AN ANALOGUE OF A RESULT OF JACOBSTHAL

by ECKFORD COHEN
(Received 14th February 1962)

Dedicated to Professor Jacobsthal on his eightieth birthday

1. Introduction

Jacobsthal (4) has proved that the $n \times n$ matrix

$$
\begin{equation*}
A=([r / s]), r, s=1,2, \ldots, n \tag{1}
\end{equation*}
$$

is invertible with the inverse,

$$
\begin{equation*}
A^{-1}=(\mu(r / s)-\mu(r /(s+1))), r, s=1,2, \ldots, n \tag{2}
\end{equation*}
$$

Here $\mu(x)$ denotes the Möbius function for positive integral x and is assumed to be 0 for other values; $[x]$ has its usual meaning as the number of positive integers $\leqq x$.

Carlitz (1) has given a particularly simple proof of this result, starting from the identity,

$$
\sum_{d \mid n} \mu(d)=\epsilon(n) \stackrel{\operatorname{def}}{=}\left\{\begin{array}{l}
1(n=1) \tag{3}\\
0(n>1)
\end{array}\right.
$$

In this note we prove a " unitary " analogue of Jacobsthal's result, contained in (7) below. The proof is based upon the analogue (5) of (3) for unitary divisors. We indicate in § $\mathbf{3}$ a generalisation from which several special results are then drawn (§ 4).

2. An Analogue of (2)

We say that d is a unitary divisor of n, written $d \| n$ or $d^{*} \delta=n$, provided $n=d \delta,(d, \delta)=1$; in such a case, we also call n a unitary multiple of d. Let us place $\mu^{*}(n)=\mu(v(n))$ where $v(n)$ is the maximal square-free divisor of n and define

$$
\mu^{*}(r ; s)=\left\{\begin{array}{cl}
\mu^{*}(\dot{r} / s) & \text { if } s \| r \tag{4}\\
0 & \text { otherwise }
\end{array}\right.
$$

We recall from (2, (2.5)) that

$$
\begin{equation*}
\sum_{d \| n} \mu^{*}(d)=\epsilon(n) \tag{5}
\end{equation*}
$$

In addition, let us define $[x, s]$ to be the number of unitary multiples of s not exceeding x.

We prove now that the matrix

$$
\begin{equation*}
A^{*}=([r, s]), \quad r, s=1,2, \ldots, n \tag{6}
\end{equation*}
$$

has the inverse

$$
\begin{equation*}
\left(\delta_{r s}\right) / A^{*}=\left(\mu^{*}(r ; s)-\mu^{*}(r ; s+1)\right), \quad r, s=1, \ldots, n, \tag{7}
\end{equation*}
$$

$\delta_{r s}$ denoting of course the Kronecker delta function.
Letting $\rho(n)$ denote the function with the value 1 for all n, we place

$$
\rho^{*}(r ; s)= \begin{cases}\rho(r / s)=1 & \text { if } s \| r \tag{8}\\ 0 & \text { otherwise }\end{cases}
$$

One obtains from (4) and (8), if $s \| r$,

$$
\begin{align*}
\sum & \equiv \sum_{k=1}^{n} \mu^{*}(r ; k) \rho^{*}(k ; s)=\sum_{\substack{k \\
s, \|_{k}}} \mu^{*}(r / k) \ldots \ldots \ldots \tag{9}\\
& =\sum_{\substack{s^{*} s^{\prime}=k \\
k^{*} d=r}} \mu^{*}(d)=\sum_{\substack{d, \| \\
d^{*} s^{\prime}=r \\
=}} \mu^{*}(d)=\sum_{d \| r / s} \mu^{*}(d)
\end{align*}
$$

since Σ is 0 in case $s \nVdash r$, it follows from (5) that

$$
\begin{equation*}
\sum=\sum_{k=1}^{n} \mu^{*}(r ; k) \rho^{*}(k ; s)=\delta_{r, s}(r, s=1,2, \ldots, n) \tag{10}
\end{equation*}
$$

Noting that

$$
\begin{equation*}
\sum_{k=1}^{r} \rho(k ; s)=[r, s] \tag{11}
\end{equation*}
$$

one finds on applying partial summation that

$$
\sum=\sum_{k=1}^{n}\left(\mu^{*}(r ; k)-\mu^{*}(r ; k+1)\right)[k ; s]+[n, s] \mu^{*}(r ; n+1)
$$

so that (10) yields

$$
\begin{equation*}
\sum_{k=1}^{n}\left(\mu^{*}(r ; k)-\mu^{*}(r ; k+1)\right)[k, s]=\delta_{r, s}(r, s=1,2, \ldots, n) \tag{12}
\end{equation*}
$$

This is equivalent to the desired result.
From (11) we have

$$
\begin{equation*}
\rho(r ; s)=[r, s]-[r-1, s] ; \tag{13}
\end{equation*}
$$

hence (10) may be put into the matric form,

$$
\begin{equation*}
\left(\mu^{*}(r ; s)\right)([r, s]-[r-1, s])=\left(\delta_{r s}\right), r, s=1,2, \ldots, n \tag{14}
\end{equation*}
$$

3. A Generalisation

For arbitrary arithmetical functions $f(n)$, we write

$$
f(r ; s)=\left\{\begin{array}{cl}
f(r / s) & \text { if } s \| r \tag{15}\\
0 & \text { otherwise }
\end{array}\right.
$$

AN ANALOGUE OF A RESULT OF JACOBSTHAL

Let now f, g, h be arithmetical functions related by

$$
\begin{equation*}
\sum_{d^{*} \delta=n} f(d) g(\delta)=h(n) \tag{16}
\end{equation*}
$$

In the same way that (5) implied (10), (16) implies that

$$
\begin{equation*}
\sum_{k=1}^{n} f(r ; k) g(k ; s)=h(r ; s), \quad r, s=1,2, \ldots, n \tag{17}
\end{equation*}
$$

Placing

$$
\begin{equation*}
G(r, s)=\sum_{k=1}^{r} g(k ; s), \quad G(0, s)=0 \tag{18}
\end{equation*}
$$

and letting Σ denote the left member of (17), one obtains by partial summation,

$$
\begin{aligned}
\sum=\sum_{k=1}^{n} f(r ; k)(G(k, s)- & G(k-1, s)) \\
& =\sum_{k=1}^{n}(f(r ; k)-f(r ; k+1)) G(k, s)+f(r ; n+1) G(n, s)
\end{aligned}
$$

That is,

$$
\begin{equation*}
\sum_{k=1}^{n} f(r ; k)-f(r ; k+1) G(k ; s)=h(r ; s), r, s=1,2, \ldots, n \tag{19}
\end{equation*}
$$

or in matric notation,

$$
\begin{equation*}
(f(r ; s)-f(r ; s+1))(G(r, s))=(h(r ; s)), \quad r, s=1, \ldots, n \tag{20}
\end{equation*}
$$

4. Specialisations

We consider some special cases. Let $\phi^{*}(n)$ denote the number of integers $b(\bmod n)$ such that I is the largest unitary divisor of n which divides b. In (2, (2.4)) it was proved that

$$
\begin{equation*}
\sum_{d \| n} \phi^{*}(d)=n \tag{21}
\end{equation*}
$$

With $f(n)=\phi^{*}(n), g(n)=\rho(n), h(n)=n,(16)$ reduces to (21), and (20) becomes, by (11),

$$
\begin{equation*}
\left(\phi^{*}(r ; s)-\phi^{*}(r ; s+1)\right)([r, s])=(r \rho(r ; s) / s), \quad r, s=1,2, \ldots, n \tag{22}
\end{equation*}
$$

For positive integers k, let L_{k} denote the set of integers n whose prime factors all have multiplicity $\geqq k$. Let $L=L_{2}$, so that L is the set of "square-full" integers. Also, let $l_{k}(n)$ denote the characteristic function of $L_{k+1}, l(n)=l_{1}(n)$. In (3, Lemma 3), it was proved that for each positive integer t,

$$
\sum_{d \| n} \mu_{t}^{*}(d)=l_{t}(n) \stackrel{\operatorname{def}}{=}\left\{\begin{array}{l}
1\left(n \in L_{t+1}\right) \tag{23}\\
0\left(n \notin L_{t+1}\right)
\end{array}\right.
$$

where $\mu_{t}^{*}(n)$ is the multiplicative function defined for primes p and non-negative integers e, by

$$
\mu_{t}^{*}\left(p^{e}\right)=1,-1, \text { or } 0,
$$

according as $e=0,0<e \leqq t$, or $e>t$.
E.M.S.-K

E. COHEN

Placing $f(n)=\mu_{t}^{*}(n), g(n)=\rho(n), h(n)=l_{t}(n),(20)$ yields, by virtue of (16) and (23), the matric relation,

$$
\begin{equation*}
\left.\left(\mu_{t}^{*}(r ; s)-\mu_{t}^{*}(r ; s+1)\right)([r, s])\right)=(l(r ; s)), \quad r, s=1,2, \ldots, n . \tag{24}
\end{equation*}
$$

It will be observed that $\mu_{1}^{*}(n)=\mu(n)$; hence (24) becomes in the case $t=1$,

$$
\begin{equation*}
(\mu(r ; s)-\mu(r ; s+1))([r, s])=(l(r ; s)), \quad r, s=1,2, \ldots, n \tag{25}
\end{equation*}
$$

This may be viewed as a second analogue of Jacobsthal's formula. The original one also results from (24), on letting $t \rightarrow \infty$ and noting that

$$
\lim _{t \rightarrow \infty} \mu_{t}^{*}(n)=\mu^{*}(n), \lim _{t \rightarrow \infty} l_{t}(n)=\epsilon(n) .
$$

REFERENCES

(1) L. Carlitz, Some matrices related to the greatest integer function, Journal of the Elisha Mitchell Scientific Society, 76 (1960), 5-7.
(2) Eckford Cohen, Arithmetical functions associated with the unitary divisors of an integer, Mathematische Zeitschrift, 74 (1960), 66-80.
(3) Eckford Cohen, Arithmetical notes, X. A class of totients, to appear in Proc. Amer. Math. Soc.
(4) E. Jacobsthal, Über die grösste ganze Zahl, II, Norske Videnskabers Selskab Forhandlinger (Trondheim), 30 (1957), 6-13.

Department of Mathematics

University of Tennessee
Knoxville
Tennessee, U.S.A.

