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SUMMARY 

Inbreeding effect revealed as mortality and morbidity in general may be ascribed to deleterious mutations 
generally present at different loci of the ancestors common to each consanguineous mating. A new coefficient 
(E) is suggested to measure this effect. On the basis of this theory, a new method to estimate the load of 
mutations disclosed by inbreeding has been presented elsewhere, and is now extended. In this method, the 
load is estimated without introducing gene frequency notions. Genetic loads estimated through our method are 
in rather close agreement to those estimated through the classical theory of Morton, Crow and Muller (MCM). 

In populations characterized by sexual reproduction and cross-fertilization, dele­
terious mutations are maintained by exceedingly low frequencies due to the action 
of negative selective forces. However, once the number of loci giving rise to such 
mutations is rather large, each individual in the population probably carries at least 
one mutation which, if made homozygous, would cause death or impair the zygote 
in some manner. This load of mutations, which in a randomly mating population 
is hardly detected, may be disclosed, at least in part, through inbreeding studies. 

The estimate of the load of mutations disclosed by inbreeding has been made 
possible, firstly, due to the theory of inbreeding developed in a series of papers by 
Sewall Wright (cf., e.g., Wright, 1921, 1922), and, secondly, due to the theory of 
genetic equivalents developed by Morton, Crow and Muller (MCM) in 1956, and 
Morton (i960). 

An Es t imate of Inbreeding Effect 

The coefficient of correlation between uniting gametes, which measures the fre­
quency of loci made homozygous as a result of inbreeding, has been denned as the 
coefficient F of inbreeding (Wright, 1922). This coefficient is especially important 
in studies of genetic conditions due to deleterious recessive mutations at a single 
locus. 

Let us assume, for an instant, the situation where there is one lethal equivalent 
per gamete (i.e., one lethon, according to Freire-Maia's 1964 terminology). Let 
us hypothesize also that (a) lethal equivalents are constituted by full lethals, and 

1 The research projects of our Department are performed under the sponsorship of the Fundacao de Am-
paro a Pesquisa do Estado de Sao Paulo (FAPESP), US National Institutes of Health, the Rockefeller Founda­
tion, and the World Health Organization. 
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(b) lethals are alleles at the same locus of the ancestors common to the consanguineous couple 
(for convenience, common ancestors). In this hypothetical situation, the probability 
of homozygosis (death) in the inbred offspring would be given directly by coeffi­
cient F. However, it is clear that lethal equivalents are not constituted by alleles at 
the same locus of the common ancestors. 

We would like to propose here an opposite assumption regarding the loci occupied 
by lethal equivalents, namely, that, in general, deleterious mutations carried by com­
mon ancestors are located at different loci.2 This would hold true, not only when one 
thinks over mutations carried by each common ancestor, but also when one consid­
ers mutations carried by different common ancestors. In a population in equilib­
rium characterized by an average of i lethon, the probability of homozygosis by 
descent for any one lethal allele would therefore be given by FJ2n, where F is Wright's 
coefficient of inbreeding and n is the number of common ancestors. Since there are 
2n loci involved, the probability of escaping death due to inbreeding is equal to (i-
F/2n)2n. The inbreeding effect may then be measured by 

E= i — (i —F\mYn. [ i] 

In control samples, where the coefficient of inbreeding assumes very low values, 
being practically equal to zero, the ratio F\o.n also approaches to zero; in this case, 
E = O. 

Coefficient E, which especially suits to studies of genetic load, may be indirectly 
calculated on the basis of coefficient F (equation [i]) provided the number of com­
mon ancestors is known and no inbred ancestor occurs. In cases where inbred ances­
tors are involved, a more accurate estimate of coefficient E should be calculated di­
rectly from the pedigrees. 

It is to be noted that equation [i] involves an approximation, namely, that in 
general only one common ancestor carries a particular detrimental gene. However, 
this approximation certainly is not of importance. As stated earlier, it is generally 
accepted that the frequency of individual lethal genes in the populations is rather 
low (according to Morton, 1964, " fl» + btF is small for each locus and the number 
of loci is large " ) . Therefore, the contribution to the inbreeding effect of particular 
lethal genes present in two (or more) unrelated common ancestors is negligible, espe­
cially if compared to the total inbreeding effect, which is to be measured. Let us 
assume, for instance, that a lethal gene a has a population frequency q = 0.01, where 
1 — q = p. The probability that only one ancestor, common to a first cousin mar­
riage, carries this lethal allele is 4-p3q = 0.0388, the probability of death in the in­
bred offspring being \p3qF\2n = 0.0006 (where n is the number of common ancestors, 
as before). Let us see now the situation where both the common ancestors carry 

2 Slatis (i960) described a different coefficient, based on a similar principle. Specifically speaking on the 
European Bison, Slatis defined his coefficient as " the likelihood of genetic death if each ancestor in the foun­
dation herd possessed a single recessive lethal gene, /, and if each of these lethals was at a different locus ". 
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the same lethal gene. The probability of this event is equal to 4p2q2 = 0.0004; by 
taking into consideration that the common ancestors' offspring may not be homo­
zygous for the allele in question, the probability of death in the inbred offspring 
will be \p2q2 • 0.0278 = 0.00001. Therefore, the probability of death, due to the 
presence of the lethal allele in only one common ancestor is 60 times higher than 
the same probability when both common ancestors carry the lethal. This last prob­
ability is therefore more than 60 times lower than the total inbreeding effect. If 
one assumes q = 0.001, the probability of death due to only one common ancestor 
carrying the lethal allele would be 600 times greater than the corresponding value from 
both the common ancestors carrying the lethal; this last probability is therefore 
more than 600 times lower than the total inbreeding effect. 

An Es t imate of Genetic Load 

Based on the reasonings leading to equation [1], a new method to estimate the 
load of mutations disclosed by inbreeding has been presented elsewhere (Freire-
Maia and Freire-Maia, 1964, 1965a). As in MGM's theory, this method assumes 
that different causes of death (genetic and environmental) are independent in action, 
i. e., " nonsynergistic " in the sense given by Muller (1950). This assumption seems 
sound (Freire-Maia, 1964). The basic equation in this method may be expressed 
by y Sf=(i—E)B, [2] 

where Sf is the probability of escaping death due to inbreeding, and B (as in MCM's 
theory) is a slight underestimate of the mean number of lethons (i. e., £qs). Equation 
[2] may also be expressed as Sf = (1—FJ2n)2nB (Freire-Maia and Freire-Maia, 1964, 
1965a). 

For those who have no opportunity to use an electronic computer, the estimate 
of B through equation [2] affords a great advantage, since it can be easily obtained 
.with the aid of only a calculating machine (or even without it). The results are equiv­
alent to those obtained through MCM's method, as may be shown. If one introduces 
into our formula a simplification similar to the one made by MGM in the devel­
opment of their method, the formula would turn out to be Sf = eBF, since \ogeSf = 
B loge(i—E). Compare that equation to the fundamental one in MCM'S theory, 
i. e., S = e-A~BF. The only difference is that our simplified formula measures the 
probability Sf of escaping death due to inbreeding, whereas MCM's measures the 
probability S of escaping death due to all the causes (genetic and environmental). 
Since both methods intend to detect the genetic load disclosed by inbreeding, an esti­
mate ofyl is not essential for the estimate of B; both formulas lead therefore to equiv­
alent estimates of the number of lethons. I t should be kept in mind, however, that 
the simplified equation involves an approximation which is not present in equation 
[2]. When there is no interest in obtaining a very reliable estimate of B, MCM's 
and our theory provide a simple approach which is exactly the same in both meth-
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ods, namely B = [logs (50/5<)] / F, where S0 and Si are the rates of survivors in 
the control and inbred samples, respectively (see Morton, 1964, and Freire-Maia 
and Freire-Maia, 1964). 

In our theory, we tried to solve the problem of simultaneous homozygosis without 
making allowance for the frequency of individual lethal genes in the population. 
Instead, we tried to estimate the frequencies, in the ancestors common to each consan­
guineous couple, of lethals which are carried by them. This has seemed justified 
since there is no matter if the ancestors common to different consanguineous matings 
carry the same or different lethals, provided a lethal occurs no more than once in 
the common ancestors. In other words, the inbreeding effect may be the same even 
for genes with different frequencies, provided the number of lethons is maintained 
constant, and each gene occurs no more than once in the common ancestors. This 
is explained by the fact that, by definition, a given lethal gene is identical to any 
other one regarding the behaviour and effect, and that it does not matter whether 
a genetic death is caused by a specific lethal gene or by any other lethal gene. 

Although formula [2] provides an estimate of the damage brought to expression 
through inbreeding, it does not provide an estimate of the damage in the inbred 
sample which is not due to inbreeding. Instead of it, MGM used an estimate of the 
expressed damage in a randomly mating population {A). 

Our theory also provides an estimate of A, as follows. In any inbred sample, let 
(1—pMt) be the probability of escaping death due to inbreeding, and (1—pA{) be 
the probability of escaping death due to other factors (genetic and environmental). 
Therefore, the fraction of survivors to all causes of death will be given by 

S = i—pAi —pMt + (pAi) {pMi). [3] 

Since so far there is no method to know the value of(pAi), an estimate of it, namely, 
the probability of death in a randomly mating sample (pA), will be used. As can be 
seen from equation [3], by assuming F = O (therefore pMi = O), this probability 
is equal to A, the expressed damage in the randomly mating sample. By substituting 
(pAi) by its estimate A, equation [3] turns out to be 

i—pMt = SI(i—A). [4] 

Since the probability of escaping the inbreeding effect is assumed to be given both 
by equations [2] and [4], by equalling their terms results that 

S=(i—A) (i-E)* [5] 
and 

\ogeS = log, (1—A) + B\oge (i—E). [6] 

From equation [6], estimates of A and B may then be obtained by the weighted 
regression on loge (1—E) of the natural logarithm of the number of survivors. Ac­
cording to maximum-likelihood theory, the appropriate weights are NSj{i—S), 
where S is the expected frequency of survivors and JV is the total number of obser-
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vations (cf. MCM). As in MCM's theory, the observed value of S must be used as 
a trial value, in order the weights may be obtained by iteration. When there is a 
small number of deaths in the noninbred groups, and the inbreeding levels are low, 
virtually the same estimates of A and B may be obtained from the simple approxi­
mations 

—log, S = A + BE [7] 
or 

1 — S = A + BE. [8] 

Note that equation [7] is rather similar to MCM's fundamental equation, 
namely, —loge S = A -\- BF. 

Equation [6] has been applied to data from the literature, as well as to some 
theoretical situations, and the results have been compared to those obtained through 
MCM's theory (Table). One may conclude that the results regarding to the esti­
mates of B are equivalent. However, MCM's method systematically led to overesti­
mates of the expressed damage in the control sample (F = O), thus confirming the 
previous observation by Freire-Maia (1964). These overestimates may be slight, 
if the damage is low; however, with increasing damage there is an increasing over­
estimate, which may even lead to nonsense values, namely higher than 1. For these 
situations, Freire-Maia (1964) suggested that, in randomly mating populations (F = 
O), the expressed damage can be more accurately estimated by (1—e~A). This leads, 
however, to a curious situation, since in MCM's theory the amount of expressed 
damage in a randomly mating population (F = O) is defined by A, whereas its best 
estimate would be given by (1—e~A). In our theory (equation [6]), this damage is 
given by A, and its best estimate is also given by A. 

The values of A obtained through MCM's method are practically the same from 
loge (1—A) in equation [6] [let us make log„ (1—A) = SEPT (see Table)]. Where­
as in MCM's theory A is the intercept of the regression in a semi-logarithmic scale 
of the number of survivors on F, in our theory SEPT is the intercept of the regression 
in a logarithm scale of the frequency of survivors on the reciprocal of E. Therefore, 
A in MCM's theory and SEPT in ours, have per se no biological meaning, unless 
they are good estimates of the expressed damage in the control (F = O) sample. 
This will occur only when the damage is low (Table). In any circumstance, however, 
the damage may be properly estimated by A from equation [6]. 

Naturally the comparative evaluation of differences between MCM's and our 
theory does not reflect on the excellence and refinement of the MCM's theory. As 
a matter of fact, the results obtained from both methods generally present a rather 
good agreement, especially regarding the estimates of B. It seems very important 
to emphasize this point, since the theories are based on different, but not opposite, 
assumptions. 

Current methods for calculating the average number of lethons acting before birth 
depend on relatively unreliable data based on the frequency of prenatal deaths. 
Taking in consideration this fact, Frota-Pessoa (x966) suggests a variant for the meth-
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Table. Amount of expressed damage in a randomly mating population (A) and load 
of mutations disclosed by inbreeding (B) 

Estimates of A 

AFH 

0.018 

0.019 

0.020 

0.032 

0.041 

0.081 

0.096 

0.173 

0.181 

0.200 

0.272 

0.279 

0.282 

0.336 

0.381 

0-433 

A MCM 

O . O l 8 

0 . 0 1 9 

0 . 0 2 I 

0.033 

O.O42 

O.085 

O. IOI 

0.189 

0.200 

0.223 

O.318 

0.327 

0-331 

0.410 

0.480 

0.568 

SEPT 

0.018 

0.019 

0.021 

0.033 

0.042 

0.085 

O.IOI 

0.189 

0.200 

0.223 

0.318 

0.327 

0-331 
0.410 

0.480 

0.568 

Estimates of B 

BFM 

0.19 ;£ 0.18 

o-55 ± 0.37 
0.20 ^ 0.16 

0.13 ± 0.10 

—0.33 ± 0.02 

o-75 ± o-7o 
0-39 ± 0.49 
0.98 ± 0.41 

1.58 ± 0.32 

—0.49 ± 0.43 

1.31 ± 0.60 

1-94 ± 0.57 

o-53 ± 0.47 

o-93 ± 0.54 

I . I I i 0.83 

2-53 ± 0.78 

BMCM 

0.20 ^ 0.18 

0-53 ± 0.36 

0.20 ^ 0.16 

0.13 jz 0.10 

—0.32 ± 0.07 

0.72 ± 0.68 

0-39 ± 0.49 

1.00 ^ 0.40 

i-59 ± 0.32 
—0.50 ± 0.43 

1.32 J ; 0.60 

1-95 ± 0.58 

o-53 ± 0.47 

o-94 ± 0.55 
1.12 ± 0.84 

2.56 ± 0.79 

NOTES : The data have been obtained from a large sample from the State of Espirito Santo, Brazil (cf. 
Freire-Maia, 1969). 

^4MCM and SMCM = estimates according to MCM's method; 
AFM and BFM = estimates according to our method. 
For a definition of SEPT, see text. 

od by MCM, which avoids using such data at all. Making Lf = average number 
of offspring born alive to the couples in the F =f class, per couple per year of co­
habitation; C = average number of conceptions per couple per year of cohabitation; 
and LflC = Sf, Frota-Pessoa added loge C to both sides of MCM's fundamental 
equation and obtained —logeLf = A' -\- BF, where A' = A + logeC 

Our method also provides estimates of genetic load from data on the frequencies 
of alive births (which are notoriously more reliable than those on prenatal deaths). 
From equation [6] one may directly conclude that 

logeLf = logeC{i—A) + B log, (i—E). [9] 

Although leading to more reliable estimates of B, Frota-Pessoa's variant and 
equation [9], do not provide better estimates of A than do MCM's method or equa­
tion [6], respectively. As in Frota-Pessoa's variant, equations [6] and [9] may also 
be employed to check if inbreeding acts with different intensities for the two sexes 
(for details, see Frota-Pessoa, 1966). As a matter of fact, the same holds true for 
the original MCM's method. Another variant to MCM's method has also been sug-
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gested by Frota-Pessoa (1966) for evaluating the load of mutations due to sex-linked 
genes which manifest themselves in the inbred female offspring. As previously, this 
suggestion may also be easily used in our method. 

The load of mutations expressed as undetected abortions may be disclosed through 
a method suggested by Freire-Maia and Freire-Maia (1965b). 

Genetic loads may be easily calculated from equation [6] through a program, 
written in FORTRAN language by Dr. Ivan Jelinek Kan tor, for the IBM 1620 
electronic computer (see Appendix to the paper by Freire-Maia and Freire-Maia, 
1965a). A copy of the program may be freely obtained on request to the Centro de 
Computacao Eletronica, Escola Politecnica, Universidade de Sao Paulo, Sao Paulo, 
Brasil. Investigators who do not have access to an electronic computer may submit 
their data to be processed. 
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RlASSUNTO 

Gli effetti della consanguineita su mortalita e morbilita possono, in genere, essere imputati alle muta­
zioni dannose solitamente presenti su diversi loci degli antenati comuni di ciascuna coppia consanguinea. 
Per misurare tali effetti, viene suggerito un nuovo coefficiente (E). Sulla base di questa teoria, e stato pre-
sentato altrove, e viene qui ampliato, un nuovo metodo per stimare il peso delle mutazioni rivelate dalla 
consanguineita, senza ricorrere alle frequenze geniche. II peso genetico stimato con questo metodo concorda con 
quello stimato con la teoria classica di Morton, Crow e Muller (MCM). 

RESUME 

Les effets de la consanguinite sur la mortality et la morbilite peuvent, en general, etre attribues aux mu­
tations nuisibles de differents loci des ancetres communs du couple consanguin. Un nouveau coefficient (E) 
est propose pour la mesure de ces effets. Sur la base de cette theorie une nouvelle methode, deja presentee, 
est ici developpee, pour estimer le poids des mutations revelees par la consanguinite, sans faire recours aux fre­
quences g^niques. Le poids genetique ainsi estime Concorde avec l'estime par la methode classique de Morton, 
Grow et Muller (MCM). 

ZUSAMMENFASSUNG 

Der Einfluss der Blutsverwandtschaft auf Mortalitat lasst sich im allgemeinen auf schadliche Mu-
tationen zuruckfiihren, die gewohnlich an verschiedenen " loci " der gemeinsamen Vorfahren jedes bluts-
verwandten Paares vorkommen. Um diese Folgen zu messen, wird ein neuer Koeffizient (E) vorgeschlagen. 
Auf Grund dieser Theorie wurde bereits anderswo eine neue Methode angegeben, die hier erweitert wird, 
um ohne Zuhilfenahme der Genfrequenz den Einfluss der durch die Blutsverwandtschaft aufgedeckten 
Mutationen zu bestimmen. Der auf diese Weise geschatzte Erbeinfluss stimmt mit den Werten der klassischen 
Theorie nach Morton, Crow und Muller (MCM) iiberein. 
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