IDEALS WITH SLIDING DEPTH

J. HERZOG, W.V. VASCONCELOS ${ }^{(*)}$ and R. VILLARREAL

Introduction

We study here a class of ideals of a Cohen-Macaulay ring $\{R, \mathfrak{m}\}$ somewhat intermediate between complete intersections and general CohenMacaulay ideals. Its definition, while a bit technical, rapidly leads to the development of its elementary properties. Let $I=\left(x_{1}, \cdots, x_{n}\right)=(x)$ be an ideal of R and denote by $H_{*}(x)$ the homology of the ordinary Koszul complex $K_{*}(x)$ built on the sequence \boldsymbol{x}. It often occurs that the depth of the module $H_{i}, i>0$, increases with i (as usual, we set depth $(0)=\infty$). We shall say that I satisfies sliding depth if

$$
\begin{equation*}
\operatorname{depth} H_{i}(x) \geq \operatorname{dim}(R)-n+i, \quad i \geq 0 \tag{SD}
\end{equation*}
$$

This definition depends solely on the number of elements in the sequence \boldsymbol{x}. This property localizes (cf. [9]) and is an invariant of even linkage (cf. [10]).

An extreme case of this property is given by a complete intersection. A more general instance of it is that where all the modules H_{i} are CohenMacaulay, a situation that was dubbed strongly Cohen-Macaulay ideals (cf. [11]).

These ideals have appeared earlier in two settings:
(i) The investigation of arithmetical properties of the Rees algebra of I

$$
S=\mathscr{R}(I)=\oplus I^{s},
$$

and of the associated graded ring

$$
G=\operatorname{gr}_{I}(R)=\oplus I^{s} / I^{s+1}
$$

It was shown in [7], [8] and [16] that for ideals satisfying (SD) and such that for each prime P containing I, height $(P)=h t(I) \geq v\left(I_{p}\right)=$ minimum number of generators of the localization I_{p}, both S and G are Cohen-Macaulay. In addition, if R is a Gorenstein ring, G will be Goren-
(*) Partially supported by NSF grant DMS-8301870.
stein precisely when I is strongly Cohen-Macaulay ([9, (6.5)]).
(ii) The other context is that of a generalization and corrections by Huneke ([11]) of a result of Artin-Nagata on residual Cohen-Macaulayness ([1]), i.e. conditions under which for a subideal $J \subset I, J: I$ is CohenMacaulay, $(J: I) \cap I=J$ and $\operatorname{ht}((J: I)+I)>\operatorname{ht}(I)$. It connects with the notion of linkage-when J is a complete intersection-by requiring that I be a strongly Cohen-Macaulay ideal. In turn our extension shows that the assertions of the theorem are intertwined with the sliding depth condition.

Our goals here are the following:
(i) In Section 1 we demark more precisely the distinction between strongly Cohen-Macaulay ideals and ideals with (SD). This is more conveniently done if I is generated by a d-sequence-for ideals with (SD) this is essentially equivalent to requiring that $v\left(I_{p}\right) \leq h t(P)$, for prime ideals $P \supset I$. If one further assumes that R is Gorenstein, and $v\left(I_{p}\right)<\mathrm{ht}(P)-1$ for primes with $\mathrm{ht}(P)>\mathrm{ht}(I)+2$, then I is strongly Cohen-Macaulay. This was proved by Huneke ([11]) using the duality of [6]. We reinforce this result by replacing the last inequality by $v\left(I_{\rho}\right)<\mathrm{ht}(P)$. It still follows from [6] but depends on some quirks of the Koszul complex. The next case-i.e. $v\left(I_{p}\right) \leq h t(P)$-is however critical. What precisely overcomes it is not well-known. Some conditions we impose involve the conormal module I / I^{2}.
(ii) In Section 2 we discuss examples of Cohen-Macaulay prime ideals of codimension three in a regular local ring R, that have (SD), but are not strongly Cohen-Macaulay. It will rely on properties of the divisor class group of R / I. In particular we shall see that if I is the ideal generated by the $n-1$ sized minors of a generic, symmetric, $n \times n$ matrix then I is syzygetic (cf. [7]). For $n=3$ we have the desired example. Its Rees algebra $\mathscr{R}(I)$ is even integrally closed.

We also record an extension of a result of Serre asserting that Gorenstein ideals of codimension two are complete intersections. More generally, one can show that if I is a Cohen-Macaulay of codimension two, then the canonical module of R / I cannot have 2 -torsion.
(iii) In Section 3 the generalization of Huneke's theorem to ideals with sliding depth is given. Some of its elements may be used to construct ideals with sliding depth of a fixed height and various projective dimensions.

We thank Craig Huneke and Aron Simis for several conversations, and also Giuseppe Valla for raising one of our motivating questions.

§ 1. Strongly Cohen-Macaulay ideals

The rings considered throughout will be Noetherian, commutative with an identity. For notation, terminology and basic results-especially those dealing with Koszul complexes and Cohen-Macaulay rings-we shall use [13].

It is convenient to rephrase the condition (SD) for an ideal I in terms of the depths of the cycles and boundaries of the associated Koszul complex. Assume that R is a Cohen-Macaulay local ring of dimension d and that I is generated by the sequence $x=\left\{x_{1}, \cdots, x_{n}\right\}$; put $g=h t(I)$. Denote by Z_{i} and B_{i} the modules of cycles and boundaries of the associated Koszul complex K_{*}. If one uses the defining exact sequences

$$
\begin{gathered}
0 \longrightarrow Z_{i+1} \longrightarrow K_{i+1} \longrightarrow B_{i} \longrightarrow 0 \\
0 \longrightarrow B_{i} \longrightarrow Z_{i} \longrightarrow H_{i} \longrightarrow 0
\end{gathered}
$$

the depth conditions (SD) and (SCM = strongly Cohen-Macaulay) translate as follows:

$$
\operatorname{depth}\left(Z_{i}\right) \geq\left\{\begin{array}{lc}
\min \{d, d-n+i+1\}, & \text { for (SD) } \\
\min \{d, d-g+2\}, & \text { for }(S C M)
\end{array}\right.
$$

We look at the case $i=n-g$ to examine the role of duality. From now on we assume that R is a Gorenstein ring.

Proposition 1.1. Let R be a Gorenstein local ring of dimension d and I be a Cohen-Macaulay ideal of height g generated by n elements. Then depth $\left(Z_{n-g}\right) \geq \min \{d, d-g+2\}$.

Proof. If $g=0, Z_{n}=0: I=\operatorname{Hom}_{R}(R / I, R)$ is Cohen-Macaulay since R / I is a Cohen-Macaulay module and R is Gorenstein.

If $g=1$, the exact sequence

$$
0 \longrightarrow B_{n-1} \longrightarrow Z_{n-1} \longrightarrow H_{n-1} \longrightarrow 0
$$

yields (${ }^{*} E$ denotes the R-dual $\operatorname{Hom}(E, R)$):

$$
0 \longrightarrow Z_{n-1}^{*} \longrightarrow B_{n-1}^{*} \longrightarrow \operatorname{Ext}^{1}\left(H_{n-1}, R\right) \longrightarrow \operatorname{Ext}^{1}\left(Z_{n-1}, R\right) \longrightarrow 0
$$

Since $B_{n-1}^{*}=R$ and $\operatorname{Ext}^{1}\left(H_{n-1}, R\right)=R / I$ by duality, we get an exact sequence

$$
0 \longrightarrow R / Z_{n-1}^{*} \xrightarrow{\phi} R / I \longrightarrow \operatorname{Ext}^{1}\left(Z_{n-1}, R\right) \longrightarrow 0 .
$$

Since Z_{n-1} is a second syzygy module, the last module has support at primes of height greater than two. In the identification $B_{n-1}^{*}=R, \phi$ maps Z_{n-1}^{*} maps exactly onto I : To see this it suffices to localize at any prime P (necessarily of height 1) associated to either Z_{n-1}^{*} or I. Thus ϕ is essentially the multiplication of R / I into itself via a regular element of the Cohen-Macaulay ring R / I. By the remark above on the support of $\operatorname{Ext}^{1}\left(Z_{n-1}, R\right), \phi$ is an isomorphism.

If $g>1$, consider the sequence

$$
0 \longrightarrow B_{n-g} \longrightarrow Z_{n-g} \longrightarrow H_{n-g} \longrightarrow 0 .
$$

Here B_{n-g} has depth $d-g+1$ while H_{n-g} has depth $d-g$ being the canonical module of R / I. The exact sequence says that depth $\left(Z_{n-g}\right) \geq$ $d-g$. We now test the vanishing of the modules $\operatorname{Ext}^{i}\left(Z_{n-\varepsilon}, R\right)$ for $i=$ $g, g-1$. From above we obtain the homology sequence

$$
\begin{aligned}
& \operatorname{Ext}^{g-1}\left(H_{n-g}, R\right) \longrightarrow \operatorname{Ext}^{g-1}\left(Z_{n-g}, R\right) \longrightarrow \operatorname{Ext}^{g-1}\left(B_{n-g}, R\right) \longrightarrow \\
& \operatorname{Ext}^{g}\left(H_{n-g}, R\right) \longrightarrow \operatorname{Ext}^{g}\left(Z_{n-g}, R\right) \longrightarrow \operatorname{Ext}^{g}\left(B_{n-g}, R\right) .
\end{aligned}
$$

Here $\operatorname{Ext}^{g-1}\left(B_{n-g}, R\right)=R / I$ from the exactness of the tail of the Koszul complex. On the other hand $\operatorname{Ext}^{g}\left(B_{n-g}, R\right)=\operatorname{Ext}^{g-1}\left(H_{n-g}, R\right)=0$, while $\operatorname{Ext}^{g}\left(H_{n-g}, R\right)=R / I$ since R is a Gorenstein ring. Thus we have the exact sequence

$$
0 \longrightarrow \operatorname{Ext}^{g-1}\left(Z_{n-g}, R\right) \longrightarrow R / I \xrightarrow{\phi} R / I \longrightarrow \operatorname{Ext}^{g}\left(Z_{n-g}, R\right) \longrightarrow 0 .
$$

Localizing at primes of height g and $g+1$, we get that ϕ is an isomorphism since Z_{n-g} is a second syzygy module and the desired assertion follows.

Corollary 1.2 (see [2]). Let I be a Cohen-Macaulay ideal of height g that can be generated by $n=g+2$ elements. Then I is strongly CohenMacaulay.

Remark. If $n=g+3$ even the condition (SD) may fail to hold; see Section 2.

Corollary 1.3. Let I be an ideal satisfying (SD). If R/I satisfies Serre's condition S_{2}, then I is Cohen-Macaulay.

Proof. (SD) implies that the canonical module of $R / I, H_{n-8}$, is CohenMacaulay. But the argument above shows that $R / I=\operatorname{Ext}^{g}\left(H_{n-8}, R\right)$ given
the condition S_{2}.
The main result of this section is the following criterion for (SCM).
Theorem 1.4. Let R be a Gorenstein local ring and let I be a CohenMacaulay ideal. If I satisfies (SD) and $v\left(I_{p}\right) \leq \max \{\operatorname{ht}(I)$, ht $(P)-1\}$ for each prime ideal $P \supset I$, then I is strongly Cohen-Macaulay.

Proof. Since (SD) and the other conditions localize (cf. [9]), we may assume that I is (SCM) on the punctured spectrum of R. By adding a set of indeterminates to R and to I, we may assume the height g of I is larger than $n-g+1, n=$ minimum number of generators of the new ideal. This clearly leaves the Koszul homology and (SD) unchanged. The net effect however is that we have a Koszul complex K_{*} whose acyclic tail is longer than the remainder of the complex.
(i) In the conditions above, H_{n-g-i} is the H_{n-g}-dual of H_{i} [11]; to use the theorem of duality of [6]-see also [11]-one has to verify that the left hand side of the inequality

$$
\begin{aligned}
\operatorname{depth}\left(H_{i}\right)+\operatorname{depth}\left(H_{n-g-i}\right) & \geq(d-n+i)+(d-n+n-g-i) \\
& =(d-g)+(d-n)
\end{aligned}
$$

exceeds $(d-g)+1$. If, therefore, $n<d-1$, it will follow that each H_{i} is Cohen-Macaulay.
(ii) To set the tone of the argument in case $n=d-1$, we examine H_{1}. Here depth $\left(H_{n-g-1}\right) \geq d-g-1$ and depth $\left(H_{1}\right) \geq 2$; we will strengthen the first inequality. Suppose it cannot be done and consider the exact sequence

$$
0 \longrightarrow B_{n-g-1} \longrightarrow Z_{n-g-1} \longrightarrow H_{n-g-1} \longrightarrow 0
$$

By (1.1) depth $\left(B_{n-g-1}\right) \geq d-g+1$ so that if depth $\left(H_{n-g-1}\right)=d-g-1$ then depth $\left(Z_{n-g-1}\right)=d-g-1$ as well. It will follow that depth $\left(B_{n-g-2}\right)$ $=d-g-2$. A similar sequence for $i=n-g-2$, again by duality, says that depth $\left(H_{n-g-2}\right)=d-g$ or $d-g-2$. In either case we get that $\operatorname{depth}\left(Z_{n-g-2}\right)=d-g-2$. We repeat this argument until we get

$$
\operatorname{depth}\left(B_{1}\right)=\operatorname{depth}\left(B_{n-g-(n-g-1)}\right)=d-g-(n-g-1)=d-n+1=2
$$

Since depth $\left(Z_{1}\right)=d-g+2>2$, we get a contradiction.
(iii) To set up the induction routine, suppose we have shown that H_{k} and H_{n-g-k} are Cohen-Macaulay; we show that depth $\left(Z_{n-g-k}\right) \geq d-g+2$.

The argument is similar to (1.1). We have the exact homology sequence

$$
\begin{aligned}
0 & \operatorname{Ext}^{g-1}\left(Z_{n-g-k}, R\right) \longrightarrow \operatorname{Ext}^{g-1}\left(B_{n-g-k}, R\right) \longrightarrow \operatorname{Ext}^{g}\left(H_{n-g-k}, R\right) \\
& \operatorname{Ext}^{g}\left(Z_{n-g-k}, R\right) \longrightarrow 0,
\end{aligned}
$$

since depth $\left(B_{n-g-k}\right) \geq d-g+1$, by induction. But we also have the isomorphisms Ext ${ }^{g-1}\left(B_{n-g-k}, R\right)=\operatorname{Ext}^{g-2}\left(Z_{n-g-k+1}, R\right)=\operatorname{Ext}^{g-2}\left(B_{n-g-k+1}, R\right)$ $=\cdots=\operatorname{Ext}^{g-k-1}\left(B_{n-g}, R\right)$. (This is possible by our 'increase' in g.) This last module however, from the self-duality in the Koszul complex, is nothing but H_{k}. Since $\operatorname{Ext}^{g}\left(H_{n-g-k}, R\right)$ is also a Cohen-Macaulay module, as in (1.1) we conclude that depth $\left(Z_{n-g-k}\right) \geq d-g+2$.

It is clear that one only needs this strengthened (SD) to hold in the lower half range of i. In this regard we have

Corollary 1.5. Let I be a Cohen-Macaulay ideal with (SD). If I is a syzygetic ideal and I / I^{2} is a torsion-free R / I-module then H_{1} is a CohenMacaulay module.

Proof. The syzygetic condition on I (cf. [15]) simply means that the natural sequence

$$
H_{1} \longrightarrow(R / I)^{n} \longrightarrow I / I^{2} \longrightarrow 0
$$

is exact on the left. In such case H_{1} satisfies S_{2}, and the argument above goes through.

Remark. If R is not a Gorenstein ring (1.5) does not always hold.

§ 2. Codimension three

We exhibit examples of Cohen-Macaulay ideals of height 3 in regular local rings, generated by d-sequences, satisfying (SD) but not (SCM). Since it is known that ideals in the linkage class of a complete intersection are (SCM) [10], we look at non-Gorenstein ideals. For an ideal I with a presentation

$$
0 \longrightarrow Z \longrightarrow R^{n} \longrightarrow I \longrightarrow 0
$$

one has the following exact sequences

$$
0 \longrightarrow \operatorname{Tor}_{1}(I, R / I) \longrightarrow Z / I Z \longrightarrow(R / I)^{n} \longrightarrow I / I^{2} \longrightarrow 0
$$

and

$$
\Lambda^{2} I \longrightarrow \operatorname{Tor}_{1}(I, R / I) \longrightarrow \delta(I) \longrightarrow 0
$$

where $\delta(I)$ is defined by the associated exact sequence

$$
0 \longrightarrow \delta(I) \longrightarrow H_{1} \longrightarrow(R / I)^{n} \longrightarrow I / I^{2} \longrightarrow 0,
$$

cf. [15]. As remarked, I is called syzygetic if $\delta(I)=0$. If 2 is invertible in R, we can further add that $\operatorname{Tor}_{1}(I, R / I)=\Lambda^{2} I \oplus \delta(I)$.

Theorem 2.1. Let R be a regular local ring of dimension at least 6 with $2 R=R$ and let I be a Cohen-Macaulay ideal of height 3 . Denote by W the canonical module of R / I and let $W^{*}=\operatorname{Hom}_{R / I}(W, R / I)$. Assume that I is syzygetic on the punctured spectrum of R. If W^{*} has depth at least 3 , then I is syzygetic.

Proof. Let

$$
0 \longrightarrow R^{p} \xrightarrow{\psi} R^{m} \longrightarrow R^{n} \longrightarrow I \longrightarrow 0
$$

be a minimal resolution of I. By assumption $\delta(I)$ is a module of finite length so that we only have to show that $\operatorname{Tor}_{1}(I, R / I)$ has depth at least 1. Denote by Z the first-order syzygies of I. We have the exact sequence

$$
0 \longrightarrow \operatorname{Tor}_{2}(I, R / I) \longrightarrow(R / I)^{p} \xrightarrow{\psi \otimes R / I}(R / I)^{m} \longrightarrow Z / I Z \longrightarrow 0 .
$$

On the other hand, $W=\operatorname{coker}\left(\psi^{*}\right)=\operatorname{coker}\left(\psi^{*} \otimes(R / I)\right)$, so that $\operatorname{Tor}_{2}(I, R / I)$ is identified to W^{*} (see [4, supplement] for general comparisons between these two modules). It follows that $Z / I Z$-and $\operatorname{Tor}_{1}(I, R / I)$ along with ithas the required depth.

For the next two corollaries the hypothesis $2 R=R$ is in force.
Corollary 2.2. Let I be the ideal generated by the $(n-1)$-sized $(n>1)$ minors of a generic, symmetric $n \times n$ matrix. Then I is syzygetic.

Proof. The assumption is that $R=k\left[\left[x_{i j}\right]\right]$, where $k=$ field and $x_{i j}$, $1 \leq i, j \leq n$, are indeterminates and the entries of a symmetric matrix $=\phi$. The hypothesis on the punctured spectrum follows by induction and the discussion in [12] of such ideals. On the other hand, Goto [3] proved that R / I is integrally closed with divisor class group $Z /(2)$, generated by the class of W.

Remark. Let I be the ideal generated by the 2×2 minors of a generic 2×4 matrix. In view of the Plücker relations, I is not syzygetic. Since I is a complete intersection on the punctured spectrum of the corresponding ring, W^{*} must have depth 2.

Corollary 2.3. Let I be the ideal generated by the 2×2 minors of a generic, symmetric 3×3 matrix ϕ. Then:
(a) I is generated by a d-sequence, satisfies (SD) but not (SCM).
(b) The Rees algebra of I, $\mathscr{R}(I)$, is an integrally closed, CohenMacaulay domain.
(c) The associated graded ring of $I, \operatorname{gr}_{I}(R)$, is a non-reduced, nonGorenstein, Cohen-Macaulay ring.

Proof. Let d be the determinant of the matrix ϕ. It is easily verified that $d x_{i j} \in I^{2}$ for each entry of ϕ; since $d \notin I^{2}$, the class of d in I / I^{2} is annihilated by the maximal ideal of R. Since I is syzygetic by (2.2), $\operatorname{depth}\left(H_{1}\right)=1$. Furthermore, as $d^{2} \in I^{3}, \operatorname{gr}_{I}(R)$ is non-reduced.
(a) We compute the depths of the modules $Z_{i}, i=1,2$ and 3 , of the Koszul complex on the canonical 6 generators of I. Since depth $\left(H_{1}\right)=1$, $\operatorname{depth}\left(Z_{2}\right)=1+\operatorname{depth}\left(B_{1}\right)=3$. On the other hand, depth $\left(Z_{3}\right)=5$ by (1.1), so that I satisfies (SD) but not (SCM). Moreover, since I is also a complete intersection on the punctured spectrum of R, the approximation complex of I is acyclic and thus I is generated by a d-sequence (cf. [8]).
(b) and (c) follow now from [9, (6.5)], for the Cohen-Macaulay assertions. That $\mathscr{R}(I)$ is integrally closed can be verified either by a direct application of the Jacobian criterion- $\mathscr{R}(I)$ can be presented as a quotient $R\left[T_{i j}\right] / J$, with J derived from the explicit resolution of I-or more rapidly in the following manner. Since $\mathscr{R}(I)$ is Cohen-Macaulay, by Serre's normality criterion it suffices to check the localizations at its height 1 primes. Let P be such a prime and $\mathfrak{p}=P \cap R$. If $\mathfrak{p} \neq \mathfrak{m}=$ maximal ideal of R there is no difficulty since $I_{\mathfrak{p}}$ is a complete intersection. If $\mathfrak{p}=\mathfrak{m}, P=$ $\mathfrak{m} \boldsymbol{R}(I)$. Let Q be the corresponding prime of $R\left[T_{i j}\right]-$ i.e. $Q=\mathfrak{m} R\left[T_{i j}\right]$. Looking at the image of J in the vector space $\left(Q / Q^{2}\right)_{Q}$ one easily gets that it has the desired rank 5.

The crucial hypothesis of (2.2) never occurs in codimension two.
Theorem 2.4. Let R be a regular local ring and let I be a CohenMacaulay ideal of height 2 which is generically a complete intersection. If the class of W in the divisor class monoid of R / I is 2-torsion, then I is a complete intersection.

Proof. Let

$$
0 \longrightarrow R^{n-1} \longrightarrow R^{n} \longrightarrow I \longrightarrow 0
$$

be a resolution of I. Tensoring over with R / I we obtain the exact sequence

$$
0 \longrightarrow \operatorname{Tor}_{1}(I, R / I) \longrightarrow(R / I)^{n-1} \longrightarrow H_{1} \longrightarrow 0,
$$

since I is syzygetic (cf. [15]). As in the proof of (2.1), $\operatorname{Tor}_{1}(I, R / I)=W^{*}$; if the class of W is 2 -torsion, we have the exact sequence

$$
0 \longrightarrow W \longrightarrow(R / I)^{n-1} \longrightarrow H_{1} \longrightarrow 0 .
$$

Since H_{1} is Cohen-Macaulay ([2]) and W is the canonical module of R / I, this sequence will split-as it does so after reduction modulo a maximal regular sequence of R / I. Therefore R / I will be a Gorenstein ring, and hence a complete intersection by Serre's criterion ([14]).

§3. Residually Cohen-Macaulay ideals

We prove here the naturality of sliding depth in a theorem of Huneke ([11]) on residual intersections. We also relate (SD) to various notions of syzygetic sequences (cf. [7]).

In this section (R, \mathfrak{m}) is a Cohen-Macaulay local ring of dimension d with infinite residue field.

Definition 3.1. Let I be an ideal of R and let $x=\left\{x_{1}, \cdots, x_{s}\right\}$ be a sequence of elements of I satisfying:
(1) $\operatorname{ht}((x): I) \geq s \geq g=\operatorname{ht}(I)$.
(2) For all primes $P \supset I$ will ht $(P) \leq s$, one has
(i) $(x)_{p}=I_{p}$;
(ii) $\quad v\left(\left(x_{p}\right) \leq h t(P)\right.$.
I is said to be residually Cohen-Macaulay if for any such sequence, one has:
(a) $R /(x): I$ is Cohen-Macaulay of dimension $d-s$;
(b) $\quad((x: I) \cap I=(x)$;
(c) $\operatorname{ht}((x): I)>\operatorname{ht}((x): I)$.

Remark 3.2. Let $\boldsymbol{x}=\left\{x_{1}, \cdots, x_{s}\right\} I$ be a sequence satisfying (1) and (2) above. Then:
(a) $\operatorname{ht}(x)=h t(I)$;
(b) $v\left((x)_{p}\right) \leq \mathrm{ht}(P)$ for all primes $P \supset(\boldsymbol{x})$.

Proof. (a): Let P be a minimal prime of (x). Suppose $I \not \subset P$; then $((\boldsymbol{x}): I)_{p}=(\boldsymbol{x})_{p}$. It will follow from (1) that ht $(P) \geq s \geq \mathrm{ht}(I)$.
(b): If $\operatorname{ht}(P) \geq s$, the assertion is trivial; if $\operatorname{ht}(P)<s$, the proof of (a) shows that $P \supset I$ and (2) applies.

Theorem 3.3. If I satisfies the sliding depth condition, then I is residually Cohen-Macaulay.

Theorem 3.4. Suppose $v(I) \leq \operatorname{ht}(P)$ for all primes $P \supset I$. The following conditions are equivalent:
(a) I satisfies the sliding depth condition.
(b) I is residually Cohen-Macaulay.
(c) I can be generated by a d-sequence $\left\{x_{1}, \cdots, x_{n}\right\}$ satisfying: $\left(x_{1}\right.$, $\left.\cdots, x_{i+1}\right) /\left(x_{1}, \cdots, x_{i}\right)$ is a Cohen-Macaulay module of dimension $d-i$, for $i=0, \cdots, n-1$.

Remark. The ideals occurring in the filtration of (3.4c) have the following homological properties. Assume that R is a regular local ring and that I is a Cohen-Macaulay ideal of height g. Consider the sequences

$$
0 \longrightarrow I_{i} \longrightarrow I_{i+1} \longrightarrow Q_{i} \longrightarrow 0
$$

where $I_{i}=\left(x_{1}, \cdots, x_{i}\right)$. We claim that the projective dimension of $I_{i}=$ $i-1$ for each $i<n$. Suppose one inequality holds; pick j largest with $\operatorname{pd}\left(I_{j}\right)<j-1$. Note that $j<n-1$ since $I=I_{n}$ is assumed CohenMacaulay and Q_{n-1} has projective dimension $n-1$. Localize R at an associated prime of Q_{j}; this implies that each $Q_{j+k}=0$ for $k>0$, and thus $I_{j+1}=\cdots=I_{n}$. Consider the (localized) sequence

$$
0 \longrightarrow I_{j} \longrightarrow I_{j+1} \longrightarrow Q_{j} \longrightarrow 0 ;
$$

since $\operatorname{pd}\left(Q_{j}\right)=j$ and—now- $\operatorname{pd}\left(I_{j+1}\right)=0$ or $g-1$, we conclude $\operatorname{pd}\left(I_{j}\right)=$ $j-1$, which is a contradiction.

The proofs of (3.3) and (3.4) require some technical lemmata on sliding depth.

Lemma 3.5. Let $\left\{x_{1}, \cdots, x_{k}\right\}$ be a regular sequence in I. Let ")" denote the canonical epimorphism $R \rightarrow R /\left(x_{1}, \cdots, x_{k}\right) . \quad I$ satisfies (SD) if and only if I^{\prime} satisfies (SD) (in R^{\prime}).

Proof. Complete the sequence to a generating set $\boldsymbol{x}=\left\{x_{1}, \cdots, x_{n}\right\}$ of I. The condition follows from the fact that $\operatorname{dim}\left(R^{\prime}\right)=d-k$, and the isomorphism (see [13]):

$$
H_{i}\left(x_{1}, \cdots, x_{n} ; R\right)=H_{i}\left(x_{k+1}^{\prime}, \cdots, x_{n}^{\prime} ; R^{\prime}\right)
$$

Lemma 3.6. Suppose $I \neq 0$, and $I_{p}=0$ for all minimal primes $P \supset I$. Then
(a) $(0: I) \cap I=0$;
(b) $\operatorname{ht}((0: I)+I)=1$.

Moreover, if I satisfies (SD), then so does I^{*}, and $R / 0: I$ is Cohen-Macaulay. (Here "*" denotes the canonical epimorphism $R \rightarrow R /(0: I)$.)

Proof. (a) and (b) follow directly from the Abhyankar-Hartshorne lemma ([5]).

To prove the second assertion of the lemma, we use the exact sequences

$$
0 \longrightarrow L_{i} \longrightarrow H_{i}\left(x_{1}, \cdots, x_{n} ; R\right) \longrightarrow H_{i}\left(x_{1}^{*}, \cdots, x_{n}^{*} ; R^{*}\right) \longrightarrow 0
$$

of [11], where L_{i} is a direct sum of copies of $0: I$.
If I satisfies (SD), then depth $\left(0: I=Z_{n}\right)=d$. From the sequences we have

$$
\operatorname{depth} H_{i}\left(x_{1}^{*}, \cdots, x_{n}^{*} ; R\right) \geq d-n+i \text { for } i<n
$$

while by $(\mathrm{b}) \mathrm{ht}\left(I^{*}\right)=1$, and hence $H_{n}\left(x_{1}^{*}, \cdots, x_{n}^{*} ; R^{*}\right)=0$.
To see that $R / 0: I$ is Cohen-Macaulay, note that $R / 0: I=B_{n-1}$, where $n=v(I)$. The assertion then follows from the exact sequence

$$
0 \longrightarrow B_{n-1} \longrightarrow Z_{n-1} \longrightarrow H_{n-1} \longrightarrow 0
$$

and the fact that Z_{n-1} is Cohen-Macaulay, cf. Section 1.
Lemma 3.7. Suppose I is a generated by a proper sequence $\boldsymbol{x}=$ $\left\{x_{1}, \cdots, x_{n}\right\}$ (cf. [7]). The following conditions are equivalent:
(a) I satisfies (SD).
(b) depth $R /\left(x_{1}, \cdots, x_{i}\right) \geq d-i$, for $i=0, \cdots, n$.
(c) $\operatorname{depth}\left(x_{1}, \cdots, x_{i+1}\right) /\left(x_{1}, \cdots, x_{i}\right) \geq d-i$, for $i=0, \cdots, n-1$.

Proof. Since \boldsymbol{x} is a proper sequence, we have exact sequences

$$
0 \longrightarrow H_{i}\left(x_{1}, \cdots, x_{j}\right) \longrightarrow H_{i}\left(x_{1}, \cdots, x_{j+1}\right) \longrightarrow H_{i-1}\left(x_{1}, \cdots, x_{j}\right) \longrightarrow 0
$$

for all $i>1$. If follows by descending induction that if \boldsymbol{x} satisfies (SD), then depth $H_{1}\left(x_{1}, \cdots, x_{i}\right) \geq d-i+1$ for $i=1, \cdots, n$. It is also clear that, conversely, this diagonal condition will imply that depth $H_{i}\left(x_{1}, \cdots\right.$, $\left.x_{n}\right) \geq d-i+1$ for $i \geq 1$. We shall use this remark further in the proof.

Denote $M_{i}=\left(\left(x_{1}, \cdots, x_{i}\right): x_{i+1}\right) /\left(x_{1}, \cdots, x_{i}\right)$ and $Q_{i}=\left(x_{1}, \cdots, x_{i+1}\right) /\left(x_{i}\right.$, $\left.\cdots, x_{i}\right)$. We have exact sequences:

$$
\begin{equation*}
0 \longrightarrow H_{1}\left(x_{1}, \cdots, x_{i}\right) \longrightarrow H_{1}\left(x_{1}, \cdots, x_{i+1}\right) \longrightarrow M_{i} \longrightarrow 0 \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
0 \longrightarrow M_{i} \longrightarrow R /\left(x_{1}, \cdots, x_{i}\right) \longrightarrow Q_{i} \longrightarrow 0 \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
0 \longrightarrow Q_{i} \longrightarrow R /\left(x_{1}, \cdots, x_{i}\right) \longrightarrow R /\left(x_{1}, \cdots, x_{i+1}\right) \longrightarrow 0 . \tag{3}
\end{equation*}
$$

(b) $\Rightarrow(\mathrm{c})$: Follows from the exact sequence (3).
(c) \Rightarrow (a): Using the exact sequences (1), (2), (3) and the earlier remark the assertion follows by induction on i.
(a) $\Rightarrow(\mathrm{b})$: We show by induction on i that depth $R /\left(x_{1}, \cdots, x_{n-i}\right) \geq d-$ $n+i$. For $i=0$ this is our assumption. Suppose the assertion has been proved for $j=n-i \leq n$, and assume that

$$
\operatorname{depth} R /\left(x_{1}, \cdots, x_{j-1}\right)=k<d-j+1
$$

Now by (1) we have depth $M_{j-1} \geq d-j+1$; hence the map

$$
\alpha: \operatorname{Ext}^{k}\left(R / \mathfrak{m}, R /\left(x_{1}, \cdots, x_{j-1}\right)\right) \longrightarrow \operatorname{Ext}^{t}\left(R / \mathfrak{m}, Q_{j-1}\right)
$$

induced by (2) is injective. On the other hand (3) gives rise to the mapping

$$
\beta: \operatorname{Ext}^{k}\left(R / \mathfrak{m}, Q_{j-1}\right) \longrightarrow \operatorname{Ext}^{k}\left(R / \mathfrak{m}, R /\left(x_{1}, \cdots, x_{j-1}\right)\right)
$$

that is injective as well. It follows that the composite $\beta \alpha$ is injective. But this is a contradiction since $\beta \alpha$ is induced by multiplication by x_{j}, and is thus the null mapping.

Proof of (3.3): Suppose I satisfies (SD), ht $(I)=g$ and $\left\{x_{1}, \cdots, x_{s}\right\}$, $s \geq q$, is a sequence satisfying (1) and (2) of (3.1). All assertions depend solely on the ideal $\left(x_{1}, \cdots, x_{s}\right)$; we may therefore switch to a different set of generators. We use the general position argument of [1] (see [11]) to obtain a system of generators $\left\{x_{1}, \cdots, x_{s}\right\}$ such that for all primes $P \supset I$ with $g \leq h t(P)=k \leq s$ we have
(*)

$$
\left(x_{1}, \cdots, x_{s}\right)_{p}=\left(x_{1}, \cdots, x_{k}\right)_{p}
$$

(see Remark (3.2b)).
We now proceed by induction on s. Let $s=g$. Since by (3.2a)
ht $\left(x_{1}, \cdots, x_{g}\right)=\mathrm{ht}(I)=g$, it follows that $\left\{x_{1}, \cdots, x_{g}\right\}$ is a regular sequence. Denote by "'" the epimorphism $R \rightarrow R /\left(x_{1}, \cdots, x_{g}\right)$. According to (3.5), I^{\prime} satisfies (SD) and therefore $R^{\prime} /\left(0: I^{\prime}\right)$ is Cohen-Macaulay of dimension $d-g$ (cf. 3.6). But $R /\left(x_{1}, \cdots, x_{g}\right): I=R^{\prime} /\left(0: I^{\prime}\right)$, and hence condition (a) in (3.1) is realized. For the conditions (b) and (c), we have by (3.6) that $\left(0: I^{\prime}\right) \cap I^{\prime}=0$ and $\operatorname{ht}\left(\left(0: I^{\prime}\right)+I^{\prime}\right)>0$, which translate as desired.

We now assume that $s>g$.

1. Case $g>0$: This is immediate from (*) and the reduction to the ring R^{\prime}. I^{\prime} and $\left\{x_{1}^{\prime}, \cdots, x_{s}^{\prime}\right\}$ satisfy all the hypotheses of the theorem. By induction the statements (a), (b) and (c) of (3.1) hold then and it is easily lifted to R.
2. Case $g=0$: Let "*" denote the canonical epimorphism $R \rightarrow R / 0: I$. By (3.6) R^{*} is Cohen-Macaulay of dimension d, I^{*} and $\left\{x_{1}^{*}, \cdots, x_{s}^{*}\right\}$ satisfy (1) of (3.1). As for (2), we only have to check that (($\left.\left.x_{1}^{*}, \cdots, x_{s}^{*}\right): I^{*}\right)$ $=\left(\left(x_{1}, \cdots, x_{s}\right): I\right)^{*}$. The inclusion \supset is obvious. Let a^{*} be an element of $\left(x_{1}^{*}, \cdots, x_{s}^{*}\right): I^{*}$; then $a I \subset\left(x_{1}, \cdots, x_{s}\right)+0: I$. For x in I we can therefore write $a x=y+z, y \in\left(x_{1}, \cdots, x_{s}\right), z \in 0: I$. It follows that $z=$ $a x-y$ lies in $I \cap 0: I=0$, by (3.6). Furthermore we now have ht $\left(x_{1}^{*}, \cdots, x_{s}^{*}\right)$ $=\mathrm{ht}\left(I^{*}\right)>0$ and I^{*} satisfies (SD); we are then back in case 1. Therefore $\left\{x_{1}^{*}, \cdots, x_{s}^{*}\right\}$ and I^{*} satisfy (a), (b) and (c) of (3.1); again it is easy to lift back to R.

Proof of (3.4): (a) $\Rightarrow(\mathrm{b})$ is already proved more generally in (3.3).
(b) \Rightarrow (c): Since $v\left(I_{p}\right) \leq \operatorname{ht}(P)$ for all primes $P \supset I$, we may choose generators $\left\{x_{1}, \cdots, x_{n}\right\}$ of I such that
(i) $\left(x_{1}, \cdots, x_{s}\right)_{P}=I_{P}$, for all $P \supset I$, ht $(P) \leq s$, and
(ii) $\operatorname{ht}\left(\left(x_{1}, \cdots, x_{s}\right): I\right) \geq s$.

Since I is residually Cohen-Macaulay, we then have that for $s \geq g=$ ht (I), (a), (b) and (c) of (3.1) hold.

It is clear that $\left\{x_{1}, \cdots, x_{g}\right\}$ is a regular sequence. Next we show that x_{s+1} is not a zero-divisor on $R /\left(x_{1}, \cdots, x_{s}\right): I$ for $g \leq s<n$. It will then follow that $\left(x_{1}, \cdots, x_{s}\right): I=\left(x_{1}, \cdots, x_{s}\right): x_{s+1}$. Together with condition (b) this will imply that $\left\{x_{1}, \cdots, x_{n}\right\}$ is a d-sequence.

Denote by "'" the canonical epimorphism $R \rightarrow R /\left(x_{1}, \cdots, x_{s}\right)$: I. (a) and (c) imply the I^{\prime} contains a non-zero divisor z. Suppose x_{s+1}^{\prime} is a zero divisor. Let $y \in\left(x_{s+1}^{\prime}\right): I^{\prime}$; then $z y \in\left(x_{s+1}^{\prime}\right)$. This shows that $\left(x_{s+1}^{\prime}\right): I^{\prime}$ con-
sists of zero-divisors. Since R^{\prime} is Cohen-Macaulay, this implies that ht $\left(\left(x_{s+1}^{\prime}\right): I^{\prime}\right)=0$, contradicting (a). Since $\left(x_{1}, \cdots, x_{s+1}\right) /\left(x_{1}, \cdots, x_{s}\right)=R /$ $\left(x_{1}, \cdots, x_{s}\right) ; x_{s+1}=R /\left(x_{1}, \cdots, x_{s}\right): I$, the implication is proved.
(c) $\Rightarrow(\mathrm{a}): \quad$ Apply (3.7).

References

[1] M. Artin and M. Nagata, Residual intersection in Cohen-Macaulay rings, J. Math. Kyoto Univ., 12 (1972), 307-323.
[2] L. Avramov and J. Herzog, The Koszul algebra of a codimension 2 embedding, Math. Z., 175 (1980), 249-280.
[3] S. Goto, The divisor class group of a certain Krull domain, J. Math. Kyoto Univ., 17 (1977), 47-50.
[4] A. Grothendieck, Théorèmes de dualité pour les faisceaux algébriques cohérents, Sem. Bourbaki, t. 9 (1956/57).
[5] R. Hartshorne, Complete intersections and connectedness, Amer. J. Math., 84 (1962), 497-508.
[6] R. Hartshorne and A. Ogus, On the factoriality of local rings of small embedding codimension, Comm. Algebra, 1 (1974), 415-437.
[7] J. Herzog, A. Simis and W. V. Vasconcelos, Approximation complexes of blowingup rings. I, J. Algebra, 74 (1982), 466-493.
[8] J. Herzog, A. Simis and W. V. Vasconcelos, Approximation complexes of blowingup rings. II, J. Algebra, 82 (1983), 53-83.
[9] J. Herzog, A. Simis and W. V. Vasconcelos, On the arithmetic and homology of algebras of linear type, Trans. Amer. Math. Soc., 283 (1984), 661-683.
[10] C. Huneke, Linkage and the Koszul homology of ideals, Amer. J. Math., 104 (1982), 1043-1062.
[11] C. Huneke, Strongly Cohen-Macaulay schemes and residual intersections, Trans. Amer. Math. Soc., 277 (1983), 739-763.
[12] T. Józefiak, Ideals generated by minors of a symmetric matrix, Comment. Math. Helv., 53 (1978), 595-607.
[13] H. Matsumura, Commutative Algebra, Benjamin-Cummings, New York, 1980.
[14] J.-P. Serre, Sur les modules projectifs, Sem. Dubreil-Pisot, 1960/61, exposé 2.
[15] A. Simis and W. V. Vasconcelos, The syzygies of the conormal module, Amer. J. Math., 103 (1981), 203-224.
[16] A. Simis and W. V. Vasconcelos, On the dimension and integrality of symmetric algebras, Math. Z., 177 (1981), 341-358.

J. Herzog
Fachbereich Mathematik
Universität Essen
D-4300 Essen 1, W. Germany

W. V. Vasconcelos and R. Villarreal
Department of Mathematics
Rutgers University
New Brunswick, New Jersey 08903 USA

