
Sensitivity of grounding line dynamics to the choice of the
friction law

JULIEN BRONDEX, OLIVIER GAGLIARDINI, FABIEN GILLET-CHAULET,
GAËL DURAND

Univ. Grenoble Alpes, CNRS, IRD, IGE, F-38000 Grenoble, France
Correspondence: Julien Brondex <julien.brondex@univ-grenoble-alpes.fr>

ABSTRACT. Basal slip accounts for a large part of the flow of ice streams draining ice from Antarctica and
Greenland into the ocean. Therefore, an appropriate representation of basal slip in ice flow models is a
prerequisite for accurate sea level rise projections. Various friction laws have been proposed to describe
basal slip in models. Here, we compare the influence on grounding line (GL) dynamics of four friction
laws: the traditional Weertman law and three effective pressure-dependent laws, namely the Schoof,
Tsai and Budd laws. It turns out that, even when they are tuned to a common initial reference state,
the Weertman, Budd and Schoof laws lead to thoroughly different steady-state positions, although the
Schoof and Tsai laws lead to much the same result. In particular, under certain circumstances, it is pos-
sible to obtain a steady GL located on a reverse slope area using the Weertman law. Furthermore, the
predicted transient evolution of the GL as well as the projected contributions to sea level rise over a
100-year time horizon vary significantly depending on the friction law. We conclude on the importance
of choosing an appropriate law for reliable sea level rise projections and emphasise the need for a coup-
ling between ice flow models and physically based subglacial hydrological models.
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1. INTRODUCTION
Assessing the contribution of polar ice sheets to future sea
level rise (SLR) is a major challenge that ice-sheet models
are intended to address. Most of the ice loss from the
Antarctic ice sheet, which constitutes the largest potential
source of future SLR, occurs through solid ice discharge
into the ocean and is controlled by marine terminating gla-
ciers (Church and others, 2013). In this context, accurate
knowledge of the position of the grounding line (GL), the
limit beyond which grounded ice starts floating, is critical
for reliable calculations of the current mass budget (Rignot
and others, 2011) and proper modelling of its dynamics is
required for future SLR projections (Durand and Pattyn,
2015).

In the recent years, particular concern has arisen regarding
large parts of the West Antarctic ice sheet, which are known
to be lying on upward sloping beds (Fretwell and others,
2013), and thus potentially prone to a marine ice-sheet
instability (MISI). First proposed by Weertman (1974) from
theoretical arguments and later confirmed by Schoof
(2007a) using an analytical approach based on asymptotic
expansions, the MISI hypothesis states that marine-based
ice sheets resting on upward-sloping beds, also called
reverse slopes, are inherently unstable. Although it has
been controversial for many years, the MISI theory is now
largely accepted within the community in the absence of but-
tressing. However, Gudmundsson and others (2012) have
shown that stable sections of GL located on a reverse slope
can be obtained when lateral buttressing is sufficient.
Experiment 3 of the marine ice-sheet intercomparison exer-
cise MISMIP (Pattyn and others, 2012) was designed to test
the ability of 1HD numerical models to accurately simulate
GL migration on a reverse slope. The experimental set-up
prescribed the commonly used non-linear Weertman law

(Weertman, 1957) as a basal boundary condition to
account for basal slip at the ice/bed interface.

A large part of the flow of fast-flowing ice streams draining
ice from Antarctica is due to basal slip (Cuffey and Paterson,
2010), which is governed by various, complex and poorly
observed processes such as deformation of subglacial sedi-
ments (Tulaczyk and others, 2000) or ice flowing over rigid
obstacles by a combination of viscous creep and regelation
(Weertman, 1957) with potential formation of water-filled
cavities (Lliboutry, 1968). Observational evidence has estab-
lished the existence of an active subglacial drainage system
(Gray and others, 2005; Fricker and others, 2007) made of
water-laden till and interconnected subglacial lakes linked
by water channels (Wingham and others, 2006; Fricker and
Scambos, 2009). Subglacial water exiting the grounded ice
sheet and entering the sub-ice-shelf cavity at the GL has
notably been reported by several authors (Carter and
Fricker, 2012; Le Brocq and others, 2013) suggesting a con-
nectivity between the basal hydrological network and the
ocean. By reducing the effective pressure, i.e. the difference
between ice overburden pressure and water pressure, the
liquid water flowing through this basal network enhances
basal slip (Zwally and others, 2002; Stearns and others,
2008).

Ice flow models account for basal slip via the use of a fric-
tion law, i.e. the relationship between the basal drag τb and
the sliding velocity ub. Effective pressure N has been
included in several friction laws over the last 30 years
(Budd and others, 1984; Schoof, 2005; Tsai and others,
2015) to represent the effect of water at the ice/bed interface.
Computing basal drag then requires a hydrological model to
evaluate the basal water pressure. Several hydrological
models have been proposed over the last years. The most
complex ones simulate the subglacial drainage processes
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with a high level of detail (Schoof, 2010; Hewitt and others,
2012; Werder and others, 2013; Fleurian and others, 2014).
However, the characterisation of the subglacial system being
ill-defined, these models usually rely on a set of poorly con-
strained parameters. For this reason, although empirical para-
meterisations of basal water pressure have been developed
(Pimentel and others, 2010; Martin and others, 2011),
authors using effective pressure-dependent friction laws
usually adopt the assumption of perfect hydrological con-
nectivity to the ocean (Morlighem and others, 2010; Tsai
and others, 2015; Gladstone and others, 2017).

Inverse methods are now routinely used when forecasting
the evolution of real ice sheets in order to initialise the model,
and in particular the basal friction field, from available obser-
vations of surface velocities. Because the inferred basal stress
must satisfy the global stress balance, the form of the friction
law cannot be determined from a unique set of observations.
For this reason, most models use the classical Weertman fric-
tion law (Weertman, 1957) and infer a unique field, the basal
friction coefficient C(x,y), from observed surface velocities
(Vieli and Payne, 2003; Arthern and Gudmundsson, 2010;
Gillet-Chaulet and others, 2012; Larour and others, 2012b).
The complexity of the underlying physical processes, in
particular the dependence on effective pressure, is then
hidden in the inferred spatial distribution of C. Due to the
lack of constraints on its temporal evolution, one adopted
solution is to keep the friction coefficient field stationary for
transient prognostic simulations (Favier and others, 2014).
Nevertheless, several attempts have been made to account
for temporal evolution of basal conditions. Shannon and
others (2013) proposed a parameterisation of the annual
speed-up, implemented through fractional changes of the
basal friction, as a function of the meltwater run-off.
Calibrated from observations in Greenland, the parameter-
isation allows for both continuously increasing or bounded
lubrication. Studying the southern Basin 3 of the Austfonna
ice cap (Svalbard), Gong and others (2016) linearly extrapo-
lated in time the friction coefficient field using the values
inferred from observations made in 1995 and 2011. They
were not able to reproduce the 2012 surge with this simple
procedure, leading them to the conclusion that more physic-
ally based models are required.

The inferred spatial distribution of C usually exhibits a
smooth decrease over a certain distance upstream of the
GL (Vieli and Payne, 2003), which supports the hypothesis
of a locally reduced effective pressure due to the connectivity
between the subglacial drainage system and the ocean. This
area of reduced friction is of major importance from a mech-
anical point of view as it constitutes the transition zone
within which ice flow switches from basal-drag-controlled
ice stream flow to drag-free flow of floating ice shelves
onto the ocean. Some authors have proposed ad hoc
methods to account for the basal drag decrease occuring in
this transition zone independently of the GL position
(Pattyn and others, 2006; Gagliardini and others, 2016), but
the typical length scale of the decay is chosen arbitrarily
without considering the actual physical mechanisms
behind it. Using an effective pressure-dependent friction
law is a physically motivated way to account for the transi-
tion zone. By definition, the effective pressure is zero at the
GL and wherever ice is floating. Further inland, ice thickness
increases while water disponibility tends to decrease.
Consequently, the ice overburden pressure progressively
overcomes water pressure causing effective pressure to

increase over a certain length scale upstream of the GL,
which is determined by the surface profile as well as the
spatial distribution of basal water pressure and corresponds
to the transition zone.

Using a combination of numerical and analytical results
Schoof (2007a) developed a boundary layer theory enabling
to predict steady ice-sheet profiles and providing stability cri-
terion under Weertman friction regime. Tsai and others
(2015) extended this work, assuming that the friction
should shift from aWeertman friction regime at high effective
pressure to a Coulomb friction regime at low effective pres-
sure. However, the implications on the GL dynamics of
such a shift were not investigated. Based on an experimental
setup adapted from experiment 3 of MISMIP, the aim of this
work is to study the sensitivity of the GL dynamics to different
friction regimes. To this end, we compare four friction laws
that mainly differ in their dependence on N. These laws
can be calibrated to give the same initial solution, but will
differ in their response to a perturbation. The first section is
an overview of these friction laws. A precise description of
the experiments and of the model used to conduct them is
given in the second section. In the following section,
results are presented both in terms of steady states and tran-
sient responses. Finally, these results, as well as their implica-
tions, are discussed in the last section.

2. OVERVIEW OF FRICTION LAWS
The original theory of sliding was formulated assuming that
the bedrock is rigid, ice is clean and temperate and that a
thin film of water separates ice and bedrock. At the local
scale, ice is assumed to slide perfectly on the bedrock, but
bedrock roughness induces a mean resistance to basal
motion which is referred to as basal drag. Weertman (1957)
demonstrated that in such a case the relation between τb
and ub takes the form of a power law:

τb ¼ CWumb ; ð1Þ

where CW is a friction parameter, hereafter called Weertman
friction parameter, andm a positive constant. This is the most
commonly used relation in ice flow models and projections
in terms of sea level rise have been shown to be highly sen-
sitive to the value of m (Ritz and others, 2015). Given that
Eqn (1) was initially developed to account for the creep of
ice over hard beds, the exponent m is often related to the
creep exponent n of the Glen’s flow law as m= 1/n and,
therefore, usually set to m= 1/3 (Weertman, 1974; Schoof,
2007b; Gudmundsson and others, 2012; Pattyn and others,
2012; Pattyn and others, 2013). However, the case of ice
sliding over soft beds can also be represented through Eqn
(1) provided that the value of m is correctly chosen in order
to account for the underlying till deformation. For example,
Joughin and others (2010) tried three different parameterisa-
tions of m to reproduce the observed speedup of ice flow at
the GL of Pine Island Glacier between 1996 and 2010; they
concluded that assuming m= 3 over hard-bedded areas and
a quasi-plastic behaviour (m→ 0), where till is likely to be
present, gives the best match to observed flow speeds and
thinning rates. This result was later confirmed by Gillet-
Chaulet and others (2016) and extended to the main trunk
of the glacier. A linear relationship, i.e. m= 1 in Eqn (1), is
nevertheless the most commonly adopted in ice flow
models making use of inverse methods to constrain the
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basal friction from observed surface velocities (Larour and
others, 2012b; Schäfer and others, 2013; Gladstone and
others, 2014). The inferred friction parameter can then be
seen as an ‘effective friction parameter’ accounting for all
the unknown underlying physics.

Budd and others (1979) carried out laboratory experi-
ments for studying temperate-ice sliding over rock surfaces
with a wide range of roughnesses, for normal and shear stres-
ses comparable to those expected under real ice masses.
They concluded that τb exhibits a strong dependence on N
which led them to modify the Weertman law as follows:

τb ¼ CBumb N
q; ð2Þ

where CB is a friction parameter, hereafter called Budd fric-
tion parameter, N the effective pressure and q a positive con-
stant. Original values proposed by the authors were m= 1
and q= 2 (Budd and others, 1984), but more recent model-
ling studies adopt q= 1 (Morlighem and others, 2010;
Larour and others, 2012a; Gladstone and others, 2017). In
the particular case q= 0, the Budd law reduces to the
Weertman law (Eqn (1)).

The form of Eqns (1) and (2) directly implies that basal drag
can reach arbitrary high values. However, considering ice
sliding over a rigid and undulated bedrock made of rectangu-
lar steps, Iken (1981) demonstrated that the presence of
water-filled cavities induces the existence of an upper
bound for basal drag determined only by the maximum up-
slope of the bed. Schoof (2005) validated this result for
more general bed geometries and analytically derived a
new friction law for a linear ice rheology. This law was
numerically extended to non-linear rheologies by
Gagliardini and others (2007), and the general relationship
writes:

τb ¼ CSumb
ð1þ CS=CmaxNð Þ1=mubÞm

; ð3Þ

where CS is a friction parameter, hereafter called Schoof fric-
tion parameter, and Cmax a positive value corresponding to
the maximum value of τb/N which is bounded by the local
maximum up-slope of the bedrock (more details in
Gagliardini and others (2007)). The Schoof law exhibits
two asymptotic behaviours. At large N, Eqn (3) reduces to
τb∼CSumb which corresponds to a Weertman-type friction
regime. On the other hand, when N→ 0 water-filled cavities
open, decreasing the apparent roughness of the rigid bedrock
and inducing a Coulomb-type regime with τb∼ Cmax N. This
latter situation is a particular case of plastic basal rheology,
i.e τb= τ0, with a yield stress τ0 proportional to N.

The Coulomb-type plastic rheology has also been sug-
gested as the most appropriate to account for glacial till
deformation in the case of ice sliding over soft beds
(Iverson and others, 1998; Tulaczyk and others, 2000;
Truffer and others, 2001). Arguing that basal motion is a com-
bination of both mechanisms, i.e. ice deformation around
and across the bedrock rugosity and deformation of the
underlying soft till, Tsai and others (2015) proposed a friction
law which accomodates the two friction regimes:

τb ¼ min½CWumb ; fN� ð4Þ

with f a solid friction coefficient. While the Schoof law
induces a continuous transition from a Coulomb-type basal

rheology to a Weertman-type basal rheology, the Tsai law
is characterised by a cut-off; the cross-over from the former
regime to the latter occurs when f N gets higher than
CWumb . Consequently, although the two formulations are
intended to describe different physical processes, for prop-
erly chosen friction parameters (i.e. CS=CW and f=Cmax),
the Tsai and Schoof laws present the same limit regimes.

Contour plots of τb given in the plane (N, ub) are repre-
sented in Fig. 1 for the four friction laws (Eqns (1)–(4)) using
m= 1/3, q= 1, CW=CB=CS= 7.624 × 106 S.I. and f=
Cmax= 0.5; with this choice the four laws give the same τb
for the value N= 1 MPa (highlighted by the black vertical
dashed lines in Figs 1a–d). By definition, τb is independent
ofNwith theWeertman law, and isovalues are given by hori-
zontal lines (Fig. 1a). Isolines obtained with the Tsai law
(Fig. 1d) are divided into two parts: high effective pressures
correspond to the Weertman-type regime, whereas a
Coulomb-type regime applies at low effective pressures.
The switch from one regime to the other being governed by
a cut-off, contour lines form a corner at the threshold
value. With the Schoof law (Eqn (3)), the transition between
the two regimes is continuous, and τb asymptotically tends
towards the Weertman and Coulomb regimes at, respect-
ively, low sliding velocity and low effective pressure
(Fig. 1c). The range of effective pressure over which the
Schoof law shifts from a Weertman-type regime to a
Coulomb-type regime gets narrower as τb gets higher
(Fig. 1d). As an example, for τb ¼ 0:2 MPa, the Schoof law
is numerically close to a Weertman-type friction law for
N � 1 MPa, whereas it is numerically close to a Coulomb-
type friction law for N � 0:4 MPa. For intermediate values
of N, the dependence of basal drag on basal velocity gets
weaker for decreasing values of N. The Budd law does not
have limit regimes and iso-contours, in a log–log plot, are
given by straight lines of slope proportional to −q/m
(Fig. 1b). With the chosen coefficients, it always gives
larger (resp. lower) τb than the Schoof law for N> 1 MPa
(resp. N< 1 MPa). As an example, for N∼0:3 MPa and a
basal drag of 0.04 MPa, velocities are ∼36 times larger
with the Budd law than with the Schoof one. These general
features prefigure very different ice flow dynamics.

The main objective of this work is to evaluate the
sensitivity of the GL dynamics depending on the chosen
friction law.

3. METHODS

3.1. Model description
We use the finite-element ice flow model Elmer/Ice
(Gagliardini and others, 2013) to solve the shallow shelf
approximation (SSA) equation (MacAyeal, 1989) in 1HD.
This vertically integrated model neglects vertical variations
of horizontal velocities and is an asymptotic approximation
of the Stokes equations when the aspect ratio and the basal
friction are small (Schoof and Hindmarsh, 2010). The 1HD
velocity field is restricted to the component u only which is
the solution of the equation:

4
∂
∂x

�η
∂u
∂x

� �
� τb ¼ ρigH

∂zs
∂x

; ð5Þ

where ρi is the ice density, g the gravity norm,H= zs− zb the
ice thickness, with zs and zb the top and bottom surface
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elevations, respectively. The vertically integrated effective
viscosity �η is given by

�η ¼
Z zs

zb

1
2
A�1=nDð1�nÞ=n

e dz; ð6Þ

where De is the second invariant of the strain-rate tensor, A
the fluidity parameter and n the Glen’s law exponent set to
n= 3.

The evolution of ice thickness is governed by the vertically
integrated mass conservation equation:

∂H
∂t

þ ∂ðuHÞ
∂x

¼ as; ð7Þ

where as is the surface mass balance only, as melting/refreez-
ing at the base is neglected.

The bottom surface elevation can be deduced from the
bedrock topography b(x) by applying the no-penetration con-
dition and the floating condition. Assuming a constant sea
level set to zsl= 0, these conditions write:

zbðx; tÞ ¼ bðxÞ for grounded ice;

zbðx; tÞ ¼ �H
ρi
ρw

> bðxÞ for floating ice:

8<
: ð8Þ

In the SSA, the GL position xG is directly evaluated from the
flotation criterion, i.e. by solving the equation:

HðxGÞ þ bðxGÞ ρwρi
¼ 0: ð9Þ

Therefore, the GL can be located at any point of the domain
and does not necessarily have to fall at a mesh node.

Solving Eqn (5) requires an explicit formulation of the
potential dependence of τb on u. Because we use a 1HD ver-
tically integrated model, u= ub. Ice shelves do not experi-
ence basal drag, therefore τb is set to zero wherever ice is
floating. For grounded ice, τb is related to ub via one of the
friction laws given by Eqns (1)–(4). Three of these friction
laws, i.e. the Schoof, Tsai and Budd laws, are effective pres-
sure dependent (Eqns (2)–(4)). Here we adopt a simple hydro-
logical model and make the common assumption of perfect
hydrological connectivity to the ocean, which leads to

N ¼ ρigHþ ρwgzb if zb < 0;
ρigH if zb � 0:

�
ð10Þ

The upstream end of the domain is a symmetry axis (ice
divide) for which the Dirichlet boundary condition u(x=
0)= 0 applies. The downstream end of the domain is a
calving front, where the difference between the ice pressure
and sea-water pressure leads to the following Neumann
boundary condition:

4�η
∂u
∂x

����
cf
¼ CF

ρi
ρw

ρw � ρið Þ
� �

gHj2cf
2

: ð11Þ

Following Drouet and others (2013), CF is a buttressing
factor; CF= 1 implies no buttressing, whereas CF<1
reduces the driving force, and thus simulates buttressing at
the calving front. This parameterisation is used in the numer-
ical experiments to induce dynamical pertubations and thus
GL migration and is not a physical representation of lateral
buttressing as in Gagliardini and others (2010).

Extensive work has been published showing the import-
ance of mesh resolution to accurately model GL dynamics

Fig. 1. Iso-values of τb ranging from 0.04 to 0.2 MPa given in the basal velocity-effective pressure log–log plane with: (a) Weertman, (b) Budd,
(c) Schoof and (d) Tsai laws (Eqns (1)–(4)), form= 1/3, q= 1, CW=CB=CS= 7.624 × 106 S.I. and f= Cmax= 0.5. Dotted black lines reported
on each plot are the iso-values of τb given with the Schoof law. The vertical black dotted line corresponds to N= 1 MPa.
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(Vieli and Payne, 2005; Durand and others, 2009a, b; Pattyn
and others, 2012; Seroussi and others, 2014; Durand and
Pattyn, 2015; Gagliardini and others, 2016). To ensure a suf-
ficient and constant resolution of 100 m around the GL for all
the experiments, the domain is meshed with 9080 linear ele-
ments, 9000 of which are regularly distributed between x=
525.0 and 1425.0 km. The size of the remaining 80 elements
increases upstream and downstream following a geometric
progression. In Elmer/Ice, friction coefficients are estimated
at mesh nodes and linearly interpolated at quadrature
points. The flow dynamics is particularly sensitive to the
numerical scheme used to integrate the friction in the ele-
ments close to the GL (Seroussi and others, 2014;
Gagliardini and others, 2016). Here, the GL position being
evaluated with a subelement precision (Eqn (9)), the friction
can be set to 0 at floating quadrature points (subelement par-
ameterisation SEP3 in Seroussi and others (2014)) allowing
coarser mesh resolution at the GL. The number of quadrature
points is set to 10 in the element containing the GL.

3.2. Experimental setup
The experimental setup is adapted from MISMIP experiment
3 (Pattyn and others, 2012). The domain stretches along a
flow-line in the x-direction from a dome at x= 0 km to a
calving front kept at x= 2000 km. The bedrock topography
is given by Eqn (16) in Pattyn and others (2012). It exhibits
an overdeepening with a retrograde bed slope between
x= 973.7 and 1265.7 km; elsewhere, the bed slopes down-
ward towards the ocean.

All the experiments start from a steady-state geometry
obtained using the Schoof friction law (Eqn (3)) and setting
the buttressing factor to CF= 0.4 in Eqn (11). Values of the
model parameters are given in Table 1. The spatially
uniform fluidity parameter A= 1.61166 × 10−25 Pa−3 s−1

has been chosen to get an initial steady-state position of
the GL downstream but sufficiently close to the reverse
slope area (x= 1267.7 km).

From this steady state, a reference simulation is obtained
by releasing the buttressing, i.e. CF= 1 in Eqn (11), and
running the model forward in time for 20 ka. As for the
initial state, the friction law for the reference simulation is
given by the Schoof friction law (Eqn (3)). The GL position
as a function of time is shown in Fig. 2 (green solid curve).
The GL retreats across the MISI region and reaches a new
steady-state position located at x= 680.0 km.

The objective of the following experiments is to illustrate
the sensitivity of the GL dynamics to the form of the friction

law. At a given time ti, the flow solution depends only on
the boundary conditions, the ice-sheet topography and the
basal stress field. We assume that the reference experiment
is perfectly observed at time ti, and denote by utibS and Nti

S ,
the corresponding basal velocity and effective pressure
fields, respectively. The friction coefficients of the
Weertman and Budd laws, Cti

W and Cti
B, that would lead to

the same reference stress field τ tibS, calculated from Eqn (3),
can be identified analytically using Eqns (1) and (2) as:

Cti
WðxÞ ¼ τ tibSðxÞ

ðutibSðxÞÞm
; ð12Þ

and

Cti
BðxÞ ¼

τ tibSðxÞ
ðutibSðxÞÞmNti

SðxÞ
: ð13Þ

Under the shelf, Cti
W and Cti

B are undetermined as the ice is not
in contact with the bedrock, and we set Cti

W ¼ Cti
B ¼ 0 for

floating ice. This choice does not affect the results as the
chosen perturbation is expected to induce GL retreat only.
Similarly, because of the Dirichlet boundary condition at
x= 0, Cti

Wðx ¼ 0Þ and Cti
Bðx ¼ 0Þ are set to the value deter-

mined for the first node downstream.
Computing again the flow velocities at time ti (i.e. solving

Eqn (5)), using Cti
W and Cti

B and their corresponding friction
law, leads to the same solution with a mean relative differ-
ence of<1.5 × 10−5. The transient experiments are then con-
tinued with the Weertman and Budd laws to the end of the
20 ka, assuming that the friction coefficient fields Cti

W and
Cti
B are constant in time. As illustrated in Fig. 2 (black

circles), this procedure is applied at seven discrete times
ti= 0, 100, 300, 500, 700, 900, 1100 years. For each time
ti, the experiments with the three different friction laws start
from the same initial state, but will differ in their transient
evolution as the three laws have a different dependence on
effective pressure N. In the following, the experiments
using the Weertman and Budd friction laws, with initialisa-
tion performed at ti, are denoted, respectively, Wti and Bti .

The Tsai law can be seen as an end-member case of the
Schoof law and, therefore, is expected to give similar GL
behaviour as the latter. To confirm this hypothesis, an add-
itional experiment is carried out with the Tsai law starting
from the ice-sheet topography and basal velocity of the refer-
ence case at ti= 0 a. The parameters CW and f of Eqn (4) are
set to, respectively, CS and Cmax (Table 1). Note that, the
Schoof and Tsai laws giving slightly different τb in the range
of effective pressure within which the Schoof law continu-
ously switches from a Coulomb-type regime to a
Weertman-type regime (Fig. 1d), the initial basal stress field
obtained with the Tsai law is not exactly identical to the ref-
erence basal stress field at initial time τ0 a

bS .

4. RESULTS
GL positions against time are shown in Fig. 2 for the various
simulations. The maximum GL migration rates dxG/dt over
the whole simulation and the distances covered by the GL
over the first 100 years following the initialisation ΔxG are
summarised in Table 2. Because it corresponds to the refer-
ence simulation, the maximum GL migration rate obtained

Table 1. List of parameter values used to obtain the steady state for
the reference case (Schoof friction law)

Parameter Value Units

ρi 900 kg m−3

ρw 1000 kg m−3

g 9.8 m s−2

n 3 –

A 1.61166 × 10−25 Pa−3 s−1

CS 7.624 × 106 Pa m−1/3 s1/3

Cmax 0.5 –

m 1/3 –

as 0.3 m a−1

CF 0.4 –
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for the Schoof law is only given for ti= 0 a. The same holds
for the Tsai law for which the only simulation that has been
run starts with the topography and velocity field of the refer-
ence simulation at ti= 0 a.

With the Schoof law (reference simulation), buttressing
release is immediately followed by a retreat of the GL
across the MISI region at a slowly growing rate. The GL
reaches a maximum retreat speed of 495 m a−1 before
slowing down and stabilising at x= 680.0 km. It takes 14
680 years from ti= 0 years for the GL to reach its new
steady position. As expected, the Tsai law (dash-dotted red
curve in Fig. 2) gives very similar GL dynamics with a
maximum retreat speed of 465 m a−1 and a steady GL pos-
ition reached after 14 550 years of simulation and located
at x= 683.3 km. The Budd law (dotted blue curves in
Fig. 2) gives GL migration rates one order of magnitude

faster with values ranging from 3260 to 9180 m a−1. It
takes between 6610 and 8085 years for the GL to reach its
new steady position which differs slightly depending on the
initial state ti. The different steady positions are ranging
from x= 529.3 km for B0 a to x= 532.6 km for B1.1 ka. The
Weertman law (dashed magenta curves in Fig. 2) gives
much slower retreat rates spanning from 45 to 105 m a−1

(Table 2). Two different behaviours can be distinguished
depending on the initial state. For W300 a, a first period of
∼7000 years of very slow GL retreat is followed by a
period of accelerated retreat before the migration rate
decreases to zero as the ice sheet tends to a new steady
state. The same type of behaviour is observed for every
W≥300 a, except that the first period of very slow GL retreat
gets shorter and shorter. The fastest migrations rates are
always almost one order of magnitude smaller than those

Fig. 2. Grounding line position as a function of time for the four friction laws. The reference case (green solid line) corresponds to the retreat
obtained with a Schoof friction law after buttressing is released at t= 0 a. The red dash-dotted line is the GL retreat obtained with the Tsai law.
Black circles along the green solid line correspond to the seven different initial states used for inversion (respectively after 0, 100, 300, 500,
700, 900 and 1100 years of GL retreat for the reference case). Blue dotted and magenta dashed lines are the GL retreats obtained with,
respectively, a Budd and a Weertman friction law starting from each of the seven initial states. The dotted black lines are the unique
steady GL positions obtained with a Weertman and a Schoof law (x= 759.5 and 680.0 km, respectively) and the most retreated steady GL
position obtained with a Budd law (x= 529.3 km). The grey-shaded area corresponds to the zone of reverse slope.

Table 2. Maximum GL migration rate dxG/dt in m a−1 over the whole simulation and distance covered by the GL ΔxG in km over the first 100
years following the initialisation for the four friction laws and the seven initial states (the highest value obtained for each friction law is in bold)

ti Schoof law Tsai law Budd law Weertman law

dxG/dt ΔxG dxG/dt ΔxG dxG/dt ΔxG dxG/dt ΔxG

0 years 495 32 465 30 8495 127 105 2
100 years – 24 – 21 9180 69 45 2
300 years – 25 – 22 8710 70 100 1
500 years – 34 – 29 7970 195 100 1
700 years – 46 – 40 6810 316 90 2
900 years – 47 – 46 5030 263 70 3
1100 years – 30 – 35 3260 172 45 2
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obtained with the Schoof friction law. It takes between 16
050 and 29 560 years after the initialisation for the GL to
reach its new steady state located at x= 759.5 km. In contrast
to what is obtained with the Budd law, this new steady-state
position is the same for every W≥300 a with an accuracy of
50 m. For W0 a and W100 a, the second phase of accelerated
GL retreat accross the MISI is never reached. In the first case
the GL, initially located at x= 1267.7 km, starts to retreat
during 160 years only before stabilizing at x= 1265.4 km.
Similarly, for the simulation W100 a, it takes 4380 years for
the GL to retreat from an initial location x= 1235.5 km to a
new steady position located at x= 1233.2 km. Because of
the small amplitudes and short durations of these retreat
phases, they are not distinguishable on Fig. 2. The retreat
rates given in Table 2 for these two cases correspond to
these small retreats. Importantly, the two obtained steady
GL positions are located in the area of retrograde slope
(grey-shaded area in Fig. 2). This point will be discussed in
more detail in the following section.

The thickness rates of change ∂H/∂t after 0, 20 and 40
years of GL retreat are shown in Fig. 3 for the reference simu-
lation as well as the simulations W0 a and B0 a. The corre-
sponding ub, τb and ice-sheet profiles are given in the
vicinity of the GL in Figs 4b–d. Buttressing release at initial
time induces a dynamical response of the ice sheet: the
whole ice shelf thins as well as the ice sheet over ∼30 km
upstream of the GL causing the latter to retreat. The initial
peak of thinning occurs at x= 1265.3 km, only 2.4 km
upstream of the GL. By construction, the initial responses
obtained with the Weertman and Budd laws are identical
to the one obtained with the Schoof law for the reference
simulation (black lines in Fig. 3).

Figure 4a shows the uniform friction parameter CS as well
as the inferred spatial distribution of CW and CB for initialisa-
tion performed at ti= 0 a. Note that since these friction para-
meters have different units, their absolute values should not
be compared directly. Rather, the general shape of their
spatial distributions is of interest. Note also that these

distributions are the initial ones; as the GL retreats, they
keep the same shape except that the value of the friction par-
ameter at a node which starts floating is switched to zero. The
inferred Weertman friction parameter CW is quasi-identical
to the Schoof friction parameter CS under the whole ice
sheet except in the close vicinity of the GL within which
the former continuously decreases to zero (magenta dash-
dotted lines in Fig. 4a). The Budd friction parameter CB exhi-
bits a totally different spatial distribution; from low values far
upstream of the GL, it gets higher and higher as getting closer
to the GL and reaches a maximum located at 1.1 km
upstream of the GL. Then it slightly decreases down to the
GL within an area where the Schoof law reduces to a
Coulomb law and, as such, is free from any dependence
on basal velocity. With these distributions of CW and CB,
the transition zone due to the dependence of the Schoof
law on effective pressure and within which τb goes smoothly
from a maximum beneath the ice sheet to zero at the GL, is
well reproduced by the Budd and Weertman laws at initial
time (black line in Fig. 4c). In contrast, because the para-
meters of the Tsai law were not inferred from the reference
simulation but simply set to CW=CS and f=Cmax, the
initial τb obtained with this law is slightly different. Indeed,
the point where τb reaches its maximum is a tipping point;
upstream of this point the Tsai law is perfectly equivalent to
a Weertman law while it is perfectly equivalent to a
Coulomb law downstream of this point. Consequently, the
Tsai and Schoof laws give quasi-identical τb under the
whole ice sheet except in a narrow area located a few kilo-
meters upstream of the GL and within which the transition
from one regime to the other occurs in a continuous
manner for the Schoof law. In this area, the Tsai law gives
a slightly larger τb than the Schoof law (black/green and red
lines in Fig. 4c). Despite this difference, both laws show
very close GL behaviours all along the experiment.
Therefore, in order to facilitate the reading of Figs 3, 4, the
results obtained with the Tsai law are not shown, except in
Fig. 4c.

Fig. 3. Initialisation at time ti= 0 years. Thickness rate of change at initial time (black solid lines), 20 years after initialisation (colored solid
lines) and 40 years after initialisation (colored dashed line) for the Schoof (green), Weertman (magenta) and Budd (blue) friction laws. The GL
positions are highlighted by black dots at initial time, diamonds 20 years after initialisation and triangles 40 years after initialisation. The black
dashed line corresponds to zero thickness rate of change.
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Although the Schoof, Weertman and Budd laws all give
the same initial response, they rapidly induce very different
behaviours. For the reference simulation, the thinning of
the domain slows down while spreading further upstream
(green lines in Fig. 3). Meanwhile, the whole domain sees
an increase of the flow velocities. In particular, the flow vel-
ocity at the GL increases of 50% during the first 20 years. This
increase reduces to only 5% between t= 20 and 40 years
(green lines in Fig. 4b). The asymptotic friction regimes asso-
ciated with the Schoof law, i.e. the Weertman-type regime at
high N and the Coulomb-type regime at low N, are high-
lighted in Fig. 4c by, respectively, dotted and dashed cyan
lines. Note that the reference simulation uses the same
values for CS and Cmax as the ones used to plot the Schoof
friction law behaviour in Fig. 1c. Sufficiently upstream of
the GL, N is high and the Schoof law reduces to a
Weertman law with τb ¼ CSumb (superimposed continuous

black/green lines and dotted cyan lines in Fig. 4c). Closer
to the GL, the dependence of basal drag on basal velocity
gets weaker until vanishing completely for sufficiently low
N leading to a pure Coulomb-type regime with τb=Cmax N
(superimposed continuous black/green lines and dashed
cyan lines in Fig. 4c). The above mentioned increase of
flow velocities for the reference simulation is associated
with an increase of basal drag in the area where the Schoof
law induces a dependence of τb on ub, i.e. where it is not
purely equivalent to a Coulomb law (green lines in Fig. 4c).

Simulation W0 a shows very limited thinning over
the grounded ice sheet with a maximum thinning rate of
0.2 m a−1 at t= 20 years. This maximum thinning rate
decreases to <0.1 m a−1 at t= 40 years (magenta lines in
Fig. 3). During the first 20 years of this simulation, there is
a small increase in flow velocities far from the GL down to
the area of smoothly decreasing CW; in this area, the flow vel-
ocities are slightly lower than the initial ones. Between t= 20
and 40 years, these flow velocities barely evolve (magenta
lines in Fig. 1b). The associated τb shows very little evolution
over the 40 years following the perturbation except at nodes
becoming afloat over this time window for which CW is
switched to zero (magenta lines in Fig. 1c). Consequently,
the zone of smooth decrease of τb is progressively taken
away as the GL retreats.

In contrast, the response to the perturbation for simulation
B0 a is much stronger: The peak thinning rate has more than
doubled within the first 20 years and keeps increasing
between t= 20 and 40 years, while the region affected by
the thinning spreads further upstream (negative blue peaks in
Fig. 3). Meanwhile, large amounts of ice are transferred from
the grounded region right upstream of the GL to the neighbour-
ing region on the ice shelf, which corresponds to a surge-type
behaviour (positive blue peaks in Fig. 3). The flow velocities
are multiplied by a factor of ∼5 between t= 0 and 20 years
and ∼2 between t= 20 and 40 years (blue lines in Fig. 4b).
In the close vicinity of the GL, τb becomes significantly
lower than the ones obtained with the other laws and the
area of reduced basal drag propagates further upstream.

As shown in Fig. 4d, ice-sheet profiles differ substantially
depending on the chosen friction law. In line with the analyt-
ical solution derived by Tsai and others (2015), our reference
simulation shows a nearly exponential tapering off of the ice-
sheet surface profile towards the GL (black and green lines in
Fig. 4d). For the simulation W0 a, this tapering off vanishes
rapidly as the GL retreats and 20 years after initialisation
the ice sheet already exhibits the classical steep surface gra-
dient as predicted by Schoof (2007a) for a Weertman law
with a constant friction parameter (magenta lines in
Fig. 4d). In contrast, simulation B0 a gives rise to a concave
ice-sheet profile (blue lines in Fig. 4d), which shows a
surface slope at its steepest ∼30 km upstream of the GL
and smoothly tapering off towards the GL. This result is
similar to steady-state profiles obtained by Gladstone and
others (2017) with various Budd-like friction laws.

Because SLR estimations are usually given for the end
of the 21st century, it is of great interest to investigate
wether the substancial differences in GL dynamics obtained
with the three friction laws over millenial time scales are still
significant over shorter time scales. To this end, the distance
ΔxG covered by the GL over the first 100 years following ini-
tialisation is given for each friction law in Table 2. With a
Weertman law, the GL retreats of a few kilometers only (3
km at most) over a century, while the Budd law predicts

Fig. 4. Initialisation at time ti= 0 years. (a) Spatial distribution of the
friction parameters CS (dash-dotted green line), CW (dash-dotted
magenta line) and CB (dash-dotted blue line) at initial time. Basal
velocities (b), basal drags (c) and ice-sheet profiles (d) at initial
time (black solid lines), 20 years after inversion (colored solid
lines) and 40 years after inversion (colored dashed lines) for the
Schoof (green), Weertman (magenta) and Budd (blue) friction laws.
The asymptotic behaviours of the Schoof law, i.e. τb ¼ CSumb and
τb=Cmax N are highlighted in (c) by dotted and dashed cyan
lines, respectively. Basal drags obtained with the Tsai law at initial
time (dash-dotted line), 20 (continuous line) and 40 (dashed line)
years after inversion are represented in red in (c). The vertical
black dotted line is the dowstream bound of the reverse slope. The
GL positions are highlighted by black dots at initial time,
diamonds 20 years after inversion and triangles 40 years after
inversion. The brown solid line in (d) is the bedrock.
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GL retreats ranging from 69 to 316 km over the same time
window. Once again, the Schoof law gives intermediate pro-
jections with GL retreats ranging from 24 to 47 km. The
dynamical contribution of real marine-terminated ice sheets
to SLR can be determined by assessing the temporal evolu-
tion of the volume above flotation (VAF): a decrease of the
VAF means that ice has been released into the ocean indu-
cing SLR. Figure 5 shows the relative evolution over a
century of the ice stored above flotation as the GL retreats
for the Schoof, Weertman and Budd friction laws starting
from different ti. Once again, the result obtained with the
Tsai law for ti= 0 years is not represented here because it
is almost superimposed on the one obtained with the
Schoof law. Although the present study is based on a syn-
thetic two-dimensional geometry, it gives some insight
about the sensitivity of SLR projections at a 100-year time
horizon depending on the friction law. After a century, the
Schoof law gives losses ranging from 1 to 5% of the total
amount of ice stored above flotation. Because the new
steady state is reached very rapidly for the simulation W0 a,
the corresponding ice loss is neglectable. For W500 a and
W1.1 ka, the ice losses represent, respectively, 1% and 3%
of the total amount of ice stored above flotation. The Budd
law gives much higher contribution to SLR with a relative
loss of ice above flotation ranging from 15 to 29% after a
century of GL retreat.

5. DISCUSSION
Different friction laws induce different GL responses to but-
tressing release at the calving front. In order to satisfy the
global stress balance, the loss of buttressing at the calving
front must be compensated by an increase of the total basal
drag. As the ice-shelf/ocean interface is friction-free, the per-
turbation is transmitted to the GL and progressively vanishes
within the grounded ice sheet. The initial thinning associated
with the perturbation causes a change in the effective pressure
distribution (Eqn (10)), which is dealt with differently by the
different friction laws giving rise to different GL dynamics
over the following time steps. In the case of the reference
simulation, there is a narrow region right upstream of the
GL where the basal drag is proportional to N and does not

increase despite an increase of basal velocities.
Consequently, the perturbation propagates further upstream
in regions where the Schoof law implies a dependence of τb
on ub. The distance over which the perturbation propagates
is determined by the amount of basal drag increase required
for the total basal drag to compensate the loss of buttressing.
As the GL retreats in deeper waters, the water pressure in the
GL vicinity gets higher while the ice thickens at the GL
causing an increase of ice overburden pressure. The two
effects compete and the increase of water pressure slightly
outweigh the increase of ice overburden pressure and leads
to a local decrease of effective pressure; the basal drag Cmax

N furnished by the region governed by a Coulomb-type fric-
tion law decreases causing the perturbation to propagate
further upstream which creates a positive feedback (green
curves in Figs 3, 4b, c). After the GL has retreated beyond
the reverse slope area, further GL retreat induces an increase
of effective pressure in the GL vicinity; the mechanism is
reverted and the GL can progressively reach a new steady
position. Nevertheless, because of the assumption of perfect
hydrological connectivity to the ocean, the Schoof law
always exhibits a narrow zone of smoothly decreasing basal
drag causing locally high velocities at the GL (i.e. ∼400 m
a−1 for the steady velocity at the GL). Consequently, the GL
has to retreat down to a position where ice is thin enough
so that the ice flux becomes sufficiently low to be entirely
balanced by surface accumulation on the grounded area.

On the other hand, for the simulation W0 a, τb is given by
the Weertman law and so depends on ub for the whole ice
sheet, including the region immediately upstream of the GL.
As a result, only a small increase in flow velocities is required
to satisfy the global force balance. As a consequence, the per-
turbation is confined to the vicinity of the GL and does not
spread further upstream. Furthermore, by construction, the
inferred spatial distribution of the Weertman friction param-
eter is such that the friction parameter C0 a

W ðxGÞ at the GL
increases as the latter retreats within the transition zone,
i.e. the zone of smoothly decreasing C0 a

W (magenta line in
Fig. 4a). Consequently, for a given basal drag required to
satisfy the global stress balance, the velocity at the GL
decreases as the latter retreats (Eqn (1)). This mechanism has
a stabilizing effect, which leads the velocities to converge
(superimposed magenta lines in Fig. 4b) and the GL to
rapidly reach a steady state located within the area of
reverse slope.

Starting from the SSA equations with a Weertman friction
law, Schoof (2007b) applied the boundary layer theory for
sheet-shelf interactions with rapid sliding and showed that
the ice flux qB(xG) at the GL can be written as

qBðxGÞ ¼ AðρigÞnþ1ð1� ρi=ρwÞn
4nC

 ! 1
mþ1

HðxGÞ
mþnþ3
mþ1 ; ð14Þ

where C is the friction parameter. Because the surface mass
balance as is assumed to be spatially uniform, possible
steady GL positions xG can then be found by solving:

qBðxGÞ ¼ asxG: ð15Þ

When asxG>qB(xG), the ice-sheet thickens and the GL
advances. Conversely, when asxG<qB(xG), the ice sheet
thins and the GL retreats.

Fig. 5. Relative evolution in % of the ice stored above flotation over
100 years with initialisation at ti= 0 years (continuous), 500 years
(dashed) and 1100 years (dotted) for the Schoof (green), Weertman
(magenta) and Budd (blue) friction laws. The result obtained for
the Tsai law at ti= 0 years (not shown) is almost superimposed on
the continuous green line.
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Figure 6 shows the integrated accumulation rate asx and
the ice flux qB as a function of the horizontal distance x for
different spatial distributions of the friction coefficient: C=
CS=Cste (black line), C ¼ C100 a

W ðxÞ (magenta line) and C ¼
C300 a
W ðxÞ (brown line). The green dots/star highlight possible

stable GL steady positions, whereas the red dot corresponds
to an unstable steady position. The transition zones corres-
pond to the parts of the brown and magenta lines, which
are not superimposed to the black line in Fig. 6. Note that
these zones are located within the reverse slope area. As
demonstrated by Schoof (2007a), when the friction coeffi-
cient is assumed to be spatially uniform, unbuttressed
marine ice sheets are unconditionally unstable on retrograde
slopes (black line in Fig. 1). This is because qB increases as
the GL retreats within the reverse slope area causing thinning
at the GL and further retreat, i.e. a positive feedback. This
result was later numerically confirmed by a wide range of
models (Pattyn and others, 2012). Replacing the friction coef-
ficient C in Eqn (14) by the spatial distribution Cti

WðxÞ inferred
at a given time ti induces a modification of the ice flux.
Indeed, as the GL retreats within the transition zone, the
decrease of the flow velocity at the GL competes with the
increase of H(xG) related to the bedrock topography. As it
can be seen in Fig. 6, the former effect outweights the latter
and qB decreases as long as the GL retreats over the transition
zone. In other words, the local minimum of qB is shifted
upstream giving rise to possible stable steady states located
within the area of reverse slope (green star in Fig. 6). A
steady GL located on the reverse slope is possible only if
the ice flux at the upstream bound of the transition zone
(local minimum of qB) is smaller than the accumation rate
at this location. Graphically, it is easy to see that prescribing
a surface mass balance as larger than 0.3 m a−1 (steeper blue
line in Fig. 6) would have extended the zone of stability
further upstream. In this respect, the horizontal position
xtp= 1195.3 km (red dot in Fig. 6) turns out to be a tipping
point for the parameters of these experiments: if inversion
is performed after the GL has retreated beyond this point,
the only stable GL steady position is located upstream of
the reverse slope region at x= 760.3 km (brown line in
Fig. 6). The stable steady positions predicted by the boundary

layer theory, i.e. x= 1232.7 and 760.3 km for W100 yr and
W≥300 a, respectively, are in very close agreement with the
ones obtained numerically, i.e. x= 1233.2 and 759.5 km.
Note that for the reference case, the GL reaches the tipping
point xtp at about ttp= 273 years. In other words, every
W≤273 yr are expected to give rise to steady states located
within the region of retrograde slope, whereas every W>273

yr will induce GL retreat to the steady position located at
x= 760.3 km, which is consistent with the behaviour
observed with a Weertman law (magenta lines in Fig. 2).
This underlines the fact that considering the MISI region as
being exactly the section of reverse slope in the 1HD case
might be too restrictive: the instability of the GL does not
depend on the bedrock geometry only but also on the
spatial distribution of the friction parameter.

Based on the work of Schoof 477 (2007b), Tsai and others
(2015) have derived an equivalent of Eqn (14) for their law:

qBðxGÞ ¼ Q0
8AðρigÞnð1� ρi=ρwÞn�1

4nf
HðxGÞnþ2; ð16Þ

whereQ0≈ 0.61 is a numerical coefficient and f the solid fric-
tion coefficient. Using this expression of qB with f=Cmax to
solve Eqn (15) results in a stable steady GL position predicted
at x= 688.3 km, while our numerical experiment with the
Tsai law leads to a steady GL located at x= 683.3 km.

Similarly to the reference simulation, for the simulation B0 a

the effective pressure keeps decreasing in the GL vicinity as
the latter retreats within the reverse slope area. However,
unlike the reference simulation for which N plays a role
only in a narrow area, for the Budd law the basal drag
depends on N under the whole ice sheet. Therefore, the
local decrease of N causes the perturbation to propagate far
upstream of the GL (blue lines in Fig. 3). As a consequence,
the velocities increase, which results in two opposite
effects: it induces an increase of basal drag and it enhances
dynamical thinning leading to further decrease of effective
pressure and, therefore, of basal drag. In other words, when
the GL is retreating, there is a competition between the
decrease of N and the increase of ub. Despite a dramatic
increase of basal velocities, the region of reduced basal

Fig. 6. Plot of asx (blue) and qB(x) as a function of horizontal position. qB(x) is represented for different distributions of friction coefficient C (Eqn
(14)): C=CS (black line), C ¼ C100 a

W (magenta line) and C300 a
W (brown line). The green dots are possible stable GL steady positions. The green

star is the stable GL position located within the reverse slope area. The red dot is an unstable GL steady position. These positions are
highlighted by the vertical black dotted lines. The grey shaded area corresponds to the zone of reverse slope.
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drag extends further upstream of the GL as the latter retreats
(blue lines in Figs 1b, c). This unstable behaviour is respon-
sible for the observed surge-type behaviour obtained with
the Budd law.

Whereas the steady GL positions obtained with a Budd
law are slightly different depending on the time of inversion,
the Weertman law gives a unique steady GL location for
every W≥300 a. Because the Schoof law is equivalent to a
Weertman law on most of the grounded ice sheet, the
inferred spatial distribution of Weertman friction coefficient
at any ti is such that Cti

WðxÞ ≈ CS except in the narrow transi-
tion zone (magenta line in Fig. 4a). As the GL retreats beyond
the latter for every W≥300 a, the steady GL positions differ by
<50 m. Conversely, asN plays a role on the whole grounded
ice sheet in the case of the Budd law and as the distribution of
N evolves with GL retreat, the inferred distribution of friction
coefficient Cti

BðxÞ differs substantially on a large distance
uptream the GL depending on ti. Even if the GL retreat
ends up in areas where the Cti

BðxÞ are almost identical for
every Bti , the initial difference between the Cti

B depending
on ti is sufficient to lead to GL steady positions a few hun-
dreds of meters away from each others (3.3 km between
the most retreated and the most advanced steady GL
positions).

In a context where projections of future sea level rise rely
in great part on the ability of ice-sheet models to deal with GL
dynamics, the different transient responses obtained with
these different laws are of great concern. At a 100-year
time horizon, the domain has lost <3% of the amount of
ice stored above flotation with the Weertman law, whereas
Schoof/Tsai and Budd laws predict losses reaching 5% for
the former and up to 29% for the latter. This emphasises
the importance of choosing an appropriate friction law.
Observational evidences of the presence of water at the
ice/bedrock interface support the use of effective pressure-
dependent friction laws. However, the present work shows
that, assuming perfect hydrological connectivity to the
ocean, three effective pressure-dependent laws, i.e. the
Budd and the Schoof/Tsai laws, can give significantly differ-
ent results both in terms of transient behaviour and steady
states. We suggest to rather use the Schoof law as it transi-
tions continuously between two asymptotic regimes, i.e.
the Weertman and Coulomb regimes, which have been
shown to be the most appropriate ones to describe the
sliding mechanisms in their respective domain of validity.
Moreover, contrary to the Budd law for which basal drag
can reach arbitrary high values, the Schoof law satisfies the
Iken’s bound (Iken, 1981).

In the present study, we have assumed perfect hydrological
connectivity to the ocean. Leguy and others (2014) proposed a
method to parameterise the quality of this connectivity; they
introduced an ad hoc parameter p enabling to reduce the
basal water pressure to a fraction of the ocean pressure at a
given position. Although it improves the description of basal
hydrology, such a model does not allow to account for more
complex features of the basal hydrological networks such as
water-laden till, meltwater channels or interconnected subgla-
cial lakes potentially prone to drainage events (Gray and
others, 2005; Wingham and others, 2006; Fricker and
others, 2007; Fricker and Scambos, 2009). Several authors
have developed physically based subglacial hydrological
models accounting for some of these features (Schoof, 2010;
Hewitt and others, 2012; Werder and others, 2013; Fleurian

and others, 2014), but constraining them against observations
is an arduous task as glacier beds are usually out of reach and
traditionally used instruments, such as borehole pressure
sensors (Schoof and others, 2014), provide limited spatial
and temporal coverage. Although still at its premise, cryoseis-
mology appears as a promising method to tackle this short-
coming in the near future (Gimbert and others, 2016;
Podolskiy and Walter, 2016). At the same time, assuming
that basal friction is governed by the Schoof law, observations
of surface slopes at the GL and of GL retreat rates over a suffi-
ciently large time window could give some insight on the dis-
tribution of basal water pressure.

6. CONCLUSION
The experimental setup used in this work was designed in
order to reproduce what is done when studying real glaciers.
Our reference case can be seen as an equivalent to ‘observa-
tions’, except that, unlike real observations which are usually
sparse in time and space, the velocity field, the effective pres-
sure field and, consequently, the basal drag, are perfectly
known at any time of the reference simulation. Whatever
the chosen friction law, it is always possible to infer a
spatial distribution of the friction parameter enabling to per-
fectly recreate the ‘observed’ state at any fixed time t.
However, although the Schoof, Weertman and Budd laws
are all starting from identical initial states, simulations with
these different friction laws show thoroughly different transi-
ent behaviours. On the other hand, for correctly chosen para-
meters, the GL dynamics obtained with the Tsai law is very
similar to the one obtained with the Schoof law.

The steady GL positions obtained after 20 ka of simulation
are significantly different depending on the friction law.
Remarkably, some of the inferred spatial distributions of the
Weertman friction parameter induce a modification of the
flux at the GL such that the latter reaches a steady position
located within the zone of retrograde slope. Consequently,
even in a flow-line case, the bed shape alone is not sufficient
to determine whether an area is prone to MISI when using a
Weertman law.

Furthermore, we have also demonstrated that SLR projec-
tions over a 100-year time horizon vary greatly depending on
the chosen law; the commonly used Weertman law appears
to forecast more limited SLR than the two other laws.
However, evidence of the presence of water at the base of
ice sheets rather support the use of effective pressure-
dependent frictions laws such as the Budd or the Schoof/
Tsai laws. We suggest to use the Schoof law because of its
stronger physical basis.

Finally, coupling an ice flow model using an effective pres-
sure-dependent law to a physically based subglacial hydro-
logical model could greatly improve our confidence in the
simulated GL dynamics and in the associated SLR forecast.
Although such models are already available, the lack of obser-
vations to constrain them hampers the generalisation of their
use. However, the recent development of innovative measure-
ment techniques such as cryoseismology gives promising
results and could address this shortcoming in the near future.
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