Interaction of fish oil and a glucocorticoid on metabolic responses to an oral glucose load in healthy human subjects

Jacques Delarue1*, Chang-Hong Li2, Richard Cohen3, Charlotte Corporeau1 and Brigitte Simon4

1Equipe d’Accueil 948 ‘Oxylipides’, Laboratoire Régional de Nutrition Humaine, Faculté de Médecine de Brest & CHU, F-29200 Brest, France
2Jeune Equipe 313 ‘Lipides et Croissance’, Faculté de Médecine, F-37000 Tours, France
3Fédération de Biochimie, biologie spécialisée, immunoanalyse, Hôpital Edouard Herriot, F-69000 Lyon, France
4Equipe d’Accueil 948 ‘Oxylipides’, Faculté de Médecine de Brest, F-29200 Brest, France

(Received 7 April 2005 – Revised 11 September 2005 – Accepted 21 September 2005)

Compared with saturated fat, n-3 long-chain PUFA-rich fish oil improves insulin sensitivity in rats. We studied whether n-3 long-chain PUFA could prevent insulin resistance induced by dexamethasone (a glucocorticoid) in healthy human volunteers. A group of eight subjects was studied twice after a 2d dexamethasone treatment, before and after a 3-week supplementation with fish oil (providing daily doses of 1·1g 20:5n-3 and 0·7g 22:6n-3). The subjects were studied during the basal state and over the 6h following an oral glucose load (1g/kg). Plasma glucose fluxes were traced with [6,6-2H2]glucose and [13C]glucose (naturally 13C-enriched corn glucose). Substrate oxidation was obtained from indirect calorimetry.

In rats, fish oil substitution in a high-fat or a high-sucrose diet prevents insulin resistance induced by dexamethasone (a glucocorticoid) in healthy human volunteers. A group of eight subjects was studied twice after a 2d dexamethasone treatment, before and after a 3-week supplementation with fish oil (providing daily doses of 1·1g 20:5n-3 and 0·7g 22:6n-3). The subjects were studied during the basal state and over the 6h following an oral glucose load (1g/kg). Plasma glucose fluxes were traced with [6,6-2H2]glucose and [13C]glucose (naturally 13C-enriched corn glucose). Substrate oxidation was obtained from indirect calorimetry. Following fish oil supplementation, plasma glucose fluxes and substrate oxidation were maintained despite a 17% reduction (P<0.05) in the area under the curve of plasma insulin response, suggesting an insulin-sensitizing effect.

Eicosapentaenoic acid: Docosahexaenoic acid: Polyunsaturated fatty acids: Stable isotopes: Insulin resistance
daily) was able to prevent, at least in part, the metabolic alterations induced by a 2 d treatment with dexamethasone in healthy subjects following an oral glucose load (1 g/kg).

Subjects and methods

Subjects

Eight healthy subjects (six males, two females; mean age 25.4 (SE 0.2) years, mean weight 61.5 (SE 3.2) kg and mean BMI 20.7 (SE 1.2) kg/m²) were studied. The subjects were in good health, non-smokers and were not taking any drugs. None had a personal or family history of diabetes or hypertension. The subjects did not regularly take part in any strenuous physical activity and had no history of endurance training. Female subjects were studied during the follicular phase of their menstrual cycle. The experimental protocol was approved by the Ethical Committee of Tours. Before participating in the study, each subject gave informed written consent.

Materials

The fish oil was kindly provided by Roche (Ropufa 30; Roche, Basel, Switzerland). Oral glucose from corn was purchased from Sigma-Aldrich Chimie (Lyon, France). Its isotopic enrichment in 13C was 1.0974 at% [6,6-2H2]Glucose (99 mol% excess) was purchased from Cambridge Isotopes (Bergmeyer et al. 1977). Plasma insulin (INS-IRMA; Biosource Europe SA, Nivelles, Belgium) and C-peptide (Riagnost; Hoechst Behring, Marburg, Germany) concentrations were measured by RIA. The urinary N concentration was determined using the Kjeldahl method (Hawk, 1977). The isotopic enrichment in 2H of plasma glucose was measured by electron impact ionization on the pentaacetate derivative of glucose and the selective monitoring of ions of m/z 200 and 202 by GC–MS (Hewlett-Packard 5971, series II) as previously described (Delarue et al. 1996). The isotopic enrichment in 13C of plasma glucose following ingestion of the naturally 13C-enriched glucose was measured on the pentaacetate derivative of glucose using GC–isotope ratio MS as previously described (Delarue et al. 1993).

Study design

Each subject was studied twice, 3 weeks apart. At day −2 and day −1 of each of the two tests the subjects were given 2 mg dexamethasone per os (4 × 0.5 mg/d). Over the 3 weeks between the two tests, the subjects received a dietary supplementation with fish oil given as six capsules of 1 g each daily (two capsules at breakfast, two capsules at lunch and two capsules at dinner, providing total daily doses of 1.1 g/20 : 5n-3 and 0.7 g 22 : 6n-3 fatty acids).

All experiments began in the morning after an overnight fast. The diet consumed 2 d preceding the studies was standardized to provide 200 g carbohydrates/d. Subjects were asked to maintain their usual physical activity. Ethanol was excluded and coffee intake was restrained to one cup a day throughout the study. On the morning of each experiment, the subjects reported to the laboratory at 07.00 hours. After voiding, they were transferred to a bed where they remained quietly in a semi-recumbent position. An indwelling catheter was inserted in a vein of the right wrist for blood sampling. This vein was kept open by a slow infusion of isotonic saline. The right hand was maintained in a box heated at 56°C in order to achieve partial arterIALIZATION of venous blood. A second indwelling catheter was inserted in a deep vein of the contralateral arm for tracer infusion. At t = −150 min, a primed (5.6 mg/kg) constant (0.07 mg/kg per min) infusion of [6,6-2H2]glucose was started and maintained over 510 min. At t = 0 min, the subjects ingested a solution of naturally 13C-enriched glucose, 1 g/kg, over a 5 min period. A blood sample was taken at t = −150 min for determination of plasma glucose enrichment in 2H and 13C before tracer infusion. Other blood samples were taken at t = 0 min, then every 30 min until t = 240 min and then every 60 min from t = 240 to 360 min for determination of isotopic enrichment in 2H and 13C of plasma glucose, and substrate and insulin concentrations. Gas exchange measurements were performed from t = −60 min to t = 360 min using a ventilated canopy, as described previously (Delarue et al. 1994). Urine was collected during experiments for determination of N excretion.

Sampling and analytical procedures

Blood samples were immediately spun at 4°C. The plasma was separated into aliquots and frozen at −80°C until time of assay. Urine samples were frozen at −80°C for later determination of total urinary N. Plasma glucose concentrations were measured by the glucose oxidase method using a Beckman glucose analyser 2 (Beckman Instruments, Fullerton, CA, USA). NEFA concentrations were measured by an enzymatic colorimetric method with the use of a commercial kit (NEFA C; Wako Chemicals, Freiburg, Germany). Lactate concentrations were determined using standard enzymatic methods (Bergmeyer et al. 1977). Plasma insulin (INS-IRMA; Biosource Europe SA, Nivelles, Belgium) and C-peptide (Riagnost; Hoechst Behring, Marburg, Germany) concentrations were measured by RIA. The urinary N concentration was determined using the Kjeldahl method (Hawk, 1977). The isotopic enrichment in 2H of plasma glucose was measured by electron impact ionization on the pentaacetate derivative of glucose and the selective monitoring of ions of m/z 200 and 202 by GC–MS (Hewlett-Packard 5971, series II) as previously described (Delarue et al. 1996). The isotopic enrichment in 13C of plasma glucose following ingestion of the naturally 13C-enriched glucose was measured on the pentaacetate derivative of glucose using GC–isotope ratio MS as previously described (Delarue et al. 1993).

Computations

Absolute area under the curve was calculated using basal values of plasma glucose or insulin as baseline. The total rates of appearance (RaT) and disappearance (RdT) of plasma glucose were calculated in non-steady state using the equation of Steele et al. (1956) as modified by De Bodo et al. (1963). Plasma rate of appearance of exogenous glucose (RaE) was calculated by transposition of the Steele equation as proposed by Proietto et al. (1987) and validated by Tisseret et al. (1990). Endogenous glucose production was calculated as RaT minus RaE. Metabolic clearance rate of plasma glucose was calculated as RdT/glycaemia. Total carbohydrate and fat oxidations were calculated from VCO2, VO2 and urinary N excretion using the equations of Livesey & Elia (1988).

Statistical analyses

All data are expressed as means with their standard errors. Comparison of values between the two periods used
two-way ANOVA with a post hoc test (paired t test). Statistical calculations were performed in Statview E II (Abacus Concepts Inc., Berkeley, CA, USA) running on a Powerbook G4 (Apple, Cupertino, CA, USA).

Results

Metabolites and insulin

Basal plasma metabolites and insulin concentrations are reported in Table 1. There was no effect of fish oil on plasma glucose concentrations (Fig. 1(a)) and area under the curve of glucose (439 (SE 17) v. 440 (SE 11) pmol/ml per 6 h, without v. with fish oil, respectively). Insulinaemia during oral load was significantly lower with fish oil supplementation than without fish oil supplementation (ANOVA, P < 0.05; Fig. 1(b)). Area under the curve of insulin was decreased by 17 % with fish oil v. without fish oil (15 220 (SE 1200) v. 18 280 (SE 1210) pmol/ml per 6 h, respectively; P < 0.05). There was no effect of fish oil on plasma C-peptide (Fig. 1(c)), lactate and NEFA concentrations during the oral glucose load (Fig. 2(a and b)).

Plasma glucose fluxes

Basal RaT glucose was not different with and without fish oil supplementation (2.04 (SE 0.12) v. 2.14 (SE 0.12) mg/kg per min, respectively). Plasma glucose RaT, RdT and metabolic clearance rate (Fig. 3(a–c)) were not different with and without fish oil supplementation. RaE (Fig. 4(a)) and endogenous glucose production (Fig. 4(b)) were not different without and with fish oil.

Substrate oxidation

Basal carbohydrate oxidation was not different with and without fish oil supplementation (1.03 (SE 0.16) v. 1.24 (SE 0.12) mg/kg per min, respectively). Basal lipid oxidation was not different with and without fish oil supplementation (1.17 (SE 0.1) v. 1.10 (SE 0.07) mg/kg per min, respectively). Carbohydrate and lipid oxidations during oral glucose were not different without and with fish oil supplementation. (Fig. 5(a and b)).

Discussion

We have assessed the interaction between fish oil and glucocorticoids on the metabolic responses to oral glucose in healthy human subjects. Dexamethasone was chosen because it induces insulin resistance (Wajngot et al. 1992; Tappy et al. 1994; Schneiter & Tappy, 1998; Willi et al. 2002; Nicod et al. 2003).

Fish oil supplementation induced a modest but significant 17 % decrease in plasma insulin response without altering

| Table 1. Basal plasma metabolites after 2 d treatment with dexamethasone, with and without chronic fish oil (FO) supplementation (Mean values and their standard errors) |
|---------------------------------|-------|-------|---------------|
| | Without FO | With FO | Statistical significance |
| Glucose (mmol/l) | 5.1 | 5.1 | NS |
| Insulin (pmol/l) | 66.0 | 74.4 | NS |
| Lactate (mmol/l) | 1.26 | 0.93 | NS |
| NEFA (μmol/l) | 754 | 676 | NS |
other metabolic parameters. The maintenance of plasma glucose disappearance and of substrate oxidation despite the significant decrease in plasma insulin response suggests an insulin-sensitizing effect of fish oil. The lack of effect of fish oil on plasma C-peptide response and on the molar ratio of plasma C-peptide : insulin argues against an effect on insulin secretion or insulin clearance. We have previously reported a 40% decrease in plasma insulin response after the same amount of fish oil supplementation in healthy subjects not pretreated with dexamethasone (Delarue et al. 1996). This larger effect of fish oil without dexamethasone can be explained mainly by the potent negative impact of dexamethasone on insulin sensitivity, preventing fish oil from exerting its full positive effect. Willi et al. (2002) have previously reported that the insulin-sensitizer troglitazone totally prevented the deleterious effect of dexamethasone on insulin sensitivity. In comparison, fish oil in the present study decreased postprandial insulin response, suggesting that it indeed prevented some of the metabolic effects of dexamethasone. However, the lowering of insulin concentration was less than with fish oil alone (Delarue et al. 1996), suggesting that fish oil did not completely prevent the effects of dexamethasone. Careful analysis of the data reported by Willi et al. (2002) similarly suggests that troglitazone only partially corrected the effect of dexamethasone, since the postprandial insulin responses remained higher after dexamethasone + troglitazone than after troglitazone alone.

![Fig. 2. Time course of plasma lactate (a) and NEFA (b) in eight healthy subjects, pretreated with dexamethasone, without (□) or with (■) 3-week fish oil supplementation. Values are means with their standard errors shown by vertical bars. Fish oil supplementation had no statistically significant effect on lactate or NEFA concentrations.](https://www.cambridge.org/core/resource/29207122F43F4C1887237E6F65E09A7C)

![Fig. 3. Time course of plasma glucose total rate of appearance (RaT; a), disappearance (RdT; b) and metabolic clearance rate (MCR; c) in eight healthy subjects, pretreated with dexamethasone, without (□) or with (■) 3-week fish oil supplementation. Values are means with their standard errors shown by vertical bars. Fish oil supplementation had no statistically significant effect on RaT, RdT or MCR.](https://www.cambridge.org/core/resource/29207122F43F4C1887237E6F65E09A7C)
The lack of randomization of fish oil intake in our study is an unlikely explanation for its effect on plasma insulin response. A cross-over study would have been an ideal design, but incorporation of 20:5n-3 and 22:6n-3 into membranes has been reported to take as long as 18 weeks (Endres et al. 1989), so that the two experiments should have been performed at least 18 weeks apart. During such a long period other confounding factors could appear. Subjects had very similar basal plasma metabolites and insulin concentrations, as well as basal plasma glucose fluxes and substrate oxidations, on the day of each of the two experiments, which demonstrates a similar metabolic state. Moreover, we have previously checked (data not shown), in a group of healthy subjects, that mean plasma glucose and insulin responses to an oral load of 1 g glucose/kg were similar over a 3-week interval.

In conclusion, the present study shows that a 3-week fish oil supplementation (1·8 g 20:5n-3 + 22:6n-3 daily) given prior to induction of insulin resistance by a 2d dexamethasone treatment did not alter plasma glucose utilization and substrate oxidation despite a significant decrease (−17%) in plasma insulin response to an oral glucose load. This suggests an insulin-sensitizing effect of fish oil, which could be of potential interest in subjects predisposed to insulin resistance.

Acknowledgements

This work was supported by a grant from Institut Benjamin Delessert and from both Region Bretagne and Region des Pays de la Loire. Technical help from Mrs Martine Objois is deeply appreciated. We thank Mrs Christiane Pachiaudi from Centre de Recherche en Nutrition Humaine de Lyon for performing the analysis of isotopic enrichment in 13C of plasma glucose.

References

supplementation on glucose and lipid metabolism in NIDDM. Diabetes 38, 1314–1319.

