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IDEALS WITH SLIDING DEPTH

J. HERZOG, W.V. VASCONCELOS<*> AND R. VILLARREAL

Introduction

We study here a class of ideals of a Cohen-Macaulay ring {R, m}
somewhat intermediate between complete intersections and general Cohen-
Macaulay ideals. Its definition, while a bit technical, rapidly leads to the
development of its elementary properties. Let I = (xu -,xn) = (x) be
an ideal of R and denote by H*(x) the homology of the ordinary Koszul
complex K*(x) built on the sequence JC. It often occurs that the depth
of the module Ht, i > 0, increases with i (as usual, we set depth (0) = oo).
We shall say that I satisfies sliding depth if

(SD) depth H^x) > dim (R) - n + i, i > 0.

This definition depends solely on the number of elements in the sequence
JC. This property localizes (cf. [9]) and is an invariant of even linkage
(cf. [10]).

An extreme case of this property is given by a complete intersection.
A more general instance of it is that where all the modules Ht are Cohen-
Macaulay, a situation that was dubbed strongly Cohen-Macaulay ideals
(cf. [11]).

These ideals have appeared earlier in two settings:
( i ) The investigation of arithmetical properties of the Rees algebra

of J

S = 0t{J) = Θ Is,

and of the associated graded ring

It was shown in [7], [8] and [16] that for ideals satisfying (SD) and
such that for each prime P containing I, height (P)=ht(/) > v(Ip) =
minimum number of generators of the localization Ip, both S and G are
Cohen-Macaulay. In addition, if jR is a Gorenstein ring, G will be Goren-

Received June 27, 1984.
(ϊ!0 Partially supported by NSF grant DMS-8301870.

159

https://doi.org/10.1017/S0027763000021553 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000021553


160 J . HERZOG, W. V. VASCONCELOS AND R. VILLARREAL

stein precisely when I is strongly Cohen-Macaulay ([9, (6.5)]).
(ii) The other context is that of a generalization and corrections by

Huneke ([11]) of a result of Artin-Nagata on residual Cohen-Macaulayness
([1]), i.e. conditions under which for a subideal J a I, J: / is Cohen-
Macaulay, (J : /) Π / = J and ht ((J : I) + /) > ht (J). It connects with
the notion of linkage—when J is a complete intersection—by requiring
that J be a strongly Cohen-Macaulay ideal. In turn our extension shows
that the assertions of the theorem are intertwined with the sliding depth
condition.

Our goals here are the following:

( i ) In Section 1 we demark more precisely the distinction between
strongly Cohen-Macaulay ideals and ideals with (SD). This is more con-
veniently done if I is generated by a d-sequence—for ideals with (SD) this
is essentially equivalent to requiring that v(Ip) < ht (P), for prime ideals
P 3 I. If one further assumes that R is Gorenstein, and v(Ip) < ht(P) — 1
for primes with ht (P) > ht (J) + 2, then I is strongly Cohen-Macaulay.
This was proved by Huneke ([11]) using the duality of [6]. We reinforce
this result by replacing the last inequality by v(Ip) < ht (P). It still
follows from [6] but depends on some quirks of the Koszul complex. The
next case—i.e. v(Ip) < ht (P)—is however critical. What precisely over-
comes it is not well-known. Some conditions we impose involve the
conormal module I/P.

(ii) In Section 2 we discuss examples of Cohen-Macaulay prime
ideals of codimension three in a regular local ring R, that have (SD), but
are not strongly Cohen-Macaulay. It will rely on properties of the divisor
class group of R/L In particular we shall see that if I is the ideal
generated by the n — 1 sized minors of a generic, symmetric, n X n matrix
then I is syzygetic (cf. [7]). For n — 3 we have the desired example. Its
Rees algebra £%(I) is even integrally closed.

We also record an extension of a result of Serre asserting that
Gorenstein ideals of codimension two are complete intersections. More
generally, one can show that if I is a Cohen-Macaulay of codimension two,
then the canonical module of R/I cannot have 2-torsion.

(iii) In Section 3 the generalization of Huneke's theorem to ideals
with sliding depth is given. Some of its elements may be used to con-
struct ideals with sliding depth of a fixed height and various projective
dimensions.

https://doi.org/10.1017/S0027763000021553 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000021553


IDEALS WITH SLIDING DEPTH 161

We thank Craig Huneke and Aron Simis for several conversations,

and also Giuseppe Valla for raising one of our motivating questions.

§ 1. Strongly Cohen-Macaulay ideals

The rings considered throughout will be Noetherian, commutative

with an identity. For notation, terminology and basic results—especially

those dealing with Koszul complexes and Cohen-Macaulay rings—we shall

use [13].

It is convenient to rephrase the condition (SD) for an ideal I in terms

of the depths of the cycles and boundaries of the associated Koszul com-

plex. Assume that R is a Cohen-Macaulay local ring of dimension d and

that / is generated by the sequence x = {xu — ,xn}; put g = ht(I).

Denote by Zt and Bt the modules of cycles and boundaries of the associated

Koszul complex K^. If one uses the defining exact sequences

0 > Zί+1 > Kί+1 > Bi > 0

0 > B, > Zt > Ht • 0

the depth conditions (SD) and (SCM = strongly Cohen-Macaulay) translate

as follows:
d>d-n+i+1}> for(SD)

We look at the case i = n — g to examine the role of duality. From

now on we assume that R is a Gorenstein ring.

PROPOSITION 1.1. Let R be a Gorenstein local ring of dimension d and

I be a Cohen-Macaulay ideal of height g generated by n elements. Then

depth {Zn.g) > min {d, d - g + 2}.

Proof If g = 0, Zn = 0 : 1 = HomΛ (R/I, R) is Cohen-Macaulay since

Rjl is a Cohen-Macaulay module and R is Gorenstein.

If g = 1, the exact sequence

0 • B n _, • Zn_, — • Hn_t • 0

yields (*E denotes the i?-dual Kom(E,R))i

0 • Zti • B*_i > Ext1 (Hn_u R) • Ext1 (Zn,l9 R) • 0

Since B*_i = R and Ext1 (#„_!, R) = Rjl by duality, we get an exact

sequence
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0 —> RjZ^-^RjI —^ Ext1 (ZU R) —> 0 .

Since Zn_1 is a second syzygy module, the last module has support at

primes of height greater than two. In the identification JB*_X = R, φ

maps Z*.! maps exactly onto I: To see this it suffices to localize at any

prime P (necessarily of height 1) associated to either Z*_λ or I. Thus φ

is essentially the multiplication of Rjl into itself via a regular element

of the Cohen-Macaulay ring Rjl. By the remark above on the support

of Ext1 (Zn_u R), φ is an isomorphism.

If g > 1, consider the sequence

0 > Bn_g > Zn_g -—> Hn_g > 0 .

Here Bn_g has depth d — g+1 while Hn_g has depth d — g being the

canonical module of Rjl. The exact sequence says that depth (Zn_g) >

d — g. We now test the vanishing of the modules Ext* (Zn_g, R) for i =

g, g — 1. From above we obtain the homology sequence

Ext*-1 (Hn_g, R) > Ext* 1 (Zn_g, R) > Ext* 1 (Bn_,, R) >

Ext* (Hn_g, R) • Ext* (Zn.g9 R) > Ext* (Bn_g, R).

Here Ext*""1 (Bn_g, R) = R/I from the exactness of the tail of the Koszuί

complex. On the other hand Ext^(Bn_^ R) = Ext*"1 (Hn_g, R) = 0, while

Έxtg(Hn_g, R) = R/I since R is a Gorenstein ring. Thus we have the

exact sequence

0 > Ext* 1 (Zn_g, R) > RII~^> R/I > Ext* {Zn_g, R) > 0 .

Localizing at primes of height g and g + 1, we get that φ is an isomorphism

since Zn_g is a second syzygy module and the desired assertion follows. •

COROLLARY 1.2 (see [2]). Lβί I be a Cohen-Macaulay ideal of height g

that can be generated by n = g + 2 elements. Then I is strongly Cohen-

Macaulay.

Remark. If n — g + 3 even the condition (SD) may fail to hold; see

Section 2.

COROLLARY 1.3. Let I be an ideal satisfying (SD). If Rjl satisfies

Serre's condition S2, then I is Cohen-Macaulay.

Proof. (SD) implies that the canonical module of Rjl, Hn_g, is Cohen-

Macaulay. But the argument above shows that Rjl = Ext* (Hn_g, R) given
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the condition S2. •

The main result of this section is the following criterion for (SCM).

THEOREM 1.4. Let R be a Gorensteίn local ring and let I be a Cohen-

Macaulay ideal. If I satisfies (SD) and v(Ip) < max {ht (/), ht (P) — 1} for

each prime ideal P D /, then I is strongly Cohen-Macaulay.

Proof. Since (SD) and the other conditions localize (cf. [9]), we may

assume that I is (SCM) on the punctured spectrum of R. By adding a set

of indeterminates to R and to 7, we may assume the height g of / is larger

than n — g + 1, n — minimum number of generators of the new ideal.

This clearly leaves the Koszul homology and (SD) unchanged. The net

effect however is that we have a Koszul complex K^ whose acyclic tail is

longer than the remainder of the complex.

( i ) In the conditions above, Hn_g_ί is the Hn_g-dual of Ht [11]; to

use the theorem of duality of [6]—see also [11]—one has to verify that the

left hand side of the inequality

depth (Ht) + depth (Hn_g_z) >(d-n+ΐ) + (d-n+n-g-i)

= (d-g) + (d-ή)

exceeds (d — g) + 1. If, therefore, n < d — 1, it will follow that each Ht

is Cohen-Macaulay.

(ii) To set the tone of the argument in case n — d — 1, we examine

Ht. Here depth(Hn_g_l) > d — g — 1 and depth (i^) > 2; we will strengthen

the first inequality. Suppose it cannot be done and consider the exact

sequence

0 > Bn_g_ί —-> Zn_g_x > Hn_g_x > 0 .

By (1.1) depth (Bn_g.,) >d-g+l so that if depth (Hn_g.x) = d - g - 1

then depth (Zn_g_t) = d — g — 1 as well. It will follow that depth (Bn_g_2)

= d — g — 2. A similar sequence for i = n — g — 2, again by duality,

says that depth(Hn_g_2) = d — g or d — g — 2. In either case we get that

depth (Zn_g_2) = d — g — 2. We repeat this argument until we get

depth (Bd = depth (Bn_g_^g_x)) = d - g - ( n - g - l ) = d - n + l = 2.

Since depth(Zt) — d — g + 2 > 2 , we get a contradiction.
(iii) To set up the induction routine, suppose we have shown that Hk

and Hn_q_k are Cohen-Macaulay; we show that depth(Zn_g_k) > d —g + 2.
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The argument is similar to (1.1). We have the exact homology sequence

0 > Ext*-ι(Zn_g_k9 R) • Ext*"1 (Bn_g_k, R) • Ext*(Hn_g_k, R)

>ExV{Zn_g_k,R) >0,

since depth (Bn_g_k) > d — g + 1, by induction. But we also have the

isomorphisms Ext *"> (£„_*-*, R) = Ext*~2 (Zn_g_k+ί, R) = Ext^2(Bn_g_k+l9 R)

= = Extg-k-ι{Bn.gf R). (This is possible by our 'increase' in g.) This

last module however, from the self-duality in the Koszul complex, is

nothing but Hk. Since Extg (Hn_g_k9 R) is also a Cohen-Macaulay module,

as in (1.1) we conclude that depth (Zn_g_k) > d — g + 2. •

It is clear that one only needs this strengthened (SD) to hold in the

lower half range of L In this regard we have

COROLLARY 1.5. Let I be a Cohen-Macaulay ideal with (SD). If I is

a syzygetίc ideal and I/P is a torsion-free R/I-module then H1 is a Cohen-

Macaulay module.

Proof. The syzygetic condition on I (cf. [15]) simply means that the

natural sequence

Hx > (Rliy > IIP > 0

is exact on the left. In such case Ht satisfies S2, and the argument above

goes through. •

Remark. If R is not a Gorenstein ring (1.5) does not always hold,

§ 2. Codimension three

We exhibit examples of Cohen-Macaulay ideals of height 3 in regular

local rings, generated by d-sequences, satisfying (SD) but not (SCM).

Since it is known that ideals in the linkage class of a complete intersec-

tion are (SCM) [10], we look at non-Gorenstein ideals. For an ideal /

with a presentation

0 >Z >Rn >I >0

one has the following exact sequences

0 > Ύor1 (I, R/I) > Z/IZ • (R/I)n > I\P > 0

and

Λ2I > Tor, (/, RII) > δ(I) > 0
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where δ(I) is defined by the associated exact sequence

0 • δ(I) • H, > (R/IY > I\P > 0 ,

cf. [15]. As remarked, / is called syzygetic if δ(I) = 0. If 2 is invertible

in R, we can further add that Tor^I, R/I) = Λ2I®δ(I).

THEOREM 2.1. Let R be a regular local ring of dimension at least 6

with 2R = R and let I be a Cohen-Macaulay ideal of height 3. Denote by

W the canonical module of Rjl and let W* = ϊlomR/I(W, R/I). Assume

that I is syzygetic on the punctured spectrum of R. If VF* has depth at

least 3, then I is syzygetic.

Proof. Let

0 > Rp — U Rm > Rn > I > 0

be a minimal resolution of I. By assumption δ(I) is a module of finite

length so that we only have to show that Tor! (I, R/I) has depth at least

1. Denote by Z the first-order syzygies of /. We have the exact sequence

0 • Tor2 (I, Rjl) > (R/iy ^ ^ i (R/I)m • ZjIZ • 0 .

On the other hand, W = coker (ψ*) = coker (ψ*®(B//)), so that Tor2(7, R/I)

is identified to W* (see [4, supplement] for general comparisons between

these two modules). It follows that Z/IZ—and Torj (I, R/I) along with i t—

has the required depth. •

For the next two corollaries the hypothesis 2R = R is in force.

COROLLARY 2.2. Let I be the ideal generated by the (n—ΐ)-sized (n>ί)

minors of a generic, symmetric n x n matrix. Then I is syzygetic.

Proof. The assumption is that R = k[[xtj]], where k = field and xίj9

1 < i, j < n, are indeterminates and the entries of a symmetric matrix = φ.

The hypothesis on the punctured spectrum follows by induction and the

discussion in [12] of such ideals. On the other hand, Goto [3] proved that

Rjl is integrally closed with divisor class group Z/(2), generated by the

class of W. •

Remark. Let I be the ideal generated by the 2 x 2 minors of a

generic 2 X 4 matrix. In view of the Plύcker relations, / is not syzygetic.

Since / is a complete intersection on the punctured spectrum of the corre-

sponding ring, W* must have depth 2.
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COROLLARY 2.3. Let I be the ideal generated by the 2 X 2 minors of a

generic, symmetric 3 x 3 matrix φ. Then:

(a) I is generated by a d-sequence, satisfies (SD) but not (SCM).

(b) The Rees algebra of I, &(I), is an integrally closed, Cohen-

Macaulay domain.

(c) The associated graded ring of I, gr7 (R), is a non-reduced, non-

Gorensteίn, Cohen-Macaulay ring.

Proof. Let d be the determinant of the matrix φ. It is easily verified

that dxυeP for each entry of φ; since d&P, the class of d in I/P is

annihilated by the maximal ideal of R. Since I is syzygetic by (2.2),

depth (H^ = 1. Furthermore, as d2 e J3, gr7(ί?) is non-reduced.

(a) We compute the depths of the modules Zi9 i = 1, 2 and 3, of the

Koszul complex on the canonical 6 generators of I. Since depth (H^ = 1,

depth (Z2) = 1 + depth (B,) = 3. On the other hand, depth (Z3) - 5 by (1.1),

so that I satisfies (SD) but not (SCM). Moreover, since I is also a com-

plete intersection on the punctured spectrum of R, the approximation

complex of I is acyclic and thus I is generated by a d-sequence (cf. [8]).

(b) and (c) follow now from [9, (6.5)], for the Cohen-Macaulay asser-

tions. That St(J) is integrally closed can be verified either by a direct

application of the Jacobian criterion—&(I) can be presented as a quotient

R[Tij]IJ, with J derived from the explicit resolution of I—or more rapidly

in the following manner. Since 0tiX) is Cohen-Macaulay, by Serre's nor-

mality criterion it suffices to check the localizations at its height 1 primes.

Let P be such a prime and p = P Pi R. Ί£ p Φ m = maximal ideal of R

there is no difficulty since Ip is a complete intersection. If p = m, P =

mR(I). Let Q be the corresponding prime of R[Ti3] — i.e. Q = miZtΓ^].

Looking at the image of J in the vector space (QIQ2)Q one easily gets that

it has the desired rank 5. •

The crucial hypothesis of (2.2) never occurs in codimension two.

THEOREM 2.4. Let R be a regular local ring and let I be a Cohen-

Macaulay ideal of height 2 which is generically a complete intersection. If

the class of W in the divisor class monoid of Rjl is 2-torsion, then I is a

complete intersection.

Proof. Let

0 >Rn-> >Rn >I >0
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be a resolution of J. Tensoring over with R/I we obtain the exact

sequence

0 —^> Tor, (I, RID > (R/iy-1 > H, > 0 ,

since I is syzygetic (cf. [15]). As in the proof of (2.1), Tor^J, R/I) = W*;

if the class of W is 2-torsion, we have the exact sequence

0 > W > (RII)nί > H, > 0 .

Since Hx is Cohen-Macaulay ([2]) and W is the canonical module of R/I,

this sequence will split—as it does so after reduction modulo a maximal

regular sequence of R/I. Therefore Rjl will be a Gorenstein ring, and

hence a complete intersection by Serre's criterion ([14]). Π

§ 3. Residually Cohen-Macaulay ideals

We prove here the naturality of sliding depth in a theorem of Huneke

([11]) on residual intersections. We also relate (SD) to various notions

of syzygetic sequences (cf. [7]).

In this section (R, m) is a Cohen-Macaulay local ring of dimension d

with infinite residue field.

DEFINITION 3.1. Let I be an ideal of R and let x = {xu , xs} be a

sequence of elements of /satisfying:

(1) h t ( ( Λ r ) : J ) > s > ^ = h t ( / ) .

(2 ) For all primes P z> I will ht (P) < s, one has

( i ) (*)p = / p ;

(ii) !;((*,)< ht(P).

I is said to be residually Cohen-Macaulay if for any such sequence, one has:

( a ) R/(x): I is Cohen-Macaulay of dimension d — s;

(b) ( ( * : i ) Π / = ( * ) ;

( c ) h t ( ( * ) : J ) > h t ((*):/)•

Remark 3.2. Let x = {x1} • • •, xs} I be a sequence satisfying (1) and

(2) above. Then:

( a ) ht(*) = ht(D;

(b) v((x)p) < ht (P) for all primes P 3 (*).

Proof, (a): Let P be a minimal prime of (x). Suppose IφP; then

((JC): I)p = (*)„. It will follow from (1) that ht (P) > s > ht(I).
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(b): If ht(P) > s, the assertion is trivial; if ht(P) < s, the proof of
(a) shows that P D I and (2) applies.

THEOREM 3.3. If I satisfies the sliding depth condition, then I is re-

sidually Cohen-Macaulay.

THEOREM 3.4. Suppose v(I)<ht(P) for all primes Pz)Z. The follow-

ing conditions are equivalent:

(a) I satisfies the sliding depth condition.

(b) I is residually Cohen-Macaulay.

(c) I can be generated by a d-sequence {xl9 ••-,*„} satisfying: (xί9

* •> #z+i)/(*u - - 9 Xi) is a Cohen-Macaulay module of dimension d — i9 for

Remark. The ideals occurring in the filtration of (3.4c) have the fol-

lowing homological properties. Assume that R is a regular local ring

and that I is a Cohen-Macaulay ideal of height g. Consider the sequences

0 >It >Ii+1 >Qt >0

where It = (xu , xt). We claim that the projective dimension of It =

i — 1 for each i < n. Suppose one inequality holds; pick j largest with

pd (Ij) < j — 1. Note that j < n — 1 since I = In is assumed Cohen-

Macaulay and Qn-t has projective dimension n — 1. Localize R at an

associated prime of Q ;; this implies that each QJ+fc = 0 for &>0, and thus

Ij+1 = = In. Consider the (localized) sequence

0—>I 3—>I j + 1—>Qj—>0;

since pd(Q^) = j and—now—pd(J j+1) = 0 or g — 1, we conclude pd(7;) =

j — 1, which is a contradiction. •

The proofs of (3.3) and (3.4) require some technical lemmata on slid-

ing depth.

LEMMA 3.5. Let {xu , xk} be a regular sequence in I. Let " ; "

denote the canonical epίmorphίsm R->R/(xu , xk). I satisfies (SD) //

and only if Γ satisfies (SD) (in R').

Proof. Complete the sequence to a generating set x = {xl9 , xn} of

I. The condition follows from the fact that dim (R') = d — k9 and the iso-

morphism (see [13]):
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Ht(xu , χn; R) = #,(*£+„ , <; R;). Π

LEMMA 3.6. Suppose 1^0, and Ip = 0 for all minimal primes P Z) L

Then

(a) (0:7) Π 7 = 0 ;

(b) ht((0:7) + 7 ) = l .

Moreover, if I satisfies (SD), Z/ιeτι so does 7*, ami 7?/0: 7 is Cohen-Macaulay.

(Here " * " denotes the canonical epίmorphίsm i?-^Λ/(0:1).)

Proof, (a) and (b) follow directly from the Abhyankar-Hartshorne

lemma ([5]).

To prove the second assertion of the lemma, we use the exact

sequences

0 >Lί >Hi(xu . . . , x n ; J B ) >Ht(xf,...9x*;R*) >0

of [11], where Lt is a direct sum of copies of 0:7.

If 7 satisfies (SD), then depth (0: I = Zn) — d. From the sequences

we have

depthHi(xf, - - -, x*;R) > d — n + i for i < n,

while by (b) ht(7*) = 1, and hence Hn(xf, - , x*; Λ*) = 0.

To see that i?/0: 7 is Cohen-Macaulay, note that J?/0: I — Bn_u where

n = v(I). The assertion then follows from the exact sequence

0 >Bn_1 >Zn_x >Hn_, >0

and the fact that Zn_1 is Cohen-Macaulay, cf. Section 1. •

LEMMA 3.7. Suppose I is a generated by a proper sequence x =

{xl9 - - , xn} (cf [7]). The following conditions are equivalent:

(a) 7 satisfies (SD).

(b) depth Rl(xu > xt) > d — ί, for i = 0, , n.

(c) depth (xl9 , xί+ί)l(xu , xd > d - i, for i = 0, , n - 1.

Proof Since x is a proper sequence, we have exact sequences

0 > Ht(xl9 ••-,*,) > Ht(xu , xj+1) > Ht.fa, , xj) > 0

for all i > l . If follows by descending induction t h a t if x satisfies (SD),

then depth Ht (xlf , xt) > d — / + 1 for / = 1, , n. It is also clear

that , conversely, this diagonal condition will imply t h a t depth Ht(xu 9

xn) ^ d — ί + 1 for ί > 1. We shall use this remark further in the proof.
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D e n o t e M, = ((xl9 >9χt): xi+1)/(xl9 , xτ) a n d Qt = (xl9 , ^ i + 1 ) / ( x : ,

• , xj. We have exact sequences:

( 2 ) 0 >M< >RI(x» ••.,*«) >Qt >0

and

( 3 ) o >Qι >R/(xl9 . . . , * , ) >RI(xl9 • , ^ + 1 ) >0.

(b) =̂> (c): Follows from the exact sequence (3).

(c)=Φ(a): Using the exact sequences (1), (2), (3) and the earlier re-

mark the assertion follows by induction on i.

(a) =£> (b): We show by induction on i that depth R/(xu , xn-t) > d —

n + i. For i — 0 this is our assumption. Suppose the assertion has been

proved for j = n — i < n, and assume that

depthR/(xl9 , x,.,) = k < d — j + 1.

Now by (1) we have depth M3_x > d — j + 1; hence the map

α: Extfc(i?/m, i?/(xly , Xj.J) >Extt(R/m, Qj^)

induced by (2) is injective. On the other hand (3) gives rise to the

mapping

β: Extfc (jR/m, Q7 _i) > Extfc (JS/m, Λ/fe, , x^))

that is injective as well. It follows that the composite βa is injective.

But this is a contradiction since βa is induced by multiplication by xj9

and is thus the null mapping. •

Proof of (3.3): Suppose I satisfies (SD), ht(I) = g and {xl9 ---9xs}9

s > q, is a sequence satisfying (1) and (2) of (3.1). All assertions depend

solely on the ideal (xl9 , xs); we may therefore switch to a different set

of generators. We use the general position argument of [1] (see [11]) to

obtain a system of generators {xί9 , xs} such that for all primes P ZD I

with g < ht (P) = k < s we have

( * ) \Xli ' ' ' 9 Xs)p = \Xl9 ' ' ' J %k)p

(see Remark (3.2b)).

We now proceed by induction on s. Let s — g. Since by (3.2a)
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ht (xu - - , xg) = ht (I) = g, it follows that {xl9 , xg) is a regular se-

quence. Denote by " ' " the epimorphism R-+Rj(xl9 , Λ:̂ ). According to

(3.5), 7' satisfies (SD) and therefore i?'/(0: Γ) is Cohen-Macaulay of di-

mension d-g (cf. 3.6). But R/(xu "-, xg): 1= J?7(0: Γ\ and hence

condition (a) in (3.1) is realized. For the conditions (b) and (c), we have

by (3.6) that (0: Γ) Π Γ = 0 and ht((O: Γ) + Γ) > 0, which translate as

desired.

We now assume that s > g.

1. Case g > 0: This is immediate from (*) and the reduction to the

ring R'. V and {x'l9 ••-,#£} satisfy all the hypotheses of the theorem. By

induction the statements (a), (b) and (c) of (3.1) hold then and it is easily

lifted to R.

2. Case g = 0: Let "*" denote the canonical epimorphism R-+RI0: I.

By (3.6) R* is Cohen-Macaulay of dimension d, 7* and {xf, , x*}

satisfy (1) of (3.1). As for (2), we only have to check that ((**, -,**):/*)

= ((#!, , * , ) : / )* . The inclusion ID is obvious. Let α* be an element

of (xf, , xf): I* ; then α/ c (x1? , xs) + 0: I. For x in J we can

therefore write ax = y + z, ye (xu , xs), z e 0: I. It follows that 2 =

αx — y lies in I Π 0: / = 0, by (3.6). Furthermore we now have ht(xf, , xf)

= ht(/*) > 0 and I* satisfies (SD); we are then back in case 1. Therefore

{xf, , xf} and I* satisfy (a), (b) and (c) of (3.1); again it is easy to lift

back to R. •

Proof of (3.4): (a)=>(b) is already proved more generally in (3.3).

(b)=>(c): Since v(Ip) < ht(P) for all primes P Z) 7, we may choose

generators {x19 , xn} of I such that

(i) (xl9 , xs)P = IP9 for all P D /, ht(P) < s, and

(ii) h t ί f c , '-,Xs):I)>s.

Since I is residually Cohen-Macaulay, we then have that for s > g —

ht(7), (a), (b) and (c) of (3.1) hold.

It is clear that {xl9 , xg] is a regular sequence. Next we show that

xs+ί is not a zero-divisor on R/(xl9 , xs): I for g < s < n. It will then

follow that (xl9 - -, xs): I = (x1? , xs): xs+1. Together with condition (b)

this will imply that {xl9 , xn} is a d-sequence.

Denote by t w " the canonical epimorphism R->Rj{xl9 ---9x9):I. (a)

and (c) imply the V contains a non-zero divisor z. Suppose x's+1 is a zero

divisor. Let y e 0 d ) : i 7 ; then 2ye(^ + 1 ). This shows that (x'+1): /' con-
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sists of zero-divisors. Since R is Cohen-Macaulay, this implies that

ht((*ί+ 1): Γ) = 0, contradicting (a). Since (xl9 , x8+1)/(xl9 , xs) = Rf

(xl9 - , xs); xs+ί = Rl(xly - - , xs): I, the implication is proved.

(c)φ(a): Apply (3.7). Π
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