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Summary

An importance-sampling method is presented that allows the simulation of the history of a selected

allele in a population of variable size. A sample path describing the number of copies of an allele

that arose as a single mutant is generated by simulating backwards from the current frequency

until the allele is lost. The mathematical expectation of a quantity or statistic is then estimated by

taking averages over replicate simulations, weighting each replicate by the ratio of its probabilities

under the Markov chains for the forward and backwards processes. This method was used to find

the average age of a selected allele in an exponentially growing population. In terms of the effect

on average allele age, selection in favour of an allele is not equivalent to exponential growth. To

generate gene genealogies of a sample of copies of a selected allele, the neutral coalescent model is

simulated for the subpopulation containing only the selected allele. From the resulting intra-allelic

genealogy, it is possible to calculate the likelihood of the selection intensity as a function of the

observed level of variability at marker loci closely linked to the selected allele. This method was

used to estimate the intensity of selection affecting the ∆32 allele at the CCR5 locus in Europeans

and a mutant at the MLH1 locus associated with colorectal cancer in the Finnish population.

1. Introduction

Coalescent theory, introduced by Kingman (1982),

and the nearly equivalent theory of lines of descent

introduced by Griffiths (1980), have provided powerful

ways to analyse the rapidly increasing body of genetic

data from human and other populations. The essential

feature of coalescent theory is that, for neutral alleles,

the ancestry of only the sample of genes need be

modelled. Coalescent theory provides a way to

simulate efficiently the history of a sample of neutral

alleles in large populations and to estimate likelihoods

of population genetic parameters. Griffiths & Tavare!
(1994a, b), Kuhner et al. (1995, 1998) and others have

developed coalescent-based programs that estimate

mutation rates, recombination rates and population

growth rates from samples of neutral alleles.

Natural selection has been difficult to incorporate

into coalescent theory because the essential simplicity

of the neutral coalescent is lost. The gene genealogy of

a sample of selected alleles depends not only on the

ancestors of copies sampled but also on the history of
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the whole population. Several approaches have been

taken to overcoming this difficulty and carrying out a

coalescent analysis of selected alleles. Hudson &

Kaplan (1988) modelled the effect of overdominant

selection by assuming that it is so strong that the

frequencies of the two alleles are fixed – an assumption

that reduces the problem to a two-island model with

mutation and recombination playing the role of

migration. Kaplan et al. (1989) used a similar

approximation to model genetic hitchhiking. They

assumed that the substitution of an advantageous

allele is described by deterministic theory and then

allowed for mutation and recombination to modify

sites linked to advantageous alleles.

Neuhauser & Krone (1997) and Krone & Neuhauser

(1997) developed a general method for simulating the

genealogy of a sample of alleles subject to selection

and mutation. Their method generates a large net-

work, called the ancestral selection graph, in which

the genealogy is embedded. As originally presented,

their method was impractical for even moderately

strong selection because the ancestral selection graph

became too large. Slade (2000) has improved the

Krone–Neuhauser method in a way that allows for
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stronger selection. At present, the approach taken by

Krone, Neuhauser and Slade assumes a population of

constant size.

J. Felsenstein, M. K. Kuhner and J. Yamato

(personal communication) are developing a different

method for incorporating selection into a coalescent

model in a population of variable size. They use a

Markov Chain Monte Carlo (MCMC) method to

sample from the distribution of past allele frequency

curves for the selected locus, and also to sample from

the coalescent of copies of the locus conditional on

that selection curve. Both the selection curve and the

coalescent of copies are updated by MCMC sampling.

In this paper I will introduce another method, one

that relies on importance sampling, for simulating the

genealogies of selected alleles. This method differs

from that of Krone and Neuhauser and of Felsenstein,

Kuhner and Yamato in several ways. It assumes only

two alleles and ignores mutation, other than the

unique event that created the mutant allele. It

simulates the history of the mutant allele from the

time it arose until it is found in a specified frequency

in the population or in a sample from the population.

It allows for arbitrary selection and for arbitrary

changes in past population size. The method com-

plements the method of Slatkin & Bertorelle (2001),

which tests for selection based on the extent of

variability among different copies of an allele at linked

marker loci and which estimates population growth

rate under the assumption of neutrality.

The importance-sampling method works well for

selection of any strength in favour of an allele and for

weak selection against it, but performs poorly when

strong negative selection is assumed. To examine

negative selection affecting low-frequency alleles, the

method described by Wiuf (2001) based on a linear

birth–death process is preferable. It is unlikely that a

method will be needed to analyse strongly deleterious

alleles found in high frequency because such alleles

would be very unlikely to be present.

2. Importance sampling

(i) The forward process

The model assumes a diploid species for which the

population size in generation t is N
t
. In a particular

generation, T, the whole population is surveyed and i

copies of an allele A are found. The locus is biallelic,

with other allele being a, and the relative fitnesses of

the three genotypes are 1­s
"
(AA), 1­s

#
(Aa) and 1

(aa), where s
"
and s

#
can take any values greater than

®1. All copies of A are descended from a mutation

that occurred in generation 0. The sample path

describing the numbers of copies of A is denoted by

H¯²i
!
, i

"
, i

#
,…, i

T−"
, i

T
´, where i

!
¯ 0, i

"
¯1 and

i
T

¯ i.

The probability of a sample path is found by

assuming a Markov chain for transitions from one

generation to the next and then multiplying the

transition probabilities. Here I assume a Wright–

Fisher model with selection, for which the distribution

of the number of copies of A is binomial :

Pr(i
t
r i

t−"
)¯ p

it−"
,it

¯
E

F

2N
t

i
t

G

H

x«it
t−"

(1®x«
t−"

)#Nt−it,

(1a)

where

x«
t−"

¯x
t−"

1­s
"
x
t−"

­s
#
(1®x

t−"
)

1­s
"
x#
t−"

­2s
#
x
t−"

(1®x
t−"

)
(1b)

and x
t−"

¯ i
t−"

}(2N
t−"

). That is, x
t−"

is the frequency of

A in generation t®1 before selection and x«
t−"

is the

frequency in the (infinite) gamete pool after selection.

The probability of a sample path H is then

Pr
F
(H )¯ 0

T

t="

p
it−"

, it

, (2)

where p
!, i"

¯1 if i
"
¯1 and 0 otherwise. The subscript

F indicates that this is the probability of the sample

path generated by the forward process, which is the

process beginning with a newly arisen copy of A at t

¯1 and continuing until t¯T.

To study the history of A, we would like to draw

randomly from the set of sample paths satisfying our

conditions that i
!
¯ 0, i

"
¯1 and i

T
¯ i. One way to

do that is with a rejection scheme: begin with one

copy at t¯1, simulate forward in time using the

Wright–Fisher model until t¯T, and then reject all

sample paths for which i
T

1 i. The rejection method

works in principle but is impractical for all but very

small population sizes. For larger populations, the

probability that i
T

¯ i would be so small in general

that almost all sample paths would be rejected.

An alternative to a rejection method is importance

sampling. A sample path H can be generated by a

model that assumes i copies of A at t¯T and

proceeds backwards in time until A is lost. This

sample path can be regarded as a sample path of the

forward process by counting time backwards from T

and defining t¯ 0 to be the first generation in which

no copies of A remain. I will call this way of

generating a sample path the backwards process and

define Pr
B
(H ) to be the probability of a sample path

H under the backwards process, which has not yet

been specified.

Once a sample path H is obtained it can be used to

calculate some quantity or statistic, say G(H ), which

could be allele age or the probability of observing a

configuration of alleles at linked marker loci. If

sample paths could be drawn randomly from the

forward process, the approximate average of G(H )

https://doi.org/10.1017/S0016672301005183 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672301005183


Simulating genealogies 51

would be found by randomly choosing a large number

of sample paths, computing G for each one, and

averaging the result :

E(G)¯
1

M
3
M

m="

G(H
m
),

where M is the number replicates and H
m

is the mth

sample path. If the backwards process is used to

generate sample paths, the contribution of each sample

path must be weighted by the ratio of probabilities of

H under the forward and backwards processes and by

the relative probability that a mutation occurred T

generations in the past :

E(G)¯
3
m

w
m
G(H

m
)

3
m

w
m

, (3)

where

w
m

¯
Pr

F
(H

m
)

Pr
B
(H

m
)
N

!
(4)

and N
!
is the population size in the first generation in

the backwards process after the allele is lost. The term

N
!

is needed because the rate of influx of new

mutations is proportional to the population size

(Slatkin& Rannala, 1997; Wiuf, 2001). If the mutation

rate does not vary with time, its value will cancel from

all calculations and hence is not needed.

Equation (3) is an example of importance sampling

(Tanner, 1993). It will provide an accurate approxi-

mation to E(G) if it is possible to generate sample

paths so that those with relatively high probabilities

under the forward process are generated frequently

enough by the backwards process. An indication of

how well the method performs is the ratio of the sum

of the weights to the maximum weight, w
max

:

W¯ 3
M

m="

w
m

w
max

, (5)

which is necessarily between 1 and M. It takes the

maximum value only if all the weights are equal and

is 1 if all the weight is given to one of the M replicates.

A large value of W does not guarantee that an

accurate estimate of E(G) is obtained, but it does

indicate that numerous replicates are making a

significant contribution to the expected value. A small

value of W indicates that the method is not performing

well and that the result is probably not accurate

because only a few sample paths contribute signifi-

cantly to the average.

(ii) Re�ersibility in a population of constant size

At this point it is useful to consider the reversibility

of Markov chains. A Markov chain is reversible

if, for any sample path, Pr(i
t
, i

t+"
,…, i

t+n
)¯

Pr(i
t
, i

t−"
,…, i

t−n
) for all t and n. If p

ij
is the transition

matrix and α
i

is the stationary distribution, the

Markov chain is reversible if and only if it has a

stationary distribution and α
i
p
ij
¯α

j
p
ji

for all i and j

(Ewens, 1979, p. 74). The Moran model with selection

and mutation is reversible, and Watterson (1976) used

that fact to show that in aMoranmodel the probability

distribution of times to loss of an allele is the same as

the distribution of allele age. The Wright–Fisher

model in a population of constant size is not reversible,

but it is in the diffusion limit because it leads to the

same diffusion equation as does the Moran model

(Watterson, 1977). Hence, in the diffusion limit, the

distribution of allele ages in a Wright–Fisher model is

the same as the distribution of times to loss of an

allele. The analytical results obtained by Kimura &

Ohta (1973), Maruyama (1974) and Li (1975) for

average allele age all rely on the reversibility of the

diffusion approximation to the Wright–Fisher model.

For a population of constant size, the asymptotic

reversibility of the Wright–Fisher model suggests that

the Wright–Fisher for the forward process will, when

run backwards, generate sample paths that have

relatively high probabilities under the forward process.

That procedure works for deleterious alleles because

in the backwards process they are almost certain to be

lost. For advantageous alleles, that approach will not

work because such alleles will nearly always be fixed

by selection instead of lost, so suitable sample paths

representing the increase from a single copy would

almost never be obtained. For alleles with an additive

effect on fitness, Maruyama’s (1974) result provides a

solution. Maruyama showed that, in the diffusion

limit, the distribution of allele age is invariant to a

change in the sign of the selection coefficient.

Therefore, for advantageous alleles of additive effect

the appropriate backwards process is a Wright–Fisher

model with the negative of the selection coefficients. It

is necessary to reject all replicates in which i
"
"1, but

in practice fewer than half the replicates need be

rejected for that reason.

(iii) Non-additi�e alleles and �ariable population size

For alleles that do not have an additive effect on

fitness, the forward process is not invariant to changes

in the sign of the selection coefficient. In a population

of variable size, the forward process cannot be

reversible because the transition matrix of the Markov

chain is time-dependent, implying that there is no

stationary distribution. In both cases, the choice of

the backwards process is not obvious. Equation (3) is

true for any backwards process, but it is of practical

value only if the backwards process generates sample

paths for which the forward probabilities are reason-

ably large. Otherwise sample paths contributing most
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to the expectation will be missed or poorly represented,

and the resulting estimate of G(H ) will be incorrect. A

variety of backwards processes can be envisioned. If

selection is weak and population sizes do not vary by

much, the choice of the backwards process is not

critical, but for strong selection and substantial

variation in population size, accurate results are

obtained only if the backwards process is chosen

carefully.

A useful, but not necessarily optimal, backwards

process is a Wright–Fisher model in which the

population sizes are in the reverse order and for which

the expected allele frequency in the preceding gen-

eration is chosen to match the expected change in

allele frequency in the forward process as closely as

possible. In the backwards process, the sequence of

population sizes beginning in generation T is

N
T
, N

T−"
, N

T−#
,…, and the transition from t to t®1 is

given by the binomial distribution

Pr(i
t−"

r i
t
)¯ q

it, it−"

¯
E

F

2N
t−"

i
t−"

G

H

y«it−"
t

(1®y«
t
)#Nt−"

−it−". (6)

For an advantageous allele (s
"
& s

#
" 0), y«

t
is chosen

so that if x
t−"

¯ y«
t
, then x«

t−"
¯ y

t
where y

t
¯ i

t
}(2N

t
).

That condition implies y«
t
¯ z, where z is the solution

to the quadratic equation

z
1­s

"
z­s

#
(1®z)

1­s
"
z#­2s

#
z(1®z)

¯ y
t

(7)

that lies in the interval (0, y
t
). The same choice for y«

t

serves for an overdominant allele (s
#
" s

"
), provided

that there is a solution to (7) with z in (0, y
t
). For

neutral alleles, y«
t
¯ y

t
.

For a deleterious allele (s
"
% s

#
! 0) the choice of

the selection coefficients used for the backwards

process is more problematic and there seems to be no

choice that works in all cases. For weak selection

against A, I found that using z defined by (7) but with

®s
"

and ®s
#

replacing s
"

and s
#

provides adequate

results if A is in low frequency.

The probability of the sample path H under the

backwards process is

Pr
B
(H )¯ 0

T

t="

q
it, it−"

. (8)

To compute the weighting factor, we take the ratio of

the forward and backward probabilities. The result

simplifies because almost all the binomial coefficients

cancel and most of the remaining terms group

conveniently:

w¯N
!

p
!,i"

p
iT−"

,iT

q
i
"
,!

q
i
#
,i

"

0
T−"

t=#

E

F

x«
t−"

y«
t+"

G

H

it

E

F

1®x«
t−"

1®y«
t+"

G

H

#Nt−it

.

(9)

As mentioned above, in the backwards simulation i
"
is

not necessarily 1. If it is not, w¯ 0 for that replicate.

3. Average allele age

The importance-sampling method can be tested by

finding the average allele age, for which some

analytical results are known. The age of an allele is the

time since it arose by mutation. To estimate the

average age, the backwards process is simulated for

each replicate until A is lost or fixed. Replicates in

which A is fixed and those in which there are two or

more copies in the generation before A is lost are

rejected. In the remaining replicates, the time to loss,

T
m
, and the weight, w

m
, in the mth replicate are

recorded. After a large number of replicates, the

average age is the weighted sum

Ta ¯
3
M

m="

w
m
T

m

3
M

m="

w
m

(10)

and a histogram of ages is obtained by binning the

ages weighted by w
m
. The results presented in Table 1

are based on weighted averages over 100000 replicates

for which non-zero weights were obtained.

Average ages can be compared with expected values

obtained from analytical theory for the case of a

population of constant size and for neutral alleles in a

population of variable size. Kimura & Ohta (1973)

showed that the expected age of a neutral allele found

in frequency p found in a population of constant size

N is approximately

E(T )¯
®4Np ln( p)

1®p
. (11)

For selected alleles, diffusion theory provides the

solution in the form of an integral that must be

evaluated numerically. Maruyama (1974), Li (1975)

and Watterson (1976, 1977) have published results for

various cases. The expected values in Table 1 are from

table 3 of Maruyama (1974).

For a population of variable size, Griffiths &

Tavare! (1998) developed a method for finding the

expected age and the distribution of ages of a neutral

allele. Their analytical expression for expected age is

difficult to evaluate numerically but they described an

efficient Monte Carlo method which was implemented

by Slatkin (2000).

Table 1 presents average allele ages calculated using

the importance-sampling method (in roman type),

and, when possible, from the relevant analytical

theory (in italics). When comparisons can be made,

the simulation results are quite accurate. In all cases,

W was at least 100 and, for s& 0, at least 1000. The

importance-sampling method did not produce usable
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Table 1. A�erage age (in units of 4N
!

generations) of an allele in

frequency p

4N
!
s

4N
!
r ®100 ®10 0 10 100

p¯ 0±01 0 0±011 0±029 0±046 0±029 0±011
0±012 0±030 0±045 0±028 0±012

10 0±019
0±011 0±019 0±018 0±017 0±011

100 0±0077
0±0082 0±0075 0±0074 0±0073 0±0063

p¯ 0±1 0 0±030 0±129 0±255 0±129 0±030
0±031 0±129 0±252 0±129 0±031

10 0±073
0±032 0±080 0±073 0±064 0±028

100 0±021
0±027 0±022 0±021 0±021 0±016

p¯ 0±5 0 0±693 0±316 0±052
0±697 0±317 0±052

10 0±160
0±162 0±138 0±047

100 0±036
0±036 0±035 0±026

p¯ 0±9 0 0±948 0±502 0±074
0±987 0±501 0±075

10 0±203
0±203 0±187 0±067

100 0±042
0±042 0±041 0±035

In all cases, N(t)¯N
!
e−rt with N

!
¯10%, and the fitnesses 1­2s (AA), 1­s (Aa),

1 (aa). Results from the importance-sampling method are in roman type; results
from analytical theory are in italics. The method did not yield accurate results for
p¯ 0±5 and 0±9 with negative selection.

results for s! 0 for p¯ 0±5 or p¯ 0±9. Values of W

were between 1 and 10 for these cases.

These results show that additive selection and

exponential population growth are not equivalent in

their effects on average allele age. The reason is that,

as pointed out byWiuf (2000, 2001), although selection

and exponential population growth have roughly the

same effects on the changes in the numbers of copies

of the mutant each generation, population growth but

not selection results in an increasing influx of

mutations. Table 1 also shows that under strong

population growth, the average allele age is not

invariant to a change in the sign of the selection

coefficient.

4. The gene genealogy of selected alleles

The importance-sampling method assumes that the

entire population is sampled, but it can be modified to

allow for sampling and can generate the gene

genealogy of selected alleles. There are two situations

that have to be treated separately. In the first, a

random sample of the population is drawn and the

frequency of A is known only from that sample. In the

second, the frequency of A is estimated from other

studies. The second situation is the one usually

encountered when studying disease-associated alleles

in human populations. The allele frequency is esti-

mated from epidemiological surveys that determine

disease prevalence. Then a small sample of chromo-

somes carrying a particular allele is chosen for more

detailed genetic analysis and genotypes are assessed at

one or more closely linked marker loci. Often those

marker loci played a role in the mapping and cloning

of the disease-associated allele and are used subse-

quently to estimate the age or number of independent

origins of the allele (Slatkin & Rannala, 2000). The

only difference between these two cases is the way in

which the weighting factor is computed. When the

allele frequency is estimated from the sample, an

additional term is needed.

(i) Allele frequency estimated from the sample

Of the 2N
T

copies of the locus, n are sampled.

Consider first the forward process described in Section

2. The allele A arises by mutation in generation 1 and

increases to i
T

copies in generation T. Then a sample
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of size n is drawn without replacement. The dis-

tribution of j, the number of copies of A in the sample,

is hypergeometric :

Pr
F
( j r i

T
)¯

E

F

i
T

j

G

H

E

F

2N
T
®i

T

n®j

G

H
E

F

2N
T

n

G

H

. (12)

In terms of the sample path, H, we can simply add

j to the end and say that our sample path is now

²i
!
, i

"
,…, i

T
, j ´. The forward probability of this sample

path is found by multiplying the product of the

transition matrices in (2) by the hypergeometric

distribution in (12). To find the probability of this

sample path for the backwards process, we need to

add a ‘reverse sampling’ step. That is, we need the

probability distribution of i
T

given j. A convenient

distribution is obtained by assuming the population

composition is obtained from a Polya urn model. The

process is to draw one gene from the sample and then

add a second of the type drawn. The resulting

distribution has the same algebraic form as a

hypergeometric but is different because the random

variable is i
T

not j :

Pr
B
(i

T
r j )¯

E

F

i
T
®1

j®1

G

H

E

F

2N
T
®i

T
®1

n®j®1

G

H
E

F

2N
T
®1

n®1

G

H

. (13)

This distribution arises naturally in finding the

probabilities of descendent configurations in the

neutral coalescent (Griffiths & Tavare! , 1998), but here

it is used to represent reverse sampling. Other

distributions could be chosen instead. In most

applications of this method 2N
T

( n, in which case

the distribution of x
T

¯ i
T
}(2N

T
), the population

frequency of A, is approximately beta:

Pr(x
T

r j )¯ (n®j )

E

F

n®1

j®1

G

H

xj−"
T

(1®x
T
)n−j−". (14)

To find the appropriate weighting factor for each

sample path, we multiply the product in (7) by the

ratio of (12) to (13). Most terms cancel leaving

Pr
F
( j r i

T
)

Pr
B
(i

T
r j )

¯
i
T
(2N

T
®i

T
)n

2N
T
j (n®j )

. (15)

To simplify further, we note that n, j and N
T

are the

same for every replicate and so can be ignored. The

appropriate weight for each replicate is then obtained

by multiplying w in (7) by i
T
(2N

T
®i

T
). If we assume

sampling with replacement, implying a binomial

distribution of j, and use the beta distribution to

approximate (13), the resulting ratio is x
T
(1®x

T
),

which is equivalent because 2N
T

is the same in every

replicate.

(ii) Allele frequency estimated from other studies

If the frequency of A is known, then we can proceed

by setting x
T

to that frequency. No additional factor

is needed. The backwards simulation provides a

sample path and (9) provides the weight attached to

that sample path. Uncertainty in x
T

could be

incorporated by assuming a distribution of values and

then choosing randomly from that distribution at the

beginning of each replicate.

(iii) Allelic genealogy of the sample

Once a sample path is obtained, we can use the neutral

coalescent for a sample of size j in a ‘population’ of

A-bearing chromosomes of sizes i
T
, i

T−"
,…, i

"
, going

backwards in time to generate the gene genealogy of

the j copies of A in the sample. The probability of a

coalescent event per pair of copies in generation t in

the past is 1}(2i
t
(i

t
®1)). The result of simulating the

neutral coalescent is a gene genealogy for that replicate

which represents the genealogical history of the sample

of j A-bearing chromosomes (called the intra-allelic

genealogy). For many purposes, the j®1 coalescence

times (called the intra-allelic coalescence times and

denoted by t
#
,…, t

j
) of the intra-allelic genealogy are

needed. The coalescence time, t
k
, is the time at which

the number of ancestral lineages in the intra-allelic

genealogy increases from k®1 to k. When the intra-

allelic coalescence times are used to compute a statistic,

the expected value of that statistic is obtained by

taking the average across replicates weighted by w
m
.

In each replicate, a new neutral genealogy is simulated

using the sample path for that replicate.

5. Applications

I will discuss two applications of this theory. In each,

the allele frequency was estimated in other studies,

and the problem is to use the allele frequency and the

extent of intra-allelic variability to estimate the

selection intensity affecting an allele. Both population

growth and selection tend to reduce allele age and

hence reduce all the intra-allelic coalescence times.

When those coalescence times are smaller there is less

time during which mutation and recombination can

create variation at marker loci linked to the allele of

interest. The theory described in the preceding sections

provides a way to generate intra-allelic coalescence

times for assumed population growth rates and

selection intensities. Those coalescence times can be

combined with models of mutation and}or recom-

bination to find the probability of the observed level

of intra-allelic variability under the model. The two

examples illustrate the analysis of two kinds of intra-

allelic variability. In the first, the extent of linkage

disequilibrium at a closely linked marker locus is
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known. In the second, the recombination length of a

conserved haplotype is known.

(i) The probability of the number of non-recombinant

chromosomes

One kind of data that can be analysed with this

method is the number of non-recombinant chromo-

somes in a sample. Typically, a marker locus with two

alleles, M and m, closely linked to the allele of interest

is surveyed on j chromosomes and a number of them

are found to carry one of the alleles, say M, that is in

lower frequency on non-A bearing chromosomes.

This linkage disequilibrium between A and M provides

the basis for linkage disequilibrium mapping when the

map location of A is unknown, and for estimating the

age of A when the recombination rate between the

two loci is known (Slatkin & Rannala, 2000). The data

are j, the number of A-bearing chromosomes sampled,

and l, the number of AM chromosomes in the sample

(l% j ). Given the intra-allelic genealogy, the relevant

parameters are the per generation rates of M to m

transitions and of m to M transitions on A-bearing

chromosomes. If the mutation rate from M to m is µ,

the rate of mutation from m to M is ν, the frequency

of M on non-A-bearing chromosomes is Q, and the

recombination rate is c, then the probability that an

AM lineage becomes an Am lineage is u¯ c(1®Q)­µ

and the probability that an Am lineage becomes an

AM lineage is �¯ cQ­ν. The problem is to find the

probability of the data, given u, ν and the intra-allelic

coalescence times. This probability can be found by

simulation for arbitrarily large sample sizes using the

method described by Rannala & Slatkin (1998). For

relatively small j, a matrix method described by

Slatkin (2000) and Slatkin & Bertorelle (2001) is

adequate.

The matrix method relies on the independence of

changes on each of the k lineages present between t
k

and t
k+"

, where it is convenient to define t
j+"

to be 0.

When there are k lineages present, the state of the

system is described by a k­1 vector, p(k), for which

the lth element is the probability that there are l AM

chromosomes present (0% l%k). By assuming in-

dependence of the changes on each lineage, a k­1 by

k­1 transition matrix, T(k), can be found such that

T(k)p(k) is the configuration before t
k+"

, given that p(k)

is the configuration immediately after t
k
. A second

matrix, S(k), is needed to account for the splitting of

one randomly chosen lineage at t
k+"

. This matrix is a

k­2 by k­1 matrix. S(k) has as the jlth element 1®j}k

if l¯ j, j}k, if l¯ j­1, and 0 otherwise. The con-

figuration immediately after t
k+"

, p(k+") is S(k)p(k). By

successively multiplying by these matrices and as-

suming that at t
#
, p(#) ¯ (0, 0, 1), meaning that at t

#

both lineages are AM, the probability of l AM

chromosomes is found. If s is the unknown parameter,

then each intra-allelic genealogy provides L(s), the

likelihood. The weighted average of these likelihoods

is an estimate of the overall likelihood of s.

(ii) ∆32 allele of CCR5 in Europeans

The ∆32 allele of the CCR5 locus is found at a

frequency of 10% or greater in all European

populations that have been studied (Stephens et al.,

1998). It is absent or nearly so from other groups.

Individuals homozygous for ∆32 are resistant to

infection by human immunodeficiency virus (HIV)

and heterozygous carriers who have been infected by

HIV have a significantly delayed time to onset of

AIDS (Dean et al., 1996). Stephens et al. (1998)

examined two microsatellite markers closely linked to

CCR5 and found most carried a haplotype that is

otherwise rare in the population. Based on the extent

of linkage disequilibrium with these two marker loci,

they concluded that ∆32 is very young, less than 1000

years old, and has been subject to strong positive

selection. To estimate the selection coefficient in

favour of ∆32, they assumed that it arose by mutation

900 years ago and then fitted a deterministic model of

selection. They concluded that, assuming no domi-

nance in fitness, the selection coefficient in favour of

∆32 was roughly 0±3.

We can reanalyse the data of Stephens et al. (1998)

using the importance-sampling method. Assume ad-

ditive selection (s
"
¯ 2s and s

#
¯ s), where s is the

parameter to be estimated. A reasonable model of the

demographic history of the European population is

exponential growth with a current effective size of N
T

¯10) and r¯ 0±02 representing the relatively rapid

growth in the recent past. Of course, simple ex-

ponential growth is not realistic, but if s is an order of

magnitude larger than r, the resulting estimate of s will

not be very sensitive to the details of the demographic

model. Stephens et al. (1998) examined 46 chromo-

somes carrying ∆32 and found at the marker locus

denoted GAAT that 44 of them carried the 197 allele,

which is at a frequency 0±685 on chromosomes not

carrying ∆32. The recombination rate between CCR5

and GAAT is roughly 0±0021. In the notation of the

preceding sections, j¯ 46, l¯ 44, c¯ 0±0021 and Q¯
0±585. In the likelihood analysis, I followed Stephens

et al. (1998) in assuming a mutation rate µ¯ 0±001

away from 197 and no mutations creating that allele,

meaning that ν¯ 0. These assumptions imply u¯
0±00166 and �¯ 0±00144. The population frequency,

x
T
, was assumed to be 0±1.

Fig. 1 shows the log of the likelihood of s given

these parameter values. We can see that there is a

maximum at roughly 0±2, which is close to the value

estimated by Stephens et al. (1998), but that the

decrease of the likelihood with larger s is so slow that

stronger selection cannot be excluded.
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Fig. 1. Estimates of the log-likelihood, ln(L), of s, the
selection intensity, as a function of the data at a marker
locus closely linked to the ∆32 allele of CCR5. Values at
each point are based on 100000 replicates for which non-
zero weights were obtained.

(iii) Length of conser�ed haplotype

Another way to characterize intra-allelic variability is

the length of a multilocus haplotype found on all A-

bearing chromosomes. The data then are the length of

the shared haplotype, l
o
, defined to be the number of

bases separating the markers at the ends. Slatkin &

Bertorelle (2001) show that, given the total length of

the intra-allelic genealogy,

Λ¯ t
#
­ 3

i

k=#

t
k
, (16)

the probability of the data is

Pr(l
o
)¯ (ρΛ)# l

o
e−lo

ρΛ, (17)

where ρ is the recombination rate between adjacent

bases. Only the product ρl
o
, which is the recombination

distance separating the ends of the conserved haplo-

type, affects the results. To find the overall probability

of l
o
, the weighted average is taken over many replicate

sets of intra-allelic coalescence times.

(iv) Application to MLH1 in Finland

MLH1 is a DNA mismatch repair gene associated

with the elevated incidence of hereditary nonpolyposis

colorectal cancer (HNPCC). Moisio et al. (1996)

sampled 19 chromosomes carrying an allele designated

MLH1-1 from the Finnish population and surveyed

several closely linked microsatellite loci. They found

that a conserved haplotype spanning 7±1 cM was

present on all 19 chromosomes. For the calculations,

it is reasonable to assume that ρ¯10−) and l
o
¯

7±1¬10'.

For the demographic model, I assumed that the

current effective population size of Finland is 2000000,

–20

–22

–24

–26

–28

–30
–0·1 0 0·1 0·2 0·3

s

log(L)

0·4 0·5

Fig. 2. Estimates of the log-likelihood, ln(L), of s, the
selection intensity, given that a conserved haplotype
spanning 7±1 cM surrounds MLH1-1 on all 19
chromosomes examined. As in Fig. 1, values at each
point are based on 100000 replicates for which non-zero
weights were obtained.

that it was founded by a population of effective size

1000, 2000 years or roughly 100 generations ago, and

that in 1700 its effective size was about 300000

(S. K. Service & N. B. Freimer, unpublished data).

These data can be fitted with a two-stage model of

exponential growth, at a rate r
"
¯ 0±19 between the

present and 1700 (15 generations in the past) and a

growth rate r
#
¯ 0±067 before 1700. The frequency of

MLH1-1 in the Finnish population is difficult to

estimate because it is so rare. Moisio et al. (1996)

estimated the frequency to be 0±0004, but P. Peltomaki

(personal communication) found no copies of

MLH1-1 in 2351 healthy anonymous blood donors in

a region of Finland with the highest frequency of

MLH1-1, suggesting a frequency much less than

0±0004. I assumed a frequency x
T

of 0±0001 for these

calculations.

Fig. 2 shows the log-likelihood of s as a function of

selection intensity, assuming s
"
¯ 2s

#
¯ 2s. These

results illustrate the limitation of the importance-

sampling method. For s&®0±01, the method per-

forms well : the estimated likelihood curve is smooth

and values of W are 1000 or greater. For s%®0±03,

the likelihood curve is no longer smooth and values of

W are less than 10, both of which indicate poor

performance. The transition occurs at s¯®0±02, for

which W¯ 79.

Fig. 1 implies that MLH1-1 has been strongly

selected since it arose by mutation but it does not

allow us to distinguish between positive and negative

selection . The results presented in Table 1 and those

derived by Wiuf (2001) show that negative selection

can also shorten the intra-allelic genealogy, so the

MLH1-1 data are consistent with strong negative

selection as well. At this point, it does not seem

possible for population genetic analysis to tell us
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whether MLH1-1 is deleterious or advantageous to

carriers but the role of MLH1 in DNA repair and

the association of MLH1-1 with colorectal cancer

suggests that it is deleterious. But the associated

cancer is probably not the cause of the selection

because it is a late-onset condition that has a relatively

small effect on reproductive fitness.

6. Discussion and conclusion

The methods described here for simulating the history

of a selected allele in a population of variable size have

a variety of applications. One application is finding

the expected age and the distribution of ages of

selected alleles in a population that varies in size. For

alleles that have an additive effect on fitness, past

population growth reduces average allele somewhat

more than does selection of comparable intensity.

Maruyama’s (1974) result that the age of an additive

allele is independent of the sign is not true in a

population undergoing exponential growth.

If information about linked marker loci and

demographic history is available, this method allows

the estimation of selection intensities affecting an

allele. The method complements that described by

Slatkin & Bertorelle (2001), which provides a test of

neutrality and estimates population growth rate if the

allele is neutral.
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