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RELATIVE NORMAL-CONVEXITY AND AMALGAMATIONS
STEPHEN G. BRICK

The notion of relative normal-convexity is introduced and its connection to equa-
tions over groups is studied. We study the effect on relative normal-convexity by
free products, amalgamations, and HNN extensions.

0. INTRODUCTION

A subgroup S of a group G is said to be normal-convez if, given any subset R C §,
the natural map

S/(R)s — G/(R)a

is injective — where ((A))p denotes the normal closure of A in B (we will also write
{(4)) as B is usually clear from the context). This concept was introduced by Stallings
in [4].
In [1] and [2] we studied normal-convexity and its connection to solving equations
over groups. We also proved the following three results about normal-convexity:
(1) if S; € Gy and §; C G, are normal-convex then §; *S; C G, *G; is
normal-convex,
(2) if §; C Gy and S, C G, are normal-convex, and if C C §; for 1 = 1,2,
then S; *¢ §2 C G1 *¢ G2 is normal-convex,
(3) if S C G is normal-convex and C U ¢(C) C S then S*xc ¢ C G*¢ ¢ is
normal-convex.

Or more succinctly, amalgamations and HNN extensions of group pairs preserve normal-
convexity.

In this paper, we define a relative version of normal-convexity, which is connected to
equations over subvarieties of groups — such as torsion-free groups or nilpotent groups,
and obtain results analagous to the above.

Our results came about in an unsuccessful attempt to obtain a Freiheitssatz for
torsion-free groups.

The layout of this paper is as follows. In Section 1 we give the definition of relative
normal-convexity and show its connection to solving equations over groups. In Section 2
we prove that amalgamations and HNN extensions of group pairs preserve relative
normal-convexity. In Section 3 we investigate more general amalgamations and describe
briefly our approach to the Freiheitssatz for torsion-free groups.
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1. DEFINITIONS AND PRELIMINARY RESULTS

Let P be a property of group elements — for instance “having finite order”. We
say that P is functorial if given a homomorphism f : G — H and an element g € G
having property P, either f(g) has property P or f(g) = 1. If we wish to stress the
ambient group we will say g has property P in G. We will write

Gp = {g € G|g =1 or g has property P}.

Some examples of functorial properties are:

P;: g has finite order

P,: dn > k with g € ,G»

Pg: 3n > k with g € ;G
where p is either zero or a prime, k > 1 an integer, and ,G, and G|, denote the
n-th term of the p-central series and the p-derived series, respectively (when p = 0 it
is the usual central or derived series; see [4]). For the rest of the paper let P be a fixed
functorial property.

Define the class of groups determined by P by

Cr={G|Gp ={1}}.

For example, Cp, is the class of torsion-free groups, while P, and P;s yield p-nilpotent
and p-solvable groups of class k (or k£ — 1 depending on the indexing).

We now want to define a notion of normal-convexity that reduces to the standard
concept in Cp and is preserved by amalgamations of group pairs. A subset W of a

group H is said to be chainable or chainable mod P if we can write W = |J W; with
i>1
each W; finite and where, letting Hy = H,

H; = H/ (((U W.-)))

=1

for 7 2 1, and pj : H — Hj_; be the natural map (for j = 1 it is the identity), one
has pj(W;) C (Hj-1)p for all j. We will call the expression for W in terms of the
W;’s the chaining of W. Observe that W; is a subset of H consisting of elements
having property P, and possibly the identity element. W, consists of elements of H
that are either in the normal closure of W or project to elements of H/((W;)) having
property P, and so forth. Thus if H € Cp then there are no non-trivial chainable sets.
A homomorphism a : § — G is said to be normal-convez mod P if, given any RC S
the natural map

ar: S/(R)s — G/{(R)¢
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has kernel being the normal closure of a chainable subset of S/{(R)}. If the property
is P, then we will use the terminology torsion-free normal-convez. If P is understood
from the context we will just say relative normal-convez.

We will need the following lemma on chainable subsets in Section 2:

LEMMa 1.1.

(1) I W and V are chainable subsets of G then W UV is chainable.
(2) K f:G — H is a homomorphism and W is a chainable subset of G then
f(W) is a chainable subset of H.

PRroOF: First,let W = |J W; and V = | V; be chainings. We claim that the

121 izl

expression |J (W;UV;) is a chaining for W U V. Clearly, W; UV; C Gp. Write
i>1
j-1 i—-1
N=(U(WiuV))) and M = (U W;)) . Further, let G' = G/M The natural
map =1 G =1 G
¢ —L.qgn
factors as a composition
a , B . j
G » G — G/ ((yla(V.-))) .

By assumption a(W;) C (G')p. By functorality 4(W;) = B(a(W;)) C (G/N)p. By
symmetry y(V;) C (G/N)p as well.

Now suppose f : G — H is given. We claim that |J f(W;) is a chaining for
i>1
F(W). Consider the commutative diagram

G—f—»H

! dl
fi—a
Gj-1 — Hj,
where f;_; is induced by f, a and f are the natural maps, and G;_; and H;_;
are the appropriate quotients. By assumption a(W;) C (Gj-1)p. Applying fij-1
and using functorality yields f;_1(a(W;)) C (Hj-1)p. But f;_joa = fo f and so
B(f(W;)) C (Hj-1)p as desired. 0

Just as there is a connection between normal-convexity and solving equations
over groups, relative normal-convexity is related to solving equations over subclasses
of groups.
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Recall that an equation over a group G is of the form w =1 (or w(T},...,Tx) =1)
where w € G * F with F being free on T,...,T,. The T;’s are called the unknowns
while the elements of G occurring in w are the coeflicients. So for example the equa-
tion a?TabT~! over the group (a,b| ) has T as its unknown and a® and ab as its
coeflicients.

The equation has a solution over G, or can be solved over G, if there is a group G
containing G as a subgroup and possessing elements t;,...,1, with w(ty,...,t,) =1
in G. Equivalently, the natural map

G — G * F[{(w))

is injective. Let exp; (w) denote the exponent sum of T; in w. The Kervaire conjecture
speculates that any equation over any group with non-zero exponent sum for some
unknown has a solution.

Note that sometimes an equation w = 1 over a group G may be considered an
equation over a subgroup H of G. This happens when w € H « F C G * F. And the
equation can be solved over G if and only if it can be solved over H. One direction
is immediate. Regarding the other, suppose a solution to w = 1 can be found in H.
Merely set G =G g H.

Similarily we could speak of a system or set of equations over a group, § = {w; =
1}. If the set is finite then the Kervaire conjecture says that S has a solution if the
matrix of exponent sums [exp; (w;)] has maximal rank, where, by adding superfluous
unknowns, we assume that the number of unknownsis > the number of equations. As
for solving an infinite system of equations, observe that it suffices to solve each finite
subsystem.

Given § = {w; = 1}, a system of equations over a group G, let F be the free
group on the unknowns. Any homomorphism ¢ : G — H extends to a map ¢F :
G+ F — H % F by mapping each T; — T;. Thus § and ¢ give rise to a set of equations
#(S) = {¢r(w;) = 1} over H (in fact ¢(S) is a set of equations over the subgroup
#(G) C H). Using this notation we have the following:

PROPOSITION 1.2. Suppose & = {w; = 1} is a system of equations over a
group G. Let F be the free group on the unknowns. Suppose ¢ : G — H is a
homomorphism and Hp = {1}. Assume the natural map

a:G — G*F[{{{w:})

is normal-convex modulo P. Then the system ¢(S) can be solved over H.

PROOF: As noted above, it suffices to show that ¢(S) can be solved over G; =
#(G) C H. let K = kernel(¢). The natural map

a1 : G1 — Gy + F/({¢r(wi)}))
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is equivalent to the map
/K - ((G/K) + F) /({¢r(w)})

which is equivalent to the map

/K = ((G = F)/(({w:})) /(K-

By relative normal-convexity this map has kernel the normal closure of a chainable mod
P subset of G/K. But G/K = G; = ¢(G) C H and as P is functorial (G/K)p C
Hp = {1}. Hence there are no non-trivial chainable subsets of G/K. Thus a is
injective and ¢(S) can be solved. 0

We will use the preceding result to reduce solving equations over classes of groups
to showing that a map of a free group is relatively normal-convex.

Let § = {w; = 1} be a system of equations over a group G. We will say that § is
universal if G is free, each coefficient appears only once in the equations, and the set
of coefficients forms a basis for G. A system of equations S’ over a group H is said
to be modelled on S if there is a homomorphism ¢ : G —» H with §' = ¢(S). Clearly
any system of equations over any group is modelled on some universal system. With
this in mind, we have:

COROLLARY 1.3. Assume S = {w; = 1} is a universal system of equations over
a free group G. Let F be the free group on the unknowns. Assume the natural map

G — G+ F/{{{wi}))

is normal-convex modulo P. Then any system modelled on S over a group in Cp can
be solved.

We close this section with an example. Consider the equation aThT~! over the
free group (a,b| ). As an HNN extension of a group contains that group as a subgroup,
it is a simple exercise to see that the inclusion

(a,b) < (a,b,T |aTdT™')
is torsion-free normal-convex.

2. AMALGAMATIONS AND HNN EXTENSIONS OF GROUP PAIRS

We need to recall and adapt the topological formulation of normal-convexity from
[1] (also see [5, Section 7| for similar constructions). Let f : F — X be a map of a
disk with holes into a topological space (we will also consider maps of pairs). We may
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choose a component of F and call it the outer or outermost boundary component.
When such a choice has been made we will call f a based map. The other components
of OF are called the inner boundary components.

We need a few topological definitions. Let Y be a topological space. If w is a
loop in Y then w determines a conjugacy class, [w], of elements of m;(Y,y) for any
basepoint y in the path component containing the image of w. We will say that w
has property P in Y if that conjugacy class contains an element having property P.
Similarly, given a set of loops, @ = {w,}, each mapping to the same path component,
then we say that {w,} is chainable (or chainable mod P) if, for any basepoint y, there
is some choice w, € [w,] with {w,} chainable in m;(Y,y). And if the chaining of {w,}
is W; = {wj, } with wj, € [w;,] then we will say that Q has the chaining Q; = {w;, }.
If we wish to stress the space, we will use the phrase “chainable in Y”.

Now fix a based map f : (F,8F) — (X, A). Enumerate the components of 8F as
49,@1,...,0n, Where ag is outermost. Construct a space Ay by attaching n disks to
A using the maps f [ a;, for i > 1 as attaching maps. If f : (F,8F) - (X,A) is a
based map of another disk with holes, with outer boundary component @y and inner
boundary components @y, ...,@m, then we say that f is derived from f mod P if there
is a k£ 2 0 such that the following holds:

(1) the map f [ ao is homotopicin A to f | @,

(2) if 1 € i < k then the map f [ @; is homotopicin A to a map f [ a; for
some t > 1 (soif k =0 then there are no such index 1),

(3) the set of loops {f [ @;|i >k} is chainable in Aj.

We will call the set of loops, {f [ @;|i > k}, the P-loops. If we wish to stress the maps
involved we will call them the P-loops of (f,f). Observe that the loops in (2) could
also be considered P-loops as they are all null-homotopic in Ay. However it turns out
to be useful to focus on the loops that satisfy condition (3) but not condition (2). So
we view the P-loops as being those that do not satisfy condition (2). Note that in [1]
we define a notion of “derived from”, but there we do not allow any P-loops.

Here is a lemma that will useful in Section 3. It is proven by applying the definition
of “derived”.

LEMMA 2.1. Suppose f;: (F;,0F;) — (X, A) are based maps of disks with holes
for 1 =1,2,3 with f; derived from f2 and f, derived from f,. Assume at least one of
the pairs (f2, fs) and (f1, f2) has no P-loops. Then fs is derived from f,. Moreover,
if both of the pairs has no P-loops then neither does (fi, fs).

We will say that a pair of spaces (X, A) is topologically normal-convez mod P if
given any based map f : (F,0F) — (X, A) of a disk with holes there is a map, f, of
another disk with holes, F, that is derived from f and with f(F) C A. It is then
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immediate that we have the following:

PROPOSITION 2.2. Let (X,A) be a pair of connected topological spaces. Then
(X, A) is topologically normal-convex mod P if and only if given any z € A the
inclusion map induces a map m(A,z) — m (X,z) that is normal-convex mod P.

When the topological spaces are not connected relative normal-convexity can be
viewed as a statement about systems of subgroups.

Now we turn to our main result. Recall that a (tame) subcomplex T of a cell
complex X is said to be two-sided or bicollared in X if a regular neighbourhood N of
T in X is PL-equivalent to T x [—1,+1] with T corresponding to T x {0}. If T is
two-sided in X then the complex X1 = the closure of (X \ N) is said to be obtained
by cutting X along T. Note that the interior of each component of X7 is equivalent
to the corresponding component of X \ T.

Suppose T C A C X are cell complexes with T two-sided in both A and X.
By choosing an appropriate regular neighbourhood we may cut A and X along T
simultaneously, yielding Ar C X7.

PROPOSITION 2.3. Assume T C A C X are cell complexes with T two-sided
in both A and X . If (X, A7) is normal-convex mod P then (X, A) is normal-convex
mod P.

ProorF: Fix f: (F,0F) — (X,A) a map of a disk with holes. We need to show
that there is a map of a disk with holes f : F — A that is derived from f. We will do
this in steps, each step resulting in a map into X of a disk with holes derived from f.
Additionally, each such map will be transverse to T'.

We start with a few definitions. Assume we are given f': (F',0F') — (X,A), a
map of a disk with holes, that is derived from f and transverse to T'. Transversality
implies that (f')”'(T) is a properly and tamely embedded, though possibly discon-
nected, one-manifold in F' (see Figure 2.1). By a T-component of f' let us mean the
closure of a component of F'\ (f')”}(T). Each T-component K is a disk with holes,
and f' [ K can be viewed as a map of the pair (K,3K) into the pair (X7,Ar). If
K and K' are two T-components we will say that K' is interior to K if K separates
K' from the outer boundary component of F'. Let I(K) be the union of K together
with all T-components that are interior to K (see Figure 2.2). We will say that f' is
I-derived from f if

(1) f' is derived from f, and
(2) if the T-component K contains a P-loop then f(I(K)) C A.

Define the complezity of the map f' to be the number of T-components that are not
mapped entirely into A. By Proposition 2.2, we need only find a map f' dervived from
f of complexity zero.
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Figure 2.1 Figure 2.2

We start by homotoping f to make it transverse to T. The resulting map, which
we call fy, is I-derived from f because there are no P-loops and the definition of
derived allows homotopies.

Now suppose we have constructed maps fo, f1,...,ft of disks with holes
Fo, F1,...,F;, each transverse to T and with decreasing complexities such that each
map is I-derived from f.

If the complexity of f; is non-zero we will show how to construct a map fy4; of a
disk with holes Fy,; transverse to T that is I-derived from f and has strictly smaller
complexity than f;. Clearly this suffices.

Take a T-component K that is innermost with respect to “not mapping entirely
to A”. Consider the map g = f; [ K : (K,0K) — (X7, Ar). This map is based since
K inherits from F; a notion of outermost. Enumerate the the boundary components
of K as bp,b1,...,bm with by the outermost component. Given an index ¢t > 1, let
L;: be the subcomplex of F; for which b; is the outer boundary component (note that
L; may be empty). Since (X, Ar) is normal-convex mod P there is a based map of
a disk with holes §: K — Ar derived from g (see Figure 2.3). We can assume that g
is transverse to T'. Write 50,31, - ,5, for the boundary components of K where, as
usual, by is the outermost one. We will glue together the closure of F;\ K, the new disk
with holes K, various copies of the L;’s, and assorted annuli to get another disk with
holes Fyy; and a map fyy; which is still I-derived from f and with lesser complexity.

Start by letting k be the index that satisfies condition (2) of the definition of
derived for the maps ¢ and §. For each index ¢ with 1 < ¢ < k,let ; > 1 be chosen
so that the map g | b; is homotopicin A to g | by,. Now g [ by is homotopic in A to
g | bo. We can find an annulus and a mapinto A, that is transverse to T, representing
this homotopy. Identify one boundary component of the annulus with b in the closure
of F;\ K and the other boundary component with 4, in K. We can then use f;, g, and
the homotopy to define a map on the resulting complex. Similarly, find annuli o; and
transverse maps into A that represent the homotopies between g [ b; and g [ b;; for
1 < i < k. Glue these annuli to b; in K and OL;, and use the homotopies together
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Figure 2.3 Figure 2.4

with the maps f; and g to get a map of a disk with holes (see Figure 2.4). Call it fy ;.
Clearly it is transverse to T' and the complexity has been decreased. We only need see
that f,4, is I-derived from f.

Let K' be a T-component of Fgy,. We consider three cases.

First, assume that K ¢ I(K'). Then we can identify I(K') with some I(K")
where K" is a T-component of Fy. In fact, if K' is interior to K in Fjyi;, there may
be other T-components of Fy;; that are identified with the same K" in F;. In any
case, under this identification fy4y | I(K') = fo [ I(K"). Hence if K' contains some
P-loop then fi1(I(K')) C A (condition (2) of the definition of I-derived).

Second, consider the T-component K' = K. By assumption § = fr41 | K is
derived from g = f; | K. So the set, Q, of P-loops of (g,7) in K is chainable in
(A7) g+ Theinner boundary loops of I m ) are of three types— those in {1¢, those lying
in K N3Fy4; but not in Ny, and those not lying in K. We begin with the first type.
The inclusion map Ar — A induces, for any choice of basepoint, a homomorphism
B:m ((AT)g) — m1(Ay) as g [ b;, for ¢ > 1, is null-homotopic in Ay. By Lemma
1.1, Qp is chainable in Ay: We turn to loops of the second type. If ¢ is such a loop
then ¢ must correspond to some inner boundary component of I(K) lying in K. So
fe+1 | ¢ 1s homotopic in A to some f | @, where a is an inner boundary loop of F.
Now we handle the loops of the third type. By the initial case, the set, £2; of P-loops
of I (7) that are not in K is chainable in 4 ¢. Taking the union of 2y and 2; yields
a chainable set in Ay by Lemma 1.1. Note further that fz4, (I (?)) C A, so condition
(2) of the definition of I-derived holds.

Third, suppose K is interior to K'. Since K did not map entirely into A under
ft, and since fy4; agrees with f; on K', it follows that any inner boundary component
of Fy4q lying in K' is not a P-loop, that is it must be homotopic in 4 to some f [ a,
where a is an inner boundary component of F. Thus the set of P-loops of I{K') is
the same as the set of P-loops of I (?), which is chainable in A; by the above. Also
condition (3) holds trivially.
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It only remains to see that f,4, is derived from f. We can write

d
Fpr = U K;
i=1

where each K; is a T-component and K,N K, for 8 # t, is either empty or a subset of
both their boundaries. By the above, the set of P-loops W, in K, is chainable in A;.
Taking the union of the sets of P-loops, and using Lemma 1.1, proves the result. 0

Taking for X and Y appropriate complexes yields the following result on amalga-
mations and HNN extensions:

COROLLARY 2.4.

(1) IS, C Gy and Sy C G2 arenormal-convex mod P then S1*S2 C G1%G2
is normal-convex mod P.

(2) IfS; C Gy and S2 C G2 are normal-convex mod P, and if C C S; for
1=1,2, then S; ¢ S2 C Gy *¢ G2 is normal-convex mod P.

(3) IfS C G is normal-convexmod P and CU¢$(C) C S then S*c¢ C Gxc¢
is normal-convex mod P.

We close this section with an application of our amalgamation result. We answer a
question of Mark Rinker’s, who asked us whether a one-relator group can split as a free
product with amalgamation along Z @ Z. Use the notation F(z;,z;) for the free group
on z;,zz. Now it is a well known fact (see, for instance, [1]) that (ece™?,cec™!) C
F(e, ) is normal-convex (this is absolute, not relative, normal-convexity). From this, it
easily follows that (c,dcdc™'d~!) is normal-convex in F(c,d). Also (a?,b?) is normal-
convex in F(a,b). Let G be the amalgamated product F(a,b) *s F(c,d) where S =
(a?,b%) in F(a,b) is identified with (c,dcdc='d™?) in F(c,d). Then the subgroup S is
normal-convex in G by our amalgamation result. But G is isomorphic to F(z,y). To
see this, map F(z,y) to G by z — a and y — c~'d"bdc. The inverse, call it a, is

defined as follows:
a—z
b y’zzyz'zy_z

Csz

de—yh
So a(S) = (2%,y?z%y?z%y~2) is normal-convex in F(z,y). Now G splits as a free
product with amalgamation over S. Let w = [a?,4?]. By normal-convexity S/{(w)) s —
G/{(w)) g is injective. Hence G/{{w)) splits as a free product with amalgamation over
S/{(w))g =Z @®Z. Applying a yields the fact that the one-relator group

(z,y][=, 22 y*z 2y 7))

splits as a free product with amalgamation over Z@ Z.
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splits as a free product with amalgamation over Z® Z.

3. AMALGAMATIONS

As mentioned in the introduction, this paper is a result of an attempt to prove a
Freiheitssatz for torsion-free groups — that is to prove that any equation w = 1 over
any torsion-free group H has a solution as long as w is not conjugate to an element of
H.

Let G = (z1,...,Zn,t|7) where r is cyclically reduced and involves t. Set F =
(Z1y...,Zn). Our hope was to show that F C G is torsion-free normal-convex. Our
plan was to use HNN extension approach to one-relator groups as described in [3].
There are three cases:

(1) r involves only t,

(2) exp,,(r) =0 for some z; appearing in r, and

(3) exp,,(r)#0 for all z; appearing in r.
The first case is handled easily by our amalgamation result. The third case is approached
by adjoining a root of one of the generators and can be tackled by using Proposition
3.1 below. However the second case requires HNN extensions. And the way that an
HNN extension affects relative normal-convexity is quite complicated.

We end with the following result about amalgamations:

PropPosITION 3.1. Suppose S C H is normal-convexmod P If G = H ¢ K
and C C K is normal-convex then S C G is normal-convex mod P.

PRroOOF: Construct complexes 4, X, B, Y, and Z where, for some basepoint z,
2o ACX,zp€XNY =B,
Z=XUY, Bistwo-sidedin Z, Z\ B=(X\B)U(Y \ B),
m(X,z0) = H, m(4,z0) = §, m(B,z0) =C, and m(Y,z0) = K.

Observe that m(Z,z0) = G. See Figure 3.1.

B
Figure 3.1
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By Proposition 2.2, the pair (X, A) is topologically normal-convex mod P and the
pair (Y, B) is topologically normal-convex (not relative). It suffices to show that the
pair (Z, A) is topologically normal-convex mod P.

Let f:(F,0F) — (Z,A) be a based map of a disk with holes. We will prove that
there is a map f': (F',8F') — (X, A) of another disk with holes that is derived from
f, and involving no P-loops. Then, by topological relative normal-convexity, there is
a map f" of a disk with holes derived from f' whose image lies in A. Since there are
no P-loops for (f, f'), we can conclude, using lemma 2.1, that f" is derived from f.
Thus we need only construct f'.

As in the proof of Proposition 2.3, we proceed in steps, each step resulting in a
map into Z of a disk with holes derived from f and iransverse to B. Instead of T-
components we use B-components. And here, by complexity of a map f of a disk with
holes, we mean the number of B-components with image intersecting Y \ B.

We start by homotoping f to make it transverse to B. The resulting map, fo, is
clearly derived from f and there are no P-loops.

Now suppose f; : F; — Z is transverse to B, and derived from f without P-loops.
Let K be some B-component whose image meets Y\ B. Themap g=f; [ K is a
based map of the pair (K,8K) into the pair (Y, B). By assumption the pair (Y, B) is
topologically normal-convex (this is absolute — no P loops). We can thus find another
based map of another disk with holes §: K — B that is derived from g. A cut-and-
paste technique similar to that in the proof of Proposition 2.3 yields a based map of a
disk with holes, fiy1 : Fiy1 — Z of lesser complexity. Pushing the image of K into
X using the collar on B results in a map transverse to B. Also this map is derived
from f; without P-loops. And, as there are no P-loops for (f, f;), we may conclude,
by lemma 2.1, that f;4; is derived from f with no P-loops.

Since the complexity of fp was finite, this process has to terminate with the desired
map f'. 0
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