J. Herzog, W. V. Vasconcelos and R. Villarreal Nagoya Math. J. Vol. 99 (1985), 159-172

IDEALS WITH SLIDING DEPTH

J. HERZOG, W.V. VASCONCELOS^(*) and R. VILLARREAL

Introduction

We study here a class of ideals of a Cohen-Macaulay ring $\{R, m\}$ somewhat intermediate between complete intersections and general Cohen-Macaulay ideals. Its definition, while a bit technical, rapidly leads to the development of its elementary properties. Let $I = (x_1, \dots, x_n) = (x)$ be an ideal of R and denote by $H_*(x)$ the homology of the ordinary Koszul complex $K_*(x)$ built on the sequence x. It often occurs that the depth of the module H_i , i > 0, increases with i (as usual, we set depth $(0) = \infty$). We shall say that I satisfies *sliding depth* if

$$(\mathrm{SD}) \qquad \qquad \mathrm{depth}\, H_i(x) \geq \dim{(R)} - n + i, \quad i \geq 0.$$

This definition depends solely on the number of elements in the sequence x. This property localizes (cf. [9]) and is an invariant of even linkage (cf. [10]).

An extreme case of this property is given by a complete intersection. A more general instance of it is that where all the modules H_i are Cohen-Macaulay, a situation that was dubbed *strongly* Cohen-Macaulay ideals (cf. [11]).

These ideals have appeared earlier in two settings:

(i) The investigation of arithmetical properties of the Rees algebra of I

$$S = \mathscr{R}(I) = \oplus I^s$$
,

and of the associated graded ring

$$G = \operatorname{gr}_{I}(R) = \oplus I^{s}/I^{s+1}$$

It was shown in [7], [8] and [16] that for ideals satisfying (SD) and such that for each prime P containing I, height $(P) = \operatorname{ht} (I) \ge v(I_p) =$ minimum number of generators of the localization I_p , both S and G are Cohen-Macaulay. In addition, if R is a Gorenstein ring, G will be Goren-

Received June 27, 1984.

^(*) Partially supported by NSF grant DMS-8301870.

stein precisely when I is strongly Cohen-Macaulay ([9, (6.5)]).

(ii) The other context is that of a generalization and corrections by Huneke ([11]) of a result of Artin-Nagata on residual Cohen-Macaulayness ([1]), i.e. conditions under which for a subideal $J \subset I$, J:I is Cohen-Macaulay, $(J:I) \cap I = J$ and ht((J:I) + I) > ht(I). It connects with the notion of linkage—when J is a complete intersection—by requiring that I be a strongly Cohen-Macaulay ideal. In turn our extension shows that the assertions of the theorem are intertwined with the sliding depth condition.

Our goals here are the following:

(i) In Section 1 we demark more precisely the distinction between strongly Cohen-Macaulay ideals and ideals with (SD). This is more conveniently done if I is generated by a d-sequence—for ideals with (SD) this is essentially equivalent to requiring that $v(I_p) \leq ht(P)$, for prime ideals $P \supset I$. If one further assumes that R is Gorenstein, and $v(I_p) < ht(P) - 1$ for primes with ht(P) > ht(I) + 2, then I is strongly Cohen-Macaulay. This was proved by Huneke ([11]) using the duality of [6]. We reinforce this result by replacing the last inequality by $v(I_p) < ht(P)$. It still follows from [6] but depends on some quirks of the Koszul complex. The next case—i.e. $v(I_p) \leq ht(P)$ —is however critical. What precisely overcomes it is not well-known. Some conditions we impose involve the conormal module I/I^2 .

(ii) In Section 2 we discuss examples of Cohen-Macaulay prime ideals of codimension three in a regular local ring R, that have (SD), but are not strongly Cohen-Macaulay. It will rely on properties of the divisor class group of R/I. In particular we shall see that if I is the ideal generated by the n-1 sized minors of a generic, symmetric, $n \times n$ matrix then I is syzygetic (cf. [7]). For n = 3 we have the desired example. Its Rees algebra $\Re(I)$ is even integrally closed.

We also record an extension of a result of Serre asserting that Gorenstein ideals of codimension two are complete intersections. More generally, one can show that if I is a Cohen-Macaulay of codimension two, then the canonical module of R/I cannot have 2-torsion.

(iii) In Section 3 the generalization of Huneke's theorem to ideals with sliding depth is given. Some of its elements may be used to construct ideals with sliding depth of a fixed height and various projective dimensions.

We thank Craig Huneke and Aron Simis for several conversations, and also Giuseppe Valla for raising one of our motivating questions.

§1. Strongly Cohen-Macaulay ideals

The rings considered throughout will be Noetherian, commutative with an identity. For notation, terminology and basic results—especially those dealing with Koszul complexes and Cohen-Macaulay rings—we shall use [13].

It is convenient to rephrase the condition (SD) for an ideal I in terms of the depths of the cycles and boundaries of the associated Koszul complex. Assume that R is a Cohen-Macaulay local ring of dimension d and that I is generated by the sequence $x = \{x_1, \dots, x_n\}$; put g = ht(I). Denote by Z_i and B_i the modules of cycles and boundaries of the associated Koszul complex K_* . If one uses the defining exact sequences

$$0 \longrightarrow Z_{i+1} \longrightarrow K_{i+1} \longrightarrow B_i \longrightarrow 0$$
$$0 \longrightarrow B_i \longrightarrow Z_i \longrightarrow H_i \longrightarrow 0$$

the depth conditions (SD) and (SCM = strongly Cohen-Macaulay) translate as follows:

$$ext{depth}\left(Z_i
ight)\geq egin{cases} \min\left\{d,\,d-n+i+1
ight\}, & ext{for (SD)} \ \min\left\{d,\,d-g+2
ight\}, & ext{for (SCM)}. \end{cases}$$

We look at the case i = n - g to examine the role of duality. From now on we assume that R is a Gorenstein ring.

PROPOSITION 1.1. Let R be a Gorenstein local ring of dimension d and I be a Cohen-Macaulay ideal of height g generated by n elements. Then depth $(Z_{n-g}) \ge \min \{d, d-g+2\}$.

Proof. If g = 0, $Z_n = 0$: $I = \text{Hom}_R(R/I, R)$ is Cohen-Macaulay since R/I is a Cohen-Macaulay module and R is Gorenstein.

If g = 1, the exact sequence

 $0 \longrightarrow B_{n-1} \longrightarrow Z_{n-1} \longrightarrow H_{n-1} \longrightarrow 0$

yields (*E denotes the R-dual Hom (E, R)):

$$0 \longrightarrow Z^*_{n-1} \longrightarrow B^*_{n-1} \longrightarrow \operatorname{Ext}^1(H_{n-1}, R) \longrightarrow \operatorname{Ext}^1(Z_{n-1}, R) \longrightarrow 0$$

Since $B_{n-1}^* = R$ and $\text{Ext}^1(H_{n-1}, R) = R/I$ by duality, we get an exact sequence

J. HERZOG, W. V. VASCONCELOS AND R. VILLARREAL

$$0 \longrightarrow R/Z_{n-1}^{*} \xrightarrow{\phi} R/I \longrightarrow \operatorname{Ext}^{1}(Z_{n-1}^{*}, R) \longrightarrow 0.$$

Since Z_{n-1} is a second syzygy module, the last module has support at primes of height greater than two. In the identification $B_{n-1}^* = R$, ϕ maps Z_{n-1}^* maps exactly onto *I*: To see this it suffices to localize at any prime *P* (necessarily of height 1) associated to either Z_{n-1}^* or *I*. Thus ϕ is essentially the multiplication of R/I into itself via a regular element of the Cohen-Macaulay ring R/I. By the remark above on the support of Ext¹ (Z_{n-1}, R), ϕ is an isomorphism.

If g > 1, consider the sequence

$$0 \longrightarrow B_{n-g} \longrightarrow Z_{n-g} \longrightarrow H_{n-g} \longrightarrow 0$$

Here B_{n-g} has depth d - g + 1 while H_{n-g} has depth d - g being the canonical module of R/I. The exact sequence says that depth $(Z_{n-g}) \ge d - g$. We now test the vanishing of the modules $\text{Ext}^i(Z_{n-g}, R)$ for i = g, g - 1. From above we obtain the homology sequence

$$\begin{split} &\operatorname{Ext}^{g_{-1}}(H_{n-g},R) \longrightarrow \operatorname{Ext}^{g_{-1}}(Z_{n-g},R) \longrightarrow \operatorname{Ext}^{g_{-1}}(B_{n-g},R) \longrightarrow \\ &\operatorname{Ext}^{g}(H_{n-g},R) \longrightarrow \operatorname{Ext}^{g}(Z_{n-g},R) \longrightarrow \operatorname{Ext}^{g}(B_{n-g},R) \,. \end{split}$$

Here $\operatorname{Ext}^{g_{-1}}(B_{n-g}, R) = R/I$ from the exactness of the tail of the Koszul complex. On the other hand $\operatorname{Ext}^{g}(B_{n-g}, R) = \operatorname{Ext}^{g_{-1}}(H_{n-g}, R) = 0$, while $\operatorname{Ext}^{g}(H_{n-g}, R) = R/I$ since R is a Gorenstein ring. Thus we have the exact sequence

$$0 \longrightarrow \operatorname{Ext}^{g-1}(Z_{n-g}, R) \longrightarrow R/I \longrightarrow R/I \longrightarrow \operatorname{Ext}^g(Z_{n-g}, R) \longrightarrow 0.$$

Localizing at primes of height g and g + 1, we get that ϕ is an isomorphism since Z_{n-g} is a second syzygy module and the desired assertion follows. \Box

COROLLARY 1.2 (see [2]). Let I be a Cohen-Macaulay ideal of height g that can be generated by n = g + 2 elements. Then I is strongly Cohen-Macaulay.

Remark. If n = g + 3 even the condition (SD) may fail to hold; see Section 2.

COROLLARY 1.3. Let I be an ideal satisfying (SD). If R/I satisfies Serre's condition S_2 , then I is Cohen-Macaulay.

Proof. (SD) implies that the canonical module of R/I, H_{n-g} , is Cohen-Macaulay. But the argument above shows that $R/I = \text{Ext}^g(H_{n-g}, R)$ given

the condition S_2 .

The main result of this section is the following criterion for (SCM).

THEOREM 1.4. Let R be a Gorenstein local ring and let I be a Cohen-Macaulay ideal. If I satisfies (SD) and $v(I_p) \leq \max \{ \operatorname{ht}(I), \operatorname{ht}(P) - 1 \}$ for each prime ideal $P \supset I$, then I is strongly Cohen-Macaulay.

Proof. Since (SD) and the other conditions localize (cf. [9]), we may assume that I is (SCM) on the punctured spectrum of R. By adding a set of indeterminates to R and to I, we may assume the height g of I is larger than n - g + 1, n = minimum number of generators of the new ideal. This clearly leaves the Koszul homology and (SD) unchanged. The net effect however is that we have a Koszul complex K_* whose acyclic tail is longer than the remainder of the complex.

(i) In the conditions above, H_{n-g-i} is the H_{n-g} -dual of H_i [11]; to use the theorem of duality of [6]—see also [11]—one has to verify that the left hand side of the inequality

$$ext{depth}\left(H_{i}
ight)+ ext{depth}\left(H_{n-g-i}
ight)\geq \left(d-n+i
ight)+\left(d-n+n-g-i
ight)
onumber \ =\left(d-g
ight)+\left(d-n
ight)$$

exceeds (d - g) + 1. If, therefore, n < d - 1, it will follow that each H_i is Cohen-Macaulay.

(ii) To set the tone of the argument in case n = d - 1, we examine H_1 . Here depth $(H_{n-g-1}) \ge d - g - 1$ and depth $(H_1) \ge 2$; we will strengthen the first inequality. Suppose it cannot be done and consider the exact sequence

$$0 \longrightarrow B_{n-g-1} \longrightarrow Z_{n-g-1} \longrightarrow H_{n-g-1} \longrightarrow 0.$$

By (1.1) depth $(B_{n-g-1}) \ge d - g + 1$ so that if depth $(H_{n-g-1}) = d - g - 1$ then depth $(Z_{n-g-1}) = d - g - 1$ as well. It will follow that depth $(B_{n-g-2}) = d - g - 2$. A similar sequence for i = n - g - 2, again by duality, says that depth $(H_{n-g-2}) = d - g$ or d - g - 2. In either case we get that depth $(Z_{n-g-2}) = d - g - 2$. We repeat this argument until we get

depth (B_1) = depth $(B_{n-g-(n-g-1)}) = d - g - (n - g - 1) = d - n + 1 = 2$.

Since depth $(Z_1) = d - g + 2 > 2$, we get a contradiction.

(iii) To set up the induction routine, suppose we have shown that H_k and H_{n-g-k} are Cohen-Macaulay; we show that depth $(Z_{n-g-k}) \ge d - g + 2$.

The argument is similar to (1.1). We have the exact homology sequence

$$0 \longrightarrow \operatorname{Ext}^{g-1}(Z_{n-g-k}, R) \longrightarrow \operatorname{Ext}^{g-1}(B_{n-g-k}, R) \longrightarrow \operatorname{Ext}^{g}(H_{n-g-k}, R)$$
$$\longrightarrow \operatorname{Ext}^{g}(Z_{n-g-k}, R) \longrightarrow 0,$$

since depth $(B_{n-g-k}) \ge d-g+1$, by induction. But we also have the isomorphisms $\operatorname{Ext}^{g-1}(B_{n-g-k}, R) = \operatorname{Ext}^{g-2}(Z_{n-g-k+1}, R) = \operatorname{Ext}^{g-2}(B_{n-g-k+1}, R)$ = $\cdots = \operatorname{Ext}^{g-k-1}(B_{n-g}, R)$. (This is possible by our 'increase' in g.) This last module however, from the self-duality in the Koszul complex, is nothing but H_k . Since $\operatorname{Ext}^g(H_{n-g-k}, R)$ is also a Cohen-Macaulay module, as in (1.1) we conclude that depth $(Z_{n-g-k}) \ge d-g+2$.

It is clear that one only needs this strengthened (SD) to hold in the lower half range of i. In this regard we have

COROLLARY 1.5. Let I be a Cohen-Macaulay ideal with (SD). If I is a syzygetic ideal and I/I^2 is a torsion-free R/I-module then H_1 is a Cohen-Macaulay module.

Proof. The syzygetic condition on I (cf. [15]) simply means that the natural sequence

$$H_1 \longrightarrow (R/I)^n \longrightarrow I/I^2 \longrightarrow 0$$

is exact on the left. In such case H_1 satisfies S_2 , and the argument above goes through.

Remark. If R is not a Gorenstein ring (1.5) does not always hold.

§2. Codimension three

We exhibit examples of Cohen-Macaulay ideals of height 3 in regular local rings, generated by d-sequences, satisfying (SD) but not (SCM). Since it is known that ideals in the linkage class of a complete intersection are (SCM) [10], we look at non-Gorenstein ideals. For an ideal Iwith a presentation

 $0 \longrightarrow Z \longrightarrow R^n \longrightarrow I \longrightarrow 0$

one has the following exact sequences

$$0 \longrightarrow \operatorname{Tor}_1(I, R/I) \longrightarrow Z/IZ \longrightarrow (R/I)^n \longrightarrow I/I^2 \longrightarrow 0$$

and

$$\Lambda^2 I \longrightarrow \operatorname{Tor}_1(I, R/I) \longrightarrow \delta(I) \longrightarrow 0$$

where $\delta(I)$ is defined by the associated exact sequence

$$0 \longrightarrow \delta(I) \longrightarrow H_1 \longrightarrow (R/I)^n \longrightarrow I/I^2 \longrightarrow 0$$
,

cf. [15]. As remarked, I is called syzygetic if $\delta(I) = 0$. If 2 is invertible in R, we can further add that $\operatorname{Tor}_1(I, R/I) = \Lambda^2 I \oplus \delta(I)$.

THEOREM 2.1. Let R be a regular local ring of dimension at least 6 with 2R = R and let I be a Cohen-Macaulay ideal of height 3. Denote by W the canonical module of R/I and let $W^* = \text{Hom}_{R/I}(W, R/I)$. Assume that I is syzygetic on the punctured spectrum of R. If W^* has depth at least 3, then I is syzygetic.

Proof. Let

$$0 \longrightarrow R^p \xrightarrow{\Psi} R^m \longrightarrow R^n \longrightarrow I \longrightarrow 0$$

be a minimal resolution of *I*. By assumption $\delta(I)$ is a module of finite length so that we only have to show that $\text{Tor}_1(I, R/I)$ has depth at least 1. Denote by *Z* the first-order syzygies of *I*. We have the exact sequence

$$0 \longrightarrow \operatorname{Tor}_{2}(I, R/I) \longrightarrow (R/I)^{p} \xrightarrow{\psi \otimes R/I} (R/I)^{m} \longrightarrow Z/IZ \longrightarrow 0.$$

On the other hand, $W = \operatorname{coker}(\psi^*) = \operatorname{coker}(\psi^* \otimes (R/I))$, so that $\operatorname{Tor}_2(I, R/I)$ is identified to W^* (see [4, supplement] for general comparisons between these two modules). It follows that Z/IZ—and $\operatorname{Tor}_1(I, R/I)$ along with it—has the required depth.

For the next two corollaries the hypothesis 2R = R is in force.

COROLLARY 2.2. Let I be the ideal generated by the (n-1)-sized (n>1)minors of a generic, symmetric $n \times n$ matrix. Then I is syzygetic.

Proof. The assumption is that $R = k[[x_{ij}]]$, where k = field and x_{ij} , $1 \le i, j \le n$, are indeterminates and the entries of a symmetric matrix $= \phi$. The hypothesis on the punctured spectrum follows by induction and the discussion in [12] of such ideals. On the other hand, Goto [3] proved that R/I is integrally closed with divisor class group Z/(2), generated by the class of W.

Remark. Let I be the ideal generated by the 2×2 minors of a generic 2×4 matrix. In view of the Plücker relations, I is not syzygetic. Since I is a complete intersection on the punctured spectrum of the corresponding ring, W^* must have depth 2.

COROLLARY 2.3. Let I be the ideal generated by the 2×2 minors of a generic, symmetric 3×3 matrix ϕ . Then:

(a) I is generated by a d-sequence, satisfies (SD) but not (SCM).

(b) The Rees algebra of I, $\mathcal{R}(I)$, is an integrally closed, Cohen-Macaulay domain.

(c) The associated graded ring of I, $gr_I(R)$, is a non-reduced, non-Gorenstein, Cohen-Macaulay ring.

Proof. Let d be the determinant of the matrix ϕ . It is easily verified that $dx_{ij} \in I^2$ for each entry of ϕ ; since $d \notin I^2$, the class of d in I/I^2 is annihilated by the maximal ideal of R. Since I is syzygetic by (2.2), depth $(H_1) = 1$. Furthermore, as $d^2 \in I^3$, $gr_I(R)$ is non-reduced.

(a) We compute the depths of the modules Z_i , i = 1, 2 and 3, of the Koszul complex on the canonical 6 generators of I. Since depth $(H_1) = 1$, depth $(Z_2) = 1 + \text{depth}(B_1) = 3$. On the other hand, depth $(Z_3) = 5$ by (1.1), so that I satisfies (SD) but not (SCM). Moreover, since I is also a complete intersection on the punctured spectrum of R, the approximation complex of I is acyclic and thus I is generated by a d-sequence (cf. [8]).

(b) and (c) follow now from [9, (6.5)], for the Cohen-Macaulay assertions. That $\mathscr{R}(I)$ is integrally closed can be verified either by a direct application of the Jacobian criterion— $\mathscr{R}(I)$ can be presented as a quotient $R[T_{ij}]/J$, with J derived from the explicit resolution of I—or more rapidly in the following manner. Since $\mathscr{R}(I)$ is Cohen-Macaulay, by Serre's normality criterion it suffices to check the localizations at its height 1 primes. Let P be such a prime and $\mathfrak{p} = P \cap R$. If $\mathfrak{p} \neq \mathfrak{m} = \mathfrak{m}$ and ideal of R there is no difficulty since $I_{\mathfrak{p}}$ is a complete intersection. If $\mathfrak{p} = \mathfrak{m}, P = \mathfrak{m} R(I)$. Let Q be the corresponding prime of $R[T_{ij}]$ – i.e. $Q = \mathfrak{m}R[T_{ij}]$. Looking at the image of J in the vector space $(Q/Q^2)_Q$ one easily gets that it has the desired rank 5.

The crucial hypothesis of (2.2) never occurs in codimension two.

THEOREM 2.4. Let R be a regular local ring and let I be a Cohen-Macaulay ideal of height 2 which is generically a complete intersection. If the class of W in the divisor class monoid of R/I is 2-torsion, then I is a complete intersection.

Proof. Let

 $0 \longrightarrow R^{n-1} \longrightarrow R^n \longrightarrow I \longrightarrow 0$

be a resolution of I. Tensoring over with R/I we obtain the exact sequence

$$0 \longrightarrow \operatorname{Tor}_{1}(I, R/I) \longrightarrow (R/I)^{n-1} \longrightarrow H_{1} \longrightarrow 0,$$

since I is syzygetic (cf. [15]). As in the proof of (2.1), $\text{Tor}_1(I, R/I) = W^*$; if the class of W is 2-torsion, we have the exact sequence

$$0 \longrightarrow W \longrightarrow (R/I)^{n-1} \longrightarrow H_1 \longrightarrow 0.$$

Since H_1 is Cohen-Macaulay ([2]) and W is the canonical module of R/I, this sequence will split—as it does so after reduction modulo a maximal regular sequence of R/I. Therefore R/I will be a Gorenstein ring, and hence a complete intersection by Serre's criterion ([14]).

§3. Residually Cohen-Macaulay ideals

We prove here the naturality of sliding depth in a theorem of Huneke ([11]) on residual intersections. We also relate (SD) to various notions of syzygetic sequences (cf. [7]).

In this section (R, \mathfrak{m}) is a Cohen-Macaulay local ring of dimension d with infinite residue field.

DEFINITION 3.1. Let I be an ideal of R and let $x = \{x_1, \dots, x_s\}$ be a sequence of elements of I satisfying:

- (1) $ht((x): I) \ge s \ge g = ht(I).$
- (2) For all primes $P \supset I$ will $ht(P) \leq s$, one has
- (i) $(x)_p = I_p;$
- (ii) $v((\mathbf{x}_p) \leq \operatorname{ht}(P)$.

I is said to be *residually Cohen-Macaulay* if for any such sequence, one has:

- (a) R/(x): I is Cohen-Macaulay of dimension d-s;
- (b) $((x: I) \cap I = (x);$
- (c) ht((x): I) > ht((x): I).

Remark 3.2. Let $\mathbf{x} = \{x_1, \dots, x_s\}$ I be a sequence satisfying (1) and (2) above. Then:

- (a) ht(x) = ht(I);
- (b) $v((\mathbf{x})_p) \leq ht(P)$ for all primes $P \supset (\mathbf{x})$.

Proof. (a): Let P be a minimal prime of (x). Suppose $I \not\subset P$; then $((x): I)_p = (x)_p$. It will follow from (1) that ht $(P) \ge s \ge ht(I)$.

(b): If $\operatorname{ht}(P) \ge s$, the assertion is trivial; if $\operatorname{ht}(P) < s$, the proof of (a) shows that $P \supset I$ and (2) applies.

THEOREM 3.3. If I satisfies the sliding depth condition, then I is residually Cohen-Macaulay.

THEOREM 3.4. Suppose $v(I) \leq ht(P)$ for all primes $P \supset I$. The following conditions are equivalent:

(a) I satisfies the sliding depth condition.

(b) I is residually Cohen-Macaulay.

(c) I can be generated by a d-sequence $\{x_1, \dots, x_n\}$ satisfying: $(x_1, \dots, x_{i+1})/(x_1, \dots, x_i)$ is a Cohen-Macaulay module of dimension d - i, for $i = 0, \dots, n - 1$.

Remark. The ideals occurring in the filtration of (3.4c) have the following homological properties. Assume that R is a regular local ring and that I is a Cohen-Macaulay ideal of height g. Consider the sequences

$$0 \longrightarrow I_i \longrightarrow I_{i+1} \longrightarrow Q_i \longrightarrow 0$$

where $I_i = (x_1, \dots, x_i)$. We claim that the projective dimension of $I_i = i - 1$ for each i < n. Suppose one inequality holds; pick j largest with $pd(I_j) < j - 1$. Note that j < n - 1 since $I = I_n$ is assumed Cohen-Macaulay and Q_{n-1} has projective dimension n - 1. Localize R at an associated prime of Q_j ; this implies that each $Q_{j+k} = 0$ for k > 0, and thus $I_{j+1} = \cdots = I_n$. Consider the (localized) sequence

 $0 \longrightarrow I_{j} \longrightarrow I_{j+1} \longrightarrow Q_{j} \longrightarrow 0;$

since $pd(Q_j) = j$ and—now— $pd(I_{j+1}) = 0$ or g-1, we conclude $pd(I_j) = j-1$, which is a contradiction.

The proofs of (3.3) and (3.4) require some technical lemmata on sliding depth.

LEMMA 3.5. Let $\{x_1, \dots, x_k\}$ be a regular sequence in I. Let "'" denote the canonical epimorphism $R \rightarrow R/(x_1, \dots, x_k)$. I satisfies (SD) if and only if I' satisfies (SD) (in R').

Proof. Complete the sequence to a generating set $x = \{x_1, \dots, x_n\}$ of *I*. The condition follows from the fact that dim (R') = d - k, and the isomorphism (see [13]):

$$H_i(x_1, \cdots, x_n; R) = H_i(x_{k+1}', \cdots, x_n'; R')$$
.

LEMMA 3.6. Suppose $I \neq 0$, and $I_p = 0$ for all minimal primes $P \supset I$. Then

- (a) $(0:I) \cap I = 0;$
- (b) ht((0:I) + I) = 1.

Moreover, if I satisfies (SD), then so does I^* , and R/0: I is Cohen-Macaulay. (Here "*" denotes the canonical epimorphism $R \rightarrow R/(0: I)$.)

Proof. (a) and (b) follow directly from the Abhyankar-Hartshorne lemma ([5]).

To prove the second assertion of the lemma, we use the exact sequences

$$0 \longrightarrow L_i \longrightarrow H_i(x_1, \cdots, x_n; R) \longrightarrow H_i(x_1^*, \cdots, x_n^*; R^*) \longrightarrow 0$$

of [11], where L_i is a direct sum of copies of 0: *I*.

If I satisfies (SD), then depth (0: $I = Z_n$) = d. From the sequences we have

$$\operatorname{depth} H_i(x_1^*, \cdots, x_n^*; R) \geq d - n + i \quad ext{for} \quad i < n,$$

while by (b) $ht(I^*) = 1$, and hence $H_n(x_1^*, \dots, x_n^*; R^*) = 0$.

To see that R/0: *I* is Cohen-Macaulay, note that R/0: $I = B_{n-1}$, where n = v(I). The assertion then follows from the exact sequence

 $0 \longrightarrow B_{n-1} \longrightarrow Z_{n-1} \longrightarrow H_{n-1} \longrightarrow 0$

and the fact that Z_{n-1} is Cohen-Macaulay, cf. Section 1.

LEMMA 3.7. Suppose I is a generated by a proper sequence $\mathbf{x} = \{x_1, \dots, x_n\}$ (cf. [7]). The following conditions are equivalent:

(a) I satisfies (SD).

(b) depth $R/(x_1, \dots, x_i) \ge d - i$, for $i = 0, \dots, n$.

(c) depth $(x_1, \dots, x_{i+1})/(x_1, \dots, x_i) \ge d - i$, for $i = 0, \dots, n-1$.

Proof. Since x is a proper sequence, we have exact sequences

$$0 \longrightarrow H_i(x_1, \cdots, x_j) \longrightarrow H_i(x_1, \cdots, x_{j+1}) \longrightarrow H_{i-1}(x_1, \cdots, x_j) \longrightarrow 0$$

for all i>1. If follows by descending induction that if x satisfies (SD), then depth $H_1(x_1, \dots, x_i) \ge d - i + 1$ for $i = 1, \dots, n$. It is also clear that, conversely, this diagonal condition will imply that depth $H_i(x_1, \dots, x_n) \ge d - i + 1$ for $i \ge 1$. We shall use this remark further in the proof.

https://doi.org/10.1017/S0027763000021553 Published online by Cambridge University Press

Denote $M_i = ((x_1, \dots, x_i): x_{i+1})/(x_1, \dots, x_i)$ and $Q_i = (x_1, \dots, x_{i+1})/(x_1, \dots, x_i)$, x_i). We have exact sequences:

$$(1) \qquad 0 \longrightarrow H_1(x_1, \cdots, x_i) \longrightarrow H_1(x_1, \cdots, x_{i+1}) \longrightarrow M_i \longrightarrow 0$$

$$(2) \qquad \qquad 0 \longrightarrow M_i \longrightarrow R/(x_1, \cdots, x_i) \longrightarrow Q_i \longrightarrow 0$$

and

$$(3) \qquad 0 \longrightarrow Q_i \longrightarrow R/(x_1, \cdots, x_i) \longrightarrow R/(x_1, \cdots, x_{i+1}) \longrightarrow 0.$$

(b) \Rightarrow (c): Follows from the exact sequence (3).

(c) \Rightarrow (a): Using the exact sequences (1), (2), (3) and the earlier remark the assertion follows by induction on *i*.

(a) \Rightarrow (b): We show by induction on *i* that depth $R/(x_1, \dots, x_{n-i}) \ge d - n + i$. For i = 0 this is our assumption. Suppose the assertion has been proved for $j = n - i \le n$, and assume that

$$\operatorname{depth} R/\!(x_{\scriptscriptstyle 1},\,\cdots,\,x_{_{j-1}}) = k < d-j+1$$
 .

Now by (1) we have depth $M_{j-1} \ge d - j + 1$; hence the map

 $\alpha: \operatorname{Ext}^{k}(R/\mathfrak{m}, R/(x_{1}, \cdots, x_{j-1})) \longrightarrow \operatorname{Ext}^{\iota}(R/\mathfrak{m}, Q_{j-1})$

induced by (2) is injective. On the other hand (3) gives rise to the mapping

 $\beta: \operatorname{Ext}^{k}(R/\mathfrak{m}, Q_{j-1}) \longrightarrow \operatorname{Ext}^{k}(R/\mathfrak{m}, R/(x_{1}, \cdots, x_{j-1}))$

that is injective as well. It follows that the composite $\beta \alpha$ is injective. But this is a contradiction since $\beta \alpha$ is induced by multiplication by x_{j} , and is thus the null mapping.

Proof of (3.3): Suppose I satisfies (SD), $\operatorname{ht}(I) = g$ and $\{x_1, \dots, x_s\}$, $s \geq q$, is a sequence satisfying (1) and (2) of (3.1). All assertions depend solely on the ideal (x_1, \dots, x_s) ; we may therefore switch to a different set of generators. We use the general position argument of [1] (see [11]) to obtain a system of generators $\{x_1, \dots, x_s\}$ such that for all primes $P \supset I$ with $g \leq \operatorname{ht}(P) = k \leq s$ we have

$$(*) \qquad (x_1, \cdots, x_s)_p = (x_1, \cdots, x_k)_p$$

(see Remark (3.2b)).

We now proceed by induction on s. Let s = g. Since by (3.2a)

ht $(x_1, \dots, x_g) = \text{ht}(I) = g$, it follows that $\{x_1, \dots, x_g\}$ is a regular sequence. Denote by "'" the epimorphism $R \to R/(x_1, \dots, x_g)$. According to (3.5), I' satisfies (SD) and therefore R'/(0: I') is Cohen-Macaulay of dimension d - g (cf. 3.6). But $R/(x_1, \dots, x_g)$: I = R'/(0: I'), and hence condition (a) in (3.1) is realized. For the conditions (b) and (c), we have by (3.6) that $(0: I') \cap I' = 0$ and ht((0: I') + I') > 0, which translate as desired.

We now assume that s > g.

1. Case g > 0: This is immediate from (*) and the reduction to the ring R'. I' and $\{x'_1, \dots, x'_s\}$ satisfy all the hypotheses of the theorem. By induction the statements (a), (b) and (c) of (3.1) hold then and it is easily lifted to R.

2. Case g = 0: Let "*" denote the canonical epimorphism $R \to R/0$: I. By (3.6) R^* is Cohen-Macaulay of dimension d, I^* and $\{x_1^*, \dots, x_s^*\}$ satisfy (1) of (3.1). As for (2), we only have to check that $((x_1^*, \dots, x_s^*):I^*)$ $= ((x_1, \dots, x_s): I)^*$. The inclusion \supset is obvious. Let a^* be an element of $(x_1^*, \dots, x_s^*): I^*$; then $aI \subset (x_1, \dots, x_s) + 0: I$. For x in I we can therefore write ax = y + z, $y \in (x_1, \dots, x_s)$, $z \in 0: I$. It follows that z =ax - y lies in $I \cap 0: I = 0$, by (3.6). Furthermore we now have $ht(x_1^*, \dots, x_s^*)$ $= ht(I^*) > 0$ and I^* satisfies (SD); we are then back in case 1. Therefore $\{x_1^*, \dots, x_s^*\}$ and I^* satisfy (a), (b) and (c) of (3.1); again it is easy to lift back to R.

Proof of (3.4): (a) \Rightarrow (b) is already proved more generally in (3.3).

(b) \Rightarrow (c): Since $v(I_p) \leq ht(P)$ for all primes $P \supset I$, we may choose generators $\{x_1, \dots, x_n\}$ of I such that

- (i) $(x_1, \dots, x_s)_P = I_P$, for all $P \supset I$, ht $(P) \leq s$, and
- (ii) ht $((x_1, \cdots, x_s): I) \geq s$.

Since I is residually Cohen-Macaulay, we then have that for $s \ge g =$ ht (I), (a), (b) and (c) of (3.1) hold.

It is clear that $\{x_1, \dots, x_g\}$ is a regular sequence. Next we show that x_{s+1} is not a zero-divisor on $R/(x_1, \dots, x_s)$: I for $g \leq s < n$. It will then follow that (x_1, \dots, x_s) : $I = (x_1, \dots, x_s)$: x_{s+1} . Together with condition (b) this will imply that $\{x_1, \dots, x_n\}$ is a d-sequence.

Denote by "'" the canonical epimorphism $R \to R/(x_1, \dots, x_s)$: *I*. (a) and (c) imply the *I* contains a non-zero divisor *z*. Suppose x'_{s+1} is a zero divisor. Let $y \in (x'_{s+1})$: *I*'; then $zy \in (x'_{s+1})$. This shows that (x'_{s+1}) : *I*' con-

sists of zero-divisors. Since R' is Cohen-Macaulay, this implies that $ht((x'_{s+1}): I') = 0$, contradicting (a). Since $(x_1, \dots, x_{s+1})/(x_1, \dots, x_s) = R/(x_1, \dots, x_s)$; $x_{s+1} = R/(x_1, \dots, x_s)$: I, the implication is proved. (c) \Rightarrow (a): Apply (3.7).

References

- M. Artin and M. Nagata, Residual intersection in Cohen-Macaulay rings, J. Math. Kyoto Univ., 12 (1972), 307-323.
- [2] L. Avramov and J. Herzog, The Koszul algebra of a codimension 2 embedding, Math. Z., 175 (1980), 249-280.
- [3] S. Goto, The divisor class group of a certain Krull domain, J. Math. Kyoto Univ., 17 (1977), 47-50.
- [4] A. Grothendieck, Théorèmes de dualité pour les faisceaux algébriques cohérents, Sem. Bourbaki, t. 9 (1956/57).
- [5] R. Hartshorne, Complete intersections and connectedness, Amer. J. Math., 84 (1962), 497-508.
- [6] R. Hartshorne and A. Ogus, On the factoriality of local rings of small embedding codimension, Comm. Algebra, 1 (1974), 415-437.
- [7] J. Herzog, A. Simis and W. V. Vasconcelos, Approximation complexes of blowingup rings. I, J. Algebra, 74 (1982), 466-493.
- [8] J. Herzog, A. Simis and W. V. Vasconcelos, Approximation complexes of blowingup rings. II, J. Algebra, 82 (1983), 53-83.
- [9] J. Herzog, A. Simis and W. V. Vasconcelos, On the arithmetic and homology of algebras of linear type, Trans. Amer. Math. Soc., 283 (1984), 661-683.
- [10] C. Huneke, Linkage and the Koszul homology of ideals, Amer. J. Math., 104 (1982), 1043-1062.
- [11] C. Huneke, Strongly Cohen-Macaulay schemes and residual intersections, Trans. Amer. Math. Soc., 277 (1983), 739-763.
- [12] T. Józefiak, Ideals generated by minors of a symmetric matrix, Comment. Math. Helv., 53 (1978), 595-607.
- [13] H. Matsumura, Commutative Algebra, Benjamin-Cummings, New York, 1980.
- [14] J.-P. Serre, Sur les modules projectifs, Sem. Dubreil-Pisot, 1960/61, exposé 2.
- [15] A. Simis and W. V. Vasconcelos, The syzygies of the conormal module, Amer. J. Math., 103 (1981), 203-224.
- [16] A. Simis and W. V. Vasconcelos, On the dimension and integrality of symmetric algebras, Math. Z., 177 (1981), 341-358.

J. Herzog Fachbereich Mathematik Universität Essen D-4300 Essen 1, W. Germany

W. V. Vasconcelos and R. Villarreal Department of Mathematics Rutgers University New Brunswick, New Jersey 08903 USA