero linear forms �1, . . . , �r

such that their supports are mutually disjoint. The set {�1, . . . , �r} is an extended
tropical basis for I.

Proof. Recall that a circuit of I is a linear form whose support is inclusion-minimal.
By [23, Lemma 4.3.16], the circuits of I form a tropical basis for it. The main idea
behind the proof is to apply this lemma to every torus orbit of P

n.
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For any torus orbit of P
n, let �̃j and Ĩ be the restrictions of �j and I, respectively

to this torus orbit. Since the supports of �1, . . . , �r are mutually disjoint, they are
precisely the set of circuits of I. More generally, the set of non-zero elements of
{�̃1, . . . , �̃r} are precisely the set of circuits of Ĩ and by [23, Lemma 4.3.16], we
know that this set is a tropical basis for Ĩ. Hence, {�1, . . . , �r} is an extended
tropical basis for I. �

2.2. Remarks on planar embeddings

In the following, we make precise the sense in which we use the term ‘planar
embedding’ throughout the article and record facts about them that we use fre-
quently. Before this, we note that each edge of G corresponds to an open interval
in Gtop.

Definition 2.3. A planar embedding of a simple graph G is a continuous, injective
function τ : Gtop → R

2 such that the following properties are satisfied:

1. The function τ takes each edge e of Gtop to an open interval.

2. The set R
2 \ (Im(τ)), where Im(τ) is the image of τ , consists of finitely many

connected components. All connected components, except precisely one, are
bounded. The (Euclidean) closure of each bounded connected component is
a convex polygon. The unbounded component is the complement of a convex
polygon.

Recall from the introduction that the Euclidean closures of the bounded compo-
nents are called the interior faces of the planar embedding and the Euclidean closure
of the unbounded component is called the exterior face of the planar embedding.
By Steinitz’ theorem ([34, Chapter 4]), every three-vertex-connected planar graph
G is a one-skeleton of a three-dimensional polytope and an embedding of G can be
obtained via a stereographic projection of this polytope into R

2. We also refer to
the related notion of convex embeddings of planar graphs [22, Chapter 4]. In the
following, we record properties of τ that will be useful in the forthcoming sections.

Proposition 2.4. Let G be a planar graph embedded by τ . The following properties
hold:

1. Three distinct vertices that are pairwise adjacent do not share two distinct
interior faces. Three distinct vertices can share at most one face (interior or
exterior).

2. Every edge is shared by precisely two faces (one of which might be the exte-
rior face). If a pair of distinct vertices are not both exterior vertices and are
adjacent, then they share precisely two interior faces. If both are exterior ver-
tices and are adjacent, then they share precisely one interior face of G. If G
is three-regular and if a pair of distinct vertices are not adjacent, then they
share at most one interior face of G. Furthermore, with the same hypothesis
on G, if both these vertices are exterior vertices that are not adjacent, then
they do not share an interior face.
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3. If G is a three-regular, three-connected graph, then every interior face can
share at most one edge with the exterior face.

4. If G is three-regular, every exterior vertex has a unique interior vertex
adjacent to it.

The proof of proposition 2.4 mainly uses the convexity property of the faces (Item
2, definition 2.3).

3. The Schön embedding of XG

We begin by recalling the Schön embedding of a graph curve XG where G is a three-
regular, three-connected planar graph. Let G be a three-regular, three-connected
planar graph. We label the interior faces of the planar embedding by variables: let
xF be the variable corresponding to the face F . Let R be the graded polynomial
ring with coefficients in κ (the ground field) and variables xF where F ranges over
all the interior faces of the planar embedding of G. We identify P

g−1 with Proj(R).
To each vertex v of G, we associate an ideal Lv defined by a collection of linear

forms as follows. Let Σv be the ideal generated by the variables xF over all interior
faces F that are not incident on v.

1. If v is an interior vertex, then Lv := Σv + 〈xFi
+ xFj

+ xFk
〉 where xFi

, xFj

and xFk
are the variables corresponding to the three interior faces that are

incident on v.

2. If v is an exterior vertex, then Lv := Σv.

In both the cases above, Lv defines a line in P
g−1. We refer to the algebraic curve

in P
g−1 corresponding to the line arrangement defined by Lv as v varies over all

the vertices of G as the Schön embedding of the graph curve XG. As we shall see
in proposition 3.4, this is a canonical embedding of XG.

Proposition 3.1. The dual graph of the Schön embedding of XG is G. Fur-
thermore, the Schön embedding is non-degenerate, i.e. it is not contained in any
hyperplane of P

g−1.

Proof. The first part of the proposition follows by noting that if vertices u 	= v
are adjacent, then, by Item 2, proposition 2.4, they share precisely two distinct
faces Fi and Fj (one of which is the exterior face precisely when both u and v
are exterior vertices). Furthermore, if at least one of u or v is an interior vertex,
then Lu + Lv = 〈xFi

+ xFj
, xF | F is not incident on either u or v 〉 and otherwise,

Lu + Lv = 〈xF | F is not incident on either u or v〉. In both cases, Lu + Lv defines
a point in P

g−1. Conversely, if vertices u 	= v are not adjacent, then by Item 2,
proposition 2.4, Lu + Lv is the irrelevant ideal. Hence, the dual graph of the Schön
embedding is G.

For the second part, suppose for the sake of contradiction that a hyperplane
defined by the linear form

∑
F aF xF contains the Schön embedding. Hence,∑

F aF xF ∈ Lv for all vertices v. For each interior vertex v, the condition that∑
F aF xF ∈ Lv implies that the coefficients aFi

= aFj
= aFk

for the three interior
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faces Fi, Fj and Fk that are incident on v. By Steinitz’ theorem, G is the one-
skeleton of a three-dimensional polytope P . Note that the polar polytope P∨ of
P is also a three-dimensional polytope. Its vertices are in bijection with the faces
of G (including the exterior one). By Steinitz’ theorem, the one-skeleton of P∨ is
three-vertex-connected. Hence, the graph obtained from the one-skeleton of P∨ by
deleting the vertex corresponding to the exterior face of G is connected and this
implies that all the coefficients aF are equal. Hence, the hyperplane must be defined
by

∑
F xF . However, this hyperplane does not contain the line corresponding to Lv

for any exterior vertex v. �

In the following, we describe the Schön embedding in terms of certain Stan-
ley–Reisner ideals. Recall that the Stanley–Reisner ideal of a simplicial complex Δ
with vertex set {1, . . . , n} is a monomial ideal IΔ in κ[x1, . . . , xn], [15]. It is gener-
ated by products of variables

∏
i∈F̄ xi where F̄ ⊆ {1, . . . , n} is a non-face of Δ. We

refer to its associated projective variety as the Stanley–Reisner variety of Δ.
Recall that for a polytope Q, its dual simplicial complex is the simplicial complex

whose vertex set is the set of facets of Q and the simplices are the subsets consisting
of facets of Q whose intersection is non-empty. Let M be the dual simplicial complex
of the three-dimensional polytope P associated to G. Let F be the set of faces (both
interior and exterior) of the planar embedding of G. Note that the vertices of M are
in bijection with the facets of P and the facets of P are in turn in bijection with the
elements of F . Hence, we consider the graded polynomial ring R̃ with coefficients in
κ, with variables xF where F varies over F . We identify P

g with Proj(R̃). Since M is
a two-dimensional simplicial complex, the quotient ring R̃/IM of its Stanley–Reisner
ideal has Krull dimension three [25, Corollary 1.15], [15, Theorem 6.15]. Hence,
it defines a surface SM in P

g referred to as the Stanley–Reisner surface of M .
Furthermore, we identify Proj(R) with the hyperplane

∑
F∈F xF of P

g.
In the following proposition, we show that the Schön embedding is the intersection

of the Stanley–Reisner surface of M with the hyperplane
∑

F∈F xF . Two key facts
to keep in mind are that the number of vertices of G is precisely 2g − 2 where
g is the genus of G and a fact from Stanley–Reisner theory that the irreducible
components of SM are in bijection with the vertices of G. For a homogenous ideal
I, let V (I) be the projective variety defined by it.

Proposition 3.2 (Schön Embedding in terms of the Stanley–Reisner Surface). Let
Isch be the ideal of R generated by polynomials obtained by replacing the variable
xE, corresponding to the exterior face, in each monomial minimal generator of IM

by −
∑

F �=E xF . The projective variety V (Isch) is the Schön embedding of XG.

Proof. The Stanley–Reisner ideal IM is a radical ideal and hence, its primary
decomposition is the intersection of its associated primes. By [15, Proposition
4.11], it has the primary decomposition ∩v∈V (G)Pv where V (G) is the set of
vertices of G and Pv is the ideal generated by the variables xF where F ∈ F
is not incident on v (note the difference with Σv). Hence, the associated Stan-
ley–Reisner surface SM is an arrangement of 2g − 2 two-dimensional planes in P

g.
Note that, for each v, the intersection of V (Pv) with the hyperplane

∑
F∈F xF
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is precisely Lv, via the identification of Proj(R) with the hyperplane
∑

F∈F xF .
Hence, V (IM + 〈

∑
F∈F xF 〉) = V (Isch) is the Schön embedding of XG. �

Remark 3.3. To the best of our knowledge, it is not known whether Isch is a radical
ideal, i.e. if Isch = ∩v∈V (G)Lv or not.

Note that by [4, Corollary 2.2], the canonical bundle of XG is very ample. Next,
we deduce using proposition 3.2 that the Schön embedding of XG is a canonical
embedding.

Proposition 3.4. The Schön embedding is a canonical embedding of XG, i.e. an
embedding by the complete linear series associated to the canonical bundle of XG.

Proof. By proposition 3.1, the dual graph of the Schön embedding is isomorphic to
G. The rest of the proof is based on the proof of [4, Corollary 6.2] where an analo-
gous statement for a general hyperplane section of SM is shown. Since the boundary
of the polar polytope of P is a geometric realization of M , the simplicial complex M
is homeomorphic to a 2-sphere. Hence, by [4, Theorem 6.1] the Stanley–Reisner sur-
face of M has a trivial canonical bundle. By the adjunction formula [33, Proposition
30.4.8], we know that ωG

∼= (ωS ⊗OS
OS(XG))|XG

= (ωS ⊗OS
OS(1))|XG

where ωG

and ωS are the canonical bundles of XG and SM respectively. Hence, we conclude
that ωG

∼= OS(1)|XG
and hence, the Schön embedding is an embedding by a lin-

ear series of ωG. Finally, we note that by proposition 3.1, the Schön embedding is
non-degenerate and that h0(XG, ωG) = g [4, Proposition 1.1] to conclude that the
Schön embedding is an embedding by the complete linear series of ωG. �

As corollary, we obtain the following.

Corollary 3.5. The Schön embedding of XG is independent of the choice of planar
embedding of G.

The following proposition determines an extended tropical basis for the Schön
embedding and will not be used subsequently. We include it for possible future
applications.

Proposition 3.6 (Tropical Basis of the Schön Embedding). The minimal gen-
erating set G of Isch that is presented in proposition 3.2 is an extended tropical
basis.

Proof. Let G = {g1, . . . , gr}. Suppose for the sake of contradiction that G is not
an extended tropical basis, then there is a point p ∈ ∩r

j=1tropproj(gj) that is not
contained in the extended tropicalization of Isch. Since the elements in G are all
products of linear forms, this implies that there is a choice of linear forms �1, . . . , �r

such that �j |gj for each j from one to r and such that p ∈ ∩r
j=1tropproj(�j).

Consider the ideal generated by the linear forms �1, . . . , �r. This ideal con-
tains Isch. Since it is generated by linear forms, its zero locus, being non-empty,
is either a point or an irreducible component of the Schön embedding. Fur-
thermore, any �j is either a variable or of the form

∑
F∈F,F �=E xF where E
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is the exterior face. We claim that �1, . . . , �r is an extended tropical basis. If
�1, . . . , �r are all variables, then this is immediate (also, see lemma 2.2). Other-
wise, we may assume that �r =

∑
F∈F,F �=E xF and �1, . . . , �r−1 are all variables.

Let �′r =
∑

F∈F,F �=E,xF /∈{�1,...,�r−1} xF . By the definition of extended tropicaliza-
tion, we have ∩r

j=1tropproj(�j) = ∩r−1
j=1tropproj(�j) ∩ tropproj(�′r). By lemma 2.2,

the set {�1, . . . , �r−1, �
′
r} is an extended tropical basis for 〈�1, . . . , �r〉 and hence,

so is {�1, . . . , �r}. This implies that p is contained in the extended tropicalization
of 〈�1, . . . , �r〉 and hence, in the extended tropicalization of the Schön embedding.
This is a contradiction. �

Example 3.7. Let C be the one-skeleton of the three-dimensional cube, as shown
in figure 1. The minimal generating set of the Schön embedding of XC described in
proposition 3.2 is the following.

〈xF2xF4 , xF3xF5 , x
2
F1

+ xF1xF2 + xF1xF3 + xF1xF4 + xF1xF5〉.

Hence, the Schön embedding is a complete intersection cut-out by three (degener-
ate) quadrics in P

4 and according to proposition 3.6, these quadrics also form an
extended tropical basis. However, canonical embeddings of graph curves are not, in
general, complete intersections.

4. Tropicalization of the Schön embedding

In the following, we study the extended tropicalization of the Schön embedding
of XG when G is a three-regular, three-connected planar graph. Recall that this
extended tropicalization is contained in TP

g−1 and that TP
g−1 is homeomorphic

to the (g − 1)-simplex. As in the previous section, we identify P
g−1 with Proj(R)

where R = κ[xF | F ranges over the interior faces of the planar embedding of G]
equipped with the standard grading. Note that each facet of TP

g−1 corresponds to
a coordinate hyperplane xF where F is an interior face of the planar embedding
of G. We label each facet of TP

g−1 with the corresponding interior face F . More
generally, we label each i-dimensional face of TP

g−1 for i ∈ [0, . . . , g − 2] with the
union of the labels of each facet containing it. Note that for faces f and g of TP

g−1,
we have f ⊆ g if and only if the label of f contains the label of g. For an algebraically
closed field K with a non-trivial valuation, the homogenous coordinates on P

g−1
K

,
via the extended tropicalization map, induce coordinates on TP

g−1. We refer to
[23, Section 6.2] for more details. In the following, we specify points in TP

g−1 by
corresponding points in P

g−1
K

.
For an edge ξ of TP

g−1 whose label is {F | F /∈ {Fs, Ft}}, we associate a point
mξ ∈ ξ as follows: it is the tropicalization of the point in P

g−1
K

with coordinates
(pF )F such that pFs

, pFt
are both not zero, val(pFs

) = val(pFt
) and pF = 0 for any

interior face F that is neither Fs nor Ft.
Tropicalization of the Irreducible Components: Recall that each irre-

ducible component of the Schön embedding is a line defined by the ideal Lv. If v is an
interior vertex incident on faces Fi, Fj and Fk then Lv = 〈xFi

+ xFj
+ xFk

, xF | F is
an interior face of G not incident on v〉. The extended tropicalization tropproj(Lv)
of Lv is contained in the two-dimensional face Dv of TP

g−1 labelled by {F | F
is an interior face of G not incident on v}. Furthermore, tropproj(Lv) contains
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Figure 2. The extended tropicalization of Lv where v is an interior vertex is shown in thick
lines and the two-dimensional Dv is shown in thin lines. The branch point is depicted by
the square dot and the intersection points of tropproj(Lv) with the boundary of Dv are
depicted by the hollow circular dots.

precisely one branch point (of valence three). The three branches are labelled by
{Fi, Fj}, {Fi, Fk} and {Fj , Fk} according to the two coordinates that are minimum
at each point of that branch, i.e. the sum of the pairs of the corresponding variables
that is the initial form along that branch [23, Definition 3.1.1, Theorem 3.1.3]. Each
such pair of faces shares a unique edge of G and hence, a branch is also labelled by
that edge. The branch with the label {Fs, Ft} intersects the edge ξ of TP

g−1 with
the label {F | F is an interior face that is neither Fs nor Ft} at precisely one point.
This point of intersection ζe, corresponding to the edge e of G, is mξ. Hence, the
point of intersection lies in the relative interior of this edge ξ. We refer to figure 2
for an illustration of tropproj(Lv).

Next, we turn to tropproj(Lv) where v is an exterior vertex. In this case, Lv =
〈xF | F is an interior face of G not incident on v〉 and hence, tropproj(Lv) is equal
to the edge ξv of TP

g−1 with the label {F | F is an interior face of G not incident
on v}.

In the following lemma, we determine the points of intersection between the
tropical lines tropproj(Lu) and tropproj(Lv) where u, v are distinct vertices of G.

Lemma 4.1. Let u and v be distinct vertices of G. The intersection tropproj(Lu) ∩
tropproj(Lv) is non-empty if and only if u and v are adjacent in G. If
tropproj(Lu) ∩ tropproj(Lv) is non-empty, then it is a point and this intersection
point is as follows:

• If u and v are not both exterior vertices, then tropproj(Lu) ∩ tropproj(Lv) is
contained in the relative interior of the edge of TP

g−1 that is labelled by {F | F
is an interior face that does not contain both u and v}.
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• If both u and v are exterior vertices, then tropproj(Lu) ∩ tropproj(Lv) is the
vertex of TP

g−1 that is labelled by {F | F is an interior face that does not contain
both u and v}.

Proof. In the following, we implicitly invoke Item 2, proposition 2.4. Suppose that
u and v are adjacent and let e = (u, v). We distinguish the following cases:

• If both u and v are interior vertices, then the two-dimensional faces Du and Dv

of TP
g−1, that contain tropproj(Lu) and tropproj(Lv) respectively, share an

edge μu,v that is labelled by the set of interior faces that do not contain both u
and v. Both tropproj(Lu) and tropproj(Lv) intersect μu,v at its relative interior,
more precisely at the point ζe (recall from the text preceding this lemma). This
is their only point of intersection. We refer to A, figure 3 for a depiction.

• If one of the two vertices, say u is an interior vertex and the vertex v is an exte-
rior vertex, then recall that tropproj(Lu) is contained in Du and tropproj(Lv)
is equal to the edge ξv of TP

g−1. The label of Du is contained in the label of ξv.
Hence, ξv is an edge of Du and tropproj(Lu) intersects tropproj(Lv) precisely
at the point ζe. Item B, figure 3 illustrates this case.

• If both u and v are exterior vertices, then tropproj(Lu) and tropproj(Lv) are
the edges ξu and ξv, respectively. We refer to B, figure 3 for an illustration.
The vertices u and v share precisely one interior face Fu,v. The edges ξu and ξv

share a vertex whose label is the set of all interior faces apart from Fu,v. This
is the only intersection point of tropproj(Lu) and tropproj(Lv). We refer to C,
figure 3 for an illustration.

If u and v are not adjacent, then by Item 2, proposition 2.4, they share at most
one interior face. The following cases arise:

• If u and v are both interior vertices, then based on whether u and v share an
interior face or not, the two-dimensional faces Du and Dv either share precisely
one vertex or are disjoint. Since tropproj(Lu) intersects each edge of Du in the
relative interior of that edge, we conclude that tropproj(Lu) and tropproj(Lv)
are disjoint.

• If u is an interior vertex and v is an exterior vertex, then ξv is not an edge of
Du. More precisely, based on whether u and v share an interior face or not, Du

and ξv either intersect at a vertex or are disjoint. As in the previous case, we
conclude that tropproj(Lu) and tropproj(Lv) are disjoint.

• If u and v are both exterior vertices, then they do not share an interior face of
G. Hence, ξu = tropproj(Lu) and ξv = tropproj(Lv) are disjoint.

This concludes the proof. �

Next, we use lemma 4.1 to classify the trivalent points of the extended tropical-
ization T of the Schön embedding of XG. Before this, we note that in any planar
embedding of a three-regular graph, every exterior vertex has precisely one inte-
rior vertex adjacent to it. The following lemma will play a key role in constructing
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Figure 3. Intersection of tu = tropproj(Lu) and tv = tropproj(Lv): Figures A, B and
C illustrate the cases where (A) u and v are both interior vertices, (B) u is an interior
vertex and v is an exterior vertex and (C) u and v are both exterior vertices, respectively.

a homeomorphism between Gtop and the extended tropicalization of the Schön
embedding of XG.

Lemma 4.2. The points of T are either bivalent or trivalent. The trivalent points
of T are of the following two distinct types:

• A branch point of tropproj(Lu) where u is an interior vertex.

• An intersection point of tropproj(Lu) and tropproj(Lv) where u is an exterior
vertex and v is the unique interior vertex adjacent to u.

Proof. We start by noting that points in each tropical line are either bivalent or
trivalent as points in that line. If u is an interior vertex, then the tropical line
tropproj(Lu) contains a branch point and this is its only trivalent point. Other-
wise, tropproj(Lu) does not contain a trivalent point. Furthermore, by Lemma 4.1,
tropproj(Lu) (when u is an interior vertex) does not intersect any other tropical
line at its branch point. Hence, each such branch point remains a trivalent point as
a point in T = ∪utropproj(Lu). Any other trivalent point of T must be an inter-
section point of two distinct tropical lines. Suppose that u is an interior vertex and
v is an exterior vertex, and that they are adjacent. Let e = (u, v). By Lemma 4.1,
the intersection point ζe of tropproj(Lu) and tropproj(Lv) is a trivalent point of
tropproj(Lu) ∪ tropproj(Lv), see B, figure 3. In the following, we show that ζe is
not contained in tropproj(Lw) for w /∈ {u, v}. Suppose the contrary, by lemma 4.1,
we deduce that w is adjacent to both u and v, and w is contained in the two interior
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faces that are shared by u and v. By Item 1, proposition 2.4, this is a contradiction.
Hence, ζe is a trivalent point of T .

Next, we show that any other point in T that is an intersection point of tropical
lines is bivalent. Consider the intersection point ζe of tropproj(Lu) and tropproj(Lv)
where u and v are both interior vertices, see A, figure 3. The point ζe is a bivalent
point of tropproj(Lu) ∪ tropproj(Lv). Suppose that, for the sake of contradiction, ζe

is a point of higher valence in T . This implies that there is a vertex w apart from u
and v such that tropproj(Lw) contains ζe. By lemma 4.1, we deduce that the vertices
u, v and w share two distinct interior faces and this is a contradiction by Item 1,
proposition 2.4. Consider the case where u and v are both exterior vertices that are
adjacent. We note that the intersection point ζe of tropproj(Lu) and tropproj(Lv),
as shown in C, figure 3, is a bivalent point of tropproj(Lu) ∪ tropproj(Lv). We show
that it cannot be contained in any other tropical line tropproj(Lw). Suppose the
contrary, by Lemma 4.1, w is adjacent to both u and v, and must be an exterior
vertex (since ζe is a vertex of TP

g−1 and tropproj(Lq) contains a vertex of TP
g−1

precisely when q is an exterior vertex). Furthermore, Lemma 4.1 also implies that
u, v and w share an interior face. Since the vertices u, v and w must be in general
position, their convex hull is a triangle δ and this triangle must be their common
interior face. The graph G is three-regular. Hence, u has another vertex that we
denote by un apart from v and w that is adjacent to it. This vertex un must also be
incident on the exterior face (since un shares two faces with u and is not incident
on the triangle δ) implying that u has three distinct exterior vertices adjacent to
it. Since u is an exterior vertex, this is a contradiction. �

4.1. Proof of theorem 1.3

We construct a homeomorphism φ between Gtop and the extended tropicalization
T of the Schön embedding of XG when G is a three-regular, three-connected planar
graph. Our strategy is to first construct a bijection between the set of trivalent
points of Gtop, i.e. the set of vertices V (G) of G, and the set of trivalent points of
T . For this, we use the description of the trivalent points of T provided by lemma
4.2. We define φ|V (G) as follows. For an interior vertex u, we denote the branch
point of tropproj(Lu) by bu. For an exterior vertex u, let ι(u) denote the unique
interior vertex adjacent to it. Recall that for an edge e = (u, v) of G, we denote by
ζe the (unique) intersection point of tropproj(Lu) and tropproj(Lv). For a vertex
u of G,

φ(u) =

{
bu, if u is an interior vertex,

ζ(u,ι(u)), if u is an exterior vertex.
(4.1)

By lemma 4.2, φ|V (G) is a bijection between V (G) and the set of trivalent points
of T . We extend φ to Gtop via the following observations. Note that, by definition,
Gtop \ V (G) is a disjoint union of open intervals that is in bijection with the edges
of G. Consider the set B of bivalent points of T . By the Bieri-Groves theorem [6],
[23, Theorem 3.3.5], B is also a disjoint union of finitely many open intervals.

Lemma 4.2 yields the following description of these open intervals. Recall, from
the paragraph ‘tropicalization of Irreducible Components’, that each branch of
tropproj(Lu), where u is an interior vertex, is labelled by an edge e that is incident

https://doi.org/10.1017/prm.2024.32 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2024.32


18 M. Manjunath

on u. Consider the set of bivalent points of T that are contained in a branch of
tropproj(Lu) where u is an interior vertex. We denote this set by χu,e. Consider
an exterior vertex u, the set tropproj(Lu) \ {ζ(u,ι(u))} consists of two connected
components. Each connected component is a half-open interval and based on the
intersection point that it contains, it corresponds to an edge e of the form (u, v)
where v is an exterior vertex. We denote this component by χu,e. There are three
types of open intervals, they are as follows.

1. If e = (u, v) where u and v are both interior vertices, then the set χu,e ∪ χv,e

is an open interval.

2. If e = (u, v) such that u is an interior vertex and v is an exterior vertex, then
χu,e is an open interval.

3. If e = (u, v) where u and v are both exterior vertices, then the set χu,e ∪ χv,e

is an open interval.

We denote each of these three types of open intervals by χe where e is the cor-
responding edge. We extend φ to Gtop as follows. Suppose that Ie is the open line
segment in Gtop corresponding to the edge e. We define φ|Ie to be any homeomor-
phism between Ie and χe that when extended to Īe by taking u to φ(u) and v to
φ(v) induces a homeomorphism between Īe and χ̄e. This completes the definition
of φ.

Finally, we note that φ is a homeomorphism between Gtop and T . We start by
noting that, by construction, φ is a bijection. Let N(u) be the open neighbour-
hood (∪e|u∈eIe) ∪ {u} of the vertex u ∈ Gtop. Similarly, let N(φ(u)) be the open
neighbourhood (∪e|u∈eχe) ∪ {φ(u)} of the trivalent point φ(u) ∈ T . Note that, by
construction, the endpoints of χ̄e are precisely φ(u) and φ(v) for each e = (u, v).
Hence, we deduce that φ induces a homeomorphism between N(u) and N(φ(u)) for
every vertex u of G. This shows that φ is a bijective local homeomorphism and is
hence, also a homeomorphism.

We refer to figure 4 for the case when G is the envelope graph. The graph G is
shown on the left and the extended tropicalization of the Schön embedding of XG is
shown in thick lines on the right. Note that this tropicalization is contained in TP

3

which is identified with a three-dimensional simplex. It is contained in two facets
of this simplex and these two facets are the visible facets in the figure. The image
φ(i) of φ on i is denoted by φi. The open interval χ(i,j) is denoted by χi,j and is the
open interval corresponding to the segment with endpoints φi and φj that appears
just below the symbol χi,j in the figure.

5. Connectivity between tropicalizations of the Schön embedding

In this subsection, we show theorem 1.6 that states that the set of extended
tropicalizations of Schön embeddings of XG (as G varies over simple, three-regular,
three-connected graphs) is connected via certain ‘local’ operations. Recall from the
introduction that these local operations are tropical analogues of ΔY , Y Δ and
contraction-elongation transformations, and are motivated by Steinitz’ theorem.
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Figure 4. An illustration of the homeomorphism φ in the case when G is the envelope
graph.

Figure 5. Y Δ and ΔY transformations.

We start by recalling Steinitz’ theorem [34, Chapter 4] and a part of this standard
proof.

Theorem 5.1 (Steinitz’ theorem). A graph is the one-skeleton of a three-
dimensional polytope if and only if it is simple, planar and three-vertex-connected.

A key ingredient in the proof is the notion of a ΔY transformation, i.e. replace a
Δ-subgraph (a triangular face) by a Y -subgraph. More formally, a ΔY transforma-
tion replaces a triangle that bounds a face by a three-star that connects the same
set of vertices. This operation is reversed for a Y Δ transformation. Figure 5 illus-
trates the transformations in the case of three-regular graphs, the situation that is
relevant for us.

A simple Y Δ transformation is a Y Δ transformation followed by edge contrac-
tions to eliminate valence two vertices and replacing each set of resulting parallel
edges by corresponding single edges. A key step in the proof is to show that every
three-vertex-connected planar graph can be obtained from K4 by a sequence of
simple Y Δ transformations.

We take cue from this part of the proof. Since we are concerned with three-regular
planar graphs rather than arbitrary planar graphs, we employ a sequence of ‘local
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Figure 6. Contraction-elongation transformation.

operations’ that transform a three-regular, three-connected planar graph to K4

that keep the properties three-regular and three-connected invariant. We perform
the following two operations:

1. ΔY (and Y Δ) transformations.

2. Pachner’s contraction-elongation transformations, as shown in figure 6. We
say that the operation is performed along the edge e1.

Pachner [28] shows that for any simplicial two-sphere there is a sequence of moves
consisting of the so-called 0-move, that is dual to the ΔY transformation, and the
2-move, that is dual to the contraction-elongation operation, that transforms it to
a tetrahedron. In the light of Steinitz’ theorem, the dual version of this statement is
that for any three-regular, three-connected planar graph, there is a sequence of ΔY
and contraction-elongation transformations that transforms it to K4 while main-
taining the three-regularity and the three-connectivity properties. Nevertheless, we
include a proof of this property in Appendix A for easy reference and since the
original paper of Pachner is written in German.

In the following, we define tropical analogues of the notion of Y Δ and contraction-
elongation transformations. We define these operations on any tropical line arrange-
ment in tropical projective space TP

n given some additional data. Our primary
example in the current article of such a tropical line arrangement is the extended
tropicalization T of the Schön embedding of XG where G is a three-regular, three-
connected planar graph. However, these operations can be carried out in greater
generality and can be a topic of future investigation.

Given a finite set [0, . . . , n], consider tropical projective space TP
n (identified with

the n-simplex) each of whose facets are labelled by a distinct element in [0, . . . , n].
Suppose we fix the following additional data: for each edge ξ of TP

n, we fix a unique
point ρξ in the relative interior of ξ that we refer to as the marked point of ξ. For
each two-dimensional face D of TP

n, there is a unique branched tropical line4 T LD

4By a ‘branched tropical line’, we mean the one-skeleton of the normal fan of a triangle. Note
that we do not impose the balancing and the rational slope conditions.
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Figure 7. A tropical Y Δ transformation at a two-dimensional face.

contained in D that passes through ρξ for each edge ξ that is contained in D.
This tropical line is the collection of three rays, corresponding to the three marked
points, emanating from the origin in the interior of D (note that the interior of D
is identified with R

2 via the extended tropicalization map). We refer to T LD as the
standard tropical line associated to D.

In the following, we identify TP
g−1 with a facet of TP

g. Note that given a two-
dimensional face D of TP

g−1, there is a unique three-dimensional face βD of TP
g

that contains D and the unique vertex ν of TP
g that is not contained in TP

g−1.

Definition 5.2 (Tropical Y Δ Transformation at a Two-Dimensional Face). A
tropical Y Δ transformation of a tropical line arrangement T ⊂ TP

g−1 at a two-
dimensional face D of TP

g−1 such that T contains the standard line of D is
the tropical line arrangement T̂ := (T \ T LD) ∪ T LD(1) ∪ T LD(2) ∪ T LD(3) where
D(1), D(2) and D(3) are the two-dimensional faces of βD apart from D.

We refer to figure 7 for an illustration of a tropical Y Δ transformation at the
face {2, 3, 4}. The tropical line a is the standard tropical line of {2, 3, 4} and the
tropical lines b, c and d are the standard tropical lines of {1, 2, 4}, {1, 2, 3} and
{1, 3, 4} respectively.

Given an edge ξ of TP
g−1, there is a unique two-dimensional face Dξ of TP

g that
contains ξ and the vertex ν of TP

g not in TP
g−1.

Definition 5.3 (Tropical Y Δ Transformation at an Edge). A tropical Y Δ trans-
formation of T at an edge ξ of TP

g−1 that is also contained in T is the tropical
line arrangement T̂ = (T \ ξ) ∪ T L(Dξ) ∪ ξ(1) ∪ ξ(2) where ξ(1) and ξ(2) are the two
edges of Dξ apart from ξ.

Figure 8 illustrates a tropical Y Δ transformation at the edge ξ, the tropical line
a is the standard tropical line of Dξ.

For any pair of two-dimensional faces (D1,D2) of T Pg−1 that shares a common
edge, let βD1,D2 be the unique three-dimensional face of T Pg−1 that contains both
D1 and D2.

https://doi.org/10.1017/prm.2024.32 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2024.32


22 M. Manjunath

Figure 8. A tropical Y Δ transformation at an edge.

Figure 9. A tropical contraction-elongation transformation.

Definition 5.4 (Tropical Contraction-Elongation Transformation). A tropical
contraction-elongation transformation of a tropical line arrangement T at a pair
of two-dimensional faces (D1,D2) of TP

g−1 that shares a common edge and such
that T contains both T LD1 and T LD2 is defined as the tropical line arrangement
T \ (T LD1 ∪ T LD2) ∪ T LD̄1

∪ T LD̄2
where D̄1 and D̄2 are the two-dimensional

faces of βD1,D2 apart from D1 and D2.

We refer to figure 9 for an example. The tropical lines a and b are the standard
tropical lines of the faces {1, 2, 4} and {1, 3, 4} respectively and the tropical lines c
and d are the standard tropical lines of {1, 2, 3} and {2, 3, 4} respectively.

In the following, we relate the Y Δ transformation and the contraction-elongation
transformation to their tropical analogues. The set up is as in § 4. For each edge
ξ of TP

g−1, we set ρξ := mξ (recall its definition from § 4: suppose that Fs and Ft

are the two interior faces that do not contain ξ, the point mξ is the tropicalization
of the point in P

g−1
K

with coordinates (pF )F such that pFs
, pFt

are both not zero,
val(pFs

) = val(pFt
) and pF = 0 for any interior face F that is neither Fs nor Ft).

With this choice of marked points, the standard tropical line of each two-
dimensional face D of TP

g−1 is the extended tropicalization of the line defined by
〈xFi

+ xFj
+ xFk

, xF | F /∈ {Fi, Fj , Fk}〉 where Fi, Fj and Fk are the three facets of
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TP
g−1 not containing D. In the following, we denote the extended tropicalization

of the Schön embedding of XG by TG. Recall, from § 4, that corresponding to each
interior vertex u of G, there is a unique two-dimensional face Du of TP

g−1 that
contains tropproj(Lu).

Proposition 5.5. Suppose that the graph G2 is the result of a Y Δ transformation
of G1 at an interior vertex u. The extended tropicalization TG2 is the result of a
tropical Y Δ transformation of TG1 at Du with respect to the marked points {mξ}ξ.

Proof. Note that TG2 = TG1 \ {tropproj(Lu)} ∪ tropproj(Lu(1)) ∪ tropproj(Lu(2)) ∪
tropproj(Lu(3)) where u(1), u(2) and u(3) are the three vertices of Δ, the new face
that is created by the transformation. Consider the three-dimensional subsimplex
β of TP

g whose label is the complement of the set {Fi, Fj , Fk,Δ} where Fi, Fj

and Fk are the three interior faces of G1 that contain u. The two-dimensional face
Du is a face of β. The proof follows from the observation that the other three
two-dimensional faces of β are precisely Du(i) for each i from one to three. �

Recall that for an exterior vertex u of G, the tropical line tropproj(Lu) coincides
with an edge of TP

g−1.

Proposition 5.6. Suppose that the graph G2 is the result of a Y Δ transformation
of G1 at an exterior vertex u. The extended tropicalization TG2 is the result of a
tropical Y Δ transformation of TG1 at the edge tropproj(Lu) with respect to the
marked points {mξ}ξ.

The proof of proposition 5.6 is analogous to the proof of proposition 5.5.

Proposition 5.7. Suppose that the graph G2 is the result of a contraction-
elongation transformation of G1 along the edge e = (u, v) (both u and v are interior
vertices). The extended tropicalization TG2 is the result of a tropical contraction-
elongation transformation of TG1 at the pair (Du,Dv) with respect to the marked
points {mξ}ξ.

The proof follows a strategy akin to that of proposition 5.5.

Proof. Suppose that Fi, Fk are the two faces incident on e and that Fj (Fl,
respectively) is the other face incident on u (v, respectively). Consider the three-
dimensional subsimplex β of TP

g−1 that is labelled by the complement of the set
{Fi, Fj , Fk, Fl}. Suppose that Di,Dj ,Dk and Dl are the four two-dimensional faces
of β defined by the property that the label of Dr additionally contains Fr for
r ∈ {i, j, k, l}. The proof follows from the observation that TG2 = TG1 \ (T L(Dj) ∪
T L(Dl)) ∪ (T L(Di) ∪ T L(Dk)). �

Definition 5.8. Tropical line arrangements T1 and T2 in tropical projective space
are said to be related by a tropical ΔY transformation if one of them, T2 say, is
a tropical Y Δ transform of the other. We say that T1 is a tropical ΔY transform
of T2.
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Figure 10. A sequence of Y Δ and contraction-elongation transformations.

As a corollary to propositions 5.5 and 5.6, we obtain:

Corollary 5.9. Suppose that the graph G1 is the result of a ΔY transformation
on G2. The extended tropicalization TG1 is a tropical ΔY transform of TG2 with
respect to the marked points {mξ}ξ.

As a corollary to Pachner’s result (lemma A.2) and the correspondence between
ΔY , Y Δ, contraction-elongation transformations and their respective tropical
analogues, we obtain theorem 1.6.

Example 5.10. Consider the one-skeleton of the three-dimensional cube. A
sequence of transformations following lemma A.2 to transform it into K4 is shown
in figure 10. This sequence is the one-skeleton of the following polytopes:

cube → triangular prism sliced at a vertex → triangular prism → tetrahedron.

The tropical counterpart of the sequence is shown in figure 11. �
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Figure 11. The corresponding tropical operations.
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Appendix A. ΔY and contraction-elongation transformations

Recall that an exterior vertex of a planar embedding is a vertex that is not incident
on the exterior face. The following characteriztion of three-regular, three-connected
planar graphs turns out be useful.

Lemma A.1. Let G be a simple, three-regular, two-edge-connected planar graph.
The graph G is three-edge-connected if and only if for any planar embedding of G,
no two non-adjacent exterior vertices share an interior face.

Proof. ⇒ Suppose that there is a planar graph G with a planar embedding such
that there exist two non-adjacent exterior vertices u and v that share an interior
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Figure A.12. Two exterior vertices sharing an interior face.

face F . Since G is three-regular, for each of these vertices there is a unique edge
incident on it that is shared by both the interior face F and the exterior face.
Suppose that e1 and e2 are such edges incident on u and v, respectively. We claim
that deleting edges e1 and e2 will disconnect the graph. To see this, consider an arc
A1 contained (in the interior of) the exterior face such that the closure of A1 (with
respect to this face) contains one interior point p1, say in e1 and one interior point
p2, say in e2 as its two end points. Consider another arc A2 contained in the interior
of F such that the closure of A2 with respect to F is A2 ∪ {p1, p2}. The interior
and exterior regions of the closed curve A1 ∪ A2 ∪ {p1, p2} both intersect G non-
trivially, and A1 ∪ A2 does not intersect G \ {e1, e2}. We conclude that G \ {e1, e2}
is disconnected. Hence, G is not three-edge-connected.

(⇐) Conversely, suppose that G is not a three-edge-connected graph. Suppose
that deleting edges e1 and e2 disconnects G. The edges e1 and e2 cannot share a
vertex v since this implies that the other edge incident on v is a bridge. Hence, in
any planar embedding of G, the edges e1 and e2 bind an interior face F of G, and
are both contained in the exterior face, see figure A.12. The vertices v1 and u2 are
not adjacent, are both exterior vertices and share an interior face. �

Lemma A.2. Every simple, three-regular, three-connected planar graph G can be
transformed to K4 by a sequence of ΔY and contraction-elongation transformations
such that the graph at each step remains a simple, three-regular, three-connected
planar graph.

Proof. The minimum genus of G is three and in this case, it is a K4. Hence, there
is nothing to prove. Otherwise, the genus of G is at least four. We consider a planar
embedding of G and perform the following operations on it.

1. Suppose that G has a triangular face in this embedding then perform a
ΔY transformation on it.

2. Nevertheless, G has an interior face. Consider an interior face F of the
minimum length, k say. By Item 3, proposition 2.4, it has at least k − 1
interior edges (edges not contained in the exterior face). Perform a sequence
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Figure A.13. Forbidden subgraph.

of contraction-elongation transformations on any k − 3 interior edges. This
results in (at least) one triangular face.

3. Perform a ΔY transformation on one of these triangular faces.

We first show that every graph produced by this procedure is simple, three-
regular and three-connected. Any contraction-elongation transformation along an
interior edge does not create a bridge. Suppose it does then this implies that the
bridge is the edge e2, see figure 6. Since if any other edge is a bridge, then the
corresponding edge in the original graph must be a bridge. But if e2 is a bridge,
then the original graph can be disconnected by deleting two edges. For instance,
deleting the edges (u1, v1) and (u3, v2) will disconnect the original graph. Further-
more, this procedure does not alter the exterior face and the set of faces incident
on each exterior vertex remains unaltered. Hence, no two non-adjacent exterior ver-
tices can share an interior face after the operation. Furthermore, the resulting graph
remains simple and three-regular. Hence, by lemma A.1, it remains three-connected.
Next, we show that the graph resulting from a ΔY transformation remains sim-
ple, three-regular and three-connected. For a multiple edge to occur from a ΔY
transformation, some two vertices of the Δ must share a neighbour as shown in
figure A.13. But this contradicts the three-connectivity of the graph on which the
operation is performed, since deleting the edges e1 and e2 would disconnect the
graph. Hence, the graph remains simple. It remains three-regular by construction
and by the proof of Steinitz’ theorem [34, Chapter 4, lemmas 4.2, 4.2*], the graph
remains three-connected. Hence, after each application of either Step 1 or Step 3 the
resulting graph G′ is a simple, three-regular, three-connected graph and its genus
g(G′) = g(G) − 1. We repeat the three operations until the genus of the resulting
graph is three, this graph must be a K4 since it is the only simple, three-regular
graph of genus three. �
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