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Abstract: Numerical modelling (Nicholls & Storey 1999) suggests that the eclipse of
a wedge of enhanced number density of mildly relativistic electrons is responsible
for the variations in quiescent radio emission of the binary system V471 Tauri. In
the model, the wedge of enhanced density is created by electrons accelerated in the
interaction region of the magnetospheres of the two stars, which subsequently drift
in azimuth while emitting gyrosynchrotron emission. We present here an analytic
approximation to the opening angle of the wedge of enhanced density and show
that it is consistent with the opening angle derived from numerical modelling for
reasonable values of the input parameters.

Keywords: stars: individual (V471 Tauri) — stars: magnetic fields — binaries: close
— radiation mechanisms: nonthermal

1 Introduction

The eclipsing binary system, V471 Tauri, is an
interesting system for several reasons, not least
because it is the only known pre-cataclysmic system
to exhibit non-thermal radio emission. V471 Tau
comprises a white dwarf and a K2 dwarf only slightly
distorted by the Roche potential. Values of the
system parameters are given in Table 1. As well
as emission due to flares (Crain et al. 1986), the
quiescent radio emission has been shown to vary
in intensity, in phase with the optical light curve
(Patterson, Caillaut & Skillman 1993; Lim, White
& Cully 1996).

In another paper (Nicholls & Storey 1999) we
calculated the gyrosynchrotron intensity and circular
polarisation from a three-dimensional model of the
system’s magnetic field, comprising a dipole field
region around the K2 dwarf, and a magnetised
stellar wind beyond the closed field lines (based
on a model for RSCVn binary systems—see Storey
1996), with a region of enhancement of mildly-
relativistic electron number density between the two
stars. We assumed that the enhancement in density
of mildly relativistic electrons between the two stars
was due to the acceleration of electrons in the region
where the magnetic fields of the two stars interact.
The accelerated electrons are trapped in the region
of the dipolar magnetic field of the K2 star and
experience curvature/gradient drift, resulting in a
drift in azimuthal angle from the white dwarf phase.
We explored several models for the variation of

electron number density in the region of enhanced
number density, including different models for the
decrease in number density with azimuthal angle
φ, caused by gyrosynchrotron radiation losses. We
showed that a wedge of enhanced mildly relativistic
electron density that precedes the white dwarf, and
in which the number density falls as a power law,
provides the best fit (and a good fit) to the observed
variation in intensity.

The numerical modelling indicated that the en-
hancement in number density of relativistic electrons
fills a significant fraction of the magnetosphere around
the K2 star, with the angular extent of the enhance-
ment lying between about 90◦ and 200◦. However,
in the numerical model we assume that such an
enhancement forms, and the angle through which
the mildly-relativistic electrons drift is determined
by the best fit to the data. In this paper we derive
an analytic approximation to the angle through
which gyrosynchrotron-emitting electrons will drift
to before thermalising. We show that, given the
assumptions made during the derivation, electrons
neither drift so far that any azimuthal structure is
smeared out, nor radiate their energy before a wedge
of enhanced density has time to form, but that the
gyrosynchrotron-emitting electrons are expected to
form a wedge of enhanced density with an opening
angle that is consistent with the best-fit numerical
models.

To accurately calculate the angle through which the
mildly relativistic electrons drift before thermalising,
it is necessary to consider the non-uniformity of
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Table 1. System parameters for V471 Tau

Parameter Value Parameter Value

Orbital period 12 ·51 hours Inclination angle 80◦

Distance from Earth 45 pc Presumed age 0 ·6 Gyr
RK2 0 ·8 R¯ RWD 0 ·01 R¯
Combined mass 1 ·4 M¯ Rotation period of WD 9 ·25 min
Distance between stars dWD 3 ·1R¯ = 3 ·9RK2

the magnetic field in calculating both the radiation
timescale and the variation in drift velocity as
the electrons lose energy. An order of magnitude
estimate ignores these significant variations, and
hence overestimates the angle through which the
electrons drift.

The steps we take are

• to derive the bounce-average angular drift speed
of the electrons, which depends on the Lorentz
factor γ
• to derive an expression for the change of γ

with time and hence the radiation timescale
for the electrons
• to consider the effect of the dipole field on

both γ(t) and the radiation timescale
• to integrate the bounce-averaged drift speed

over time
• and to average over pitch angle,

which leads to our final expression for the drift
angle. Throughout the paper we use the frame
of reference corotating with, and centred on, the
K dwarf. The drifts due to the curvature and
gradient of the magnetic field that we consider are
drifts relative to the corotating plasma (Schulz &
Lanzerotti 1974, pp. 4–6).

In Section 2 we present a short review of concepts
and quantities needed to calculate bounce-average
quantities in a dipolar magnetic field. In Section 3
we discuss how the Lorentz factors of the relativistic
electrons change with time due to synchrotron losses
in a dipolar magnetic field, and in Section 4 we
calculate the extent of the angular drift of relativistic
electrons in the time taken for them to radiate all
their energy and thermalise. The discussion in
Section 5, uses this analytic expression to calculate
the extent of the drift for V471 Tau.

2 Review of Bounce-average Quantities

In this section we present a brief review of the
quantities and concepts involved in calculating a
bounce-average quantity in a dipolar magnetic field,
and derive a bounce-average angular drift speed for
the mildly relativistic electrons. As we are concerned
with gyrosynchrotron emission by electrons we will
refer to electrons, but many remarks are equally
valid for other charged particles. Similarly, although
we use a dipolar field, many of the concepts are
applicable to other magnetic field geometries.

r
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x
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z

Figure 1—Diagram of a dipolar field line showing the
coordinates r and θ and the equatorial radius r0.

In spherical polar coordinates (r, θ, φ), (see Figure
1) the dipolar magnetic field, in SI units, is

Br =
µ0mm

4π
2 cos θ
r3 ,

Bθ =
µ0mm

4π
sin θ
r3 ,

Bφ = 0 ,

where µ0 is the permeability of free space and mm

is the dipole magnetic moment. The differential
equations of a field line are

dr

Br
=
rdθ

Bθ
, dφ = 0 , (1)

which can be integrated to give

r = r0 sin2 θ; φ = const , (2)

where r0 is the equatorial radius of the field line,
(see Figure 1). A field line is totally specified by its
equatorial radius and its φ coordinate. The element
of field line arc length ds follows from equation (2):

ds = (dr2 + r2dθ2) 1
2

= r0 sin θ(1 + 3 cos2 θ) 1
2 dθ . (3)

Setting B0 = µ0mm/4πr3
? to be the strength of

the magnetic field on the surface of the star at the
equator, with r? being the radius of the star, we
have
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B(θ) = B0

(
r?

r

)3

(1 + 3 cos2 θ) 1
2

= B0

(
r?

r0

)3 (1 + 3 cos2 θ) 1
2

sin6θ
. (4)

In a dipolar magnetic field there are three
important timescales relating to the motion of
charged particles — the cyclotron time tc, the
bounce time tb and the drift time td — which we
will consider in turn. In general the cyclotron time
is very much shorter than the bounce time, which
in turn is very much shorter than the drift time,
tc ¿ tb ¿ td, and the derivations below depend on
these relations holding. For more extensive reviews
of this material see Roederer (1970) or Schulz &
Lanzerotti (1974) and references therein.

The pitch angle α of an electron is the angle
between the velocity vector and the magnetic field.
The electron experiences a Lorentz force which
causes it to gyrate about the magnetic field line.
The period of one gyration is known as the cyclotron
period or gyroperiod. In the frame of reference in
which an observer sees the electron in a periodic
orbit perpendicular to the magnetic field, known
as the guiding centre system (GCS), the cyclotron
period is

τc =
2πmeγ

eB
, (5)

where me is the rest mass of the electron and γ
is its Lorentz factor. The gyroradius, also known
as the cyclotron radius and Larmor radius, is the
radius of gyration of the electron and is given by

ρc =
p⊥
eB

, (6)

where p⊥ = p sinα is the component of the electron’s
momentum p perpendicular to B.

In a field such as a static dipolar field, an electron
moving along a field line experiences a change in the
strength of the field, which in the GCS appears as
a change in field strength with time. If the changes
in magnitude of B are very much slower than the
cyclotron period, it can be shown that

p2
⊥

2meB
= const . (7)

This is known as the first adiabatic invariant. In a
static dipolar field the field lines are equipotentials
and so as long as a particle follows a given field
line, its kinetic energy will remain constant. In this
case the above equation reduces to

sin2α(s)
B(s)

=
sin2αi

Bi
= const , (8)

where s is the field line arc length, measured from
an arbitrary point, labelled i, on the field line.
We use the point where the field line crosses the
equator as our reference point, and denote it by
the subscript 0.

As the electron moves away from the equator the
strength of the field increases and hence sin2α(s)
increases until it reaches 1, at which point the
electron’s speed parallel to the magnetic field is
zero. Since the component of the gradient of B
parallel to B, ∇ ||B, is non-zero, there is a component
of the Lorentz force acting on the particle that is
also parallel to B which drives the electron back
the way it came. The point at which the electron
is reflected is known as the mirror point. For a
dipolar field line the mirror points (with magnetic
field strength Bm) occur symmetrically about the
equator, and a particle will bounce between the
mirror points. Since sin2α = 1 at the mirror point,
from equation (2) we can see that

Bm =
B0(r?/r0)3

sin2α0

=
B(s)

sin2α(s)
. (9)

Rearranging gives

sin2α(s) =
sin2α0B(s)
B0(r?/r0)3

=
sin2α0(1 + 3 cos2 θ) 1

2

sin6θ
, (10)

where we have used equation (4). Using this, and
denoting the particle speed by v and the component
of the speed parallel to B by v || = v(1− sin2α) 1

2 ,
the bounce period of the electron is given by

τb = 2
∫ s′m

sm

ds

v‖(s)

=
2
v

∫ s′m

sm

ds/

(
1− sin2α0B(s)

B0(r?/r0)3

) 1
2

, (11)

where the integral is along the field line between
mirror points s′m and sm. A change of variables
from s to θ, the symmetrical placing of the mirror
points about the equator and using equation (3),
yields

τb =
4r0

v

∫ π/2

θm

sin θ(1 + 3 cos2 θ) 1
2 dθ

[1− sin2α0(1 + 3 cos2 θ] 1
2 / sin6θ) 1

2
.

(12)

The bounce period is much greater than the cyclotron
period, τb À τc. A related quantity is the half-
bounce length, Sb = 1

2vτb, i.e. the distance along a
field line between the two mirror points.
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Figure 2—Diagram (exaggerated) showing the drift of an
electron due to a component of the gradient of B perpendicular
to B, ∇⊥B. The stronger field region (bottom of figure)
results in a smaller gyroradius than the weaker field region
(top of figure), causing the gyroradius to vary periodically,
resulting in the electron drifting across field lines.

The third timescale to consider is that of the
azimuthal drift of the electrons, which arises because
the dipolar field is not uniform in space. The gradient
of the field means that during one gyration the
electron does not experience the same field at all
points on its path, which results in the radius of
gyration changing in a periodic fashion. Hence the
electron does not follow a strictly circular orbit,
resulting in a drift across the field lines (see Figure
2). The curvature of the field also gives rise to a drift
related to a centrifugal force, Fc = (mv ||/Rc)n,
where Rc is the radius of curvature of the field
line and n is the unit vector normal to B along
the radius of curvature. Both the curvature and
the gradient drifts are in the same direction and
always appear together, and if the curvature and
gradient of the field are small enough that there
is very little change in the magnetic field strength
over a gyroperiod, then the drift velocity, VCG, of
an electron, caused by the curvature and gradient
of B, is given by

VCG =
γmev

2

2eBRc
(2− sin2α) e× n , (13)

where e is the charge on the electron, and e is the
unit vector tangent to B.

Equation (13) is the instantaneous drift speed of
the electron, and as B, Rc and sin2α all change
with θ along a field line, then VCG changes along
a field line as well. A more useful quantity can be
defined as follows. For an electron passing through
a point P there is a related point on the equator, 0,
found by tracing down the field line passing through
P to the equator (see Figure 3). While the electron
at P is being displaced by VCGδt, the associated
point 0 is being displaced by V0sδt. From Figure 3
we can see that the associated speed V0s is related
to the instantaneous speed VCG(θ) through r0φ:

V0sδt = r0φ , (14)

VCG(θ)δt = r0 sin3 θφ , (15)

so that

r0φ = V0sδt =
VCG(θ)
sin3 θ

δt . (16)

Hence we can define the bounce-average drift
speed, which is the drift speed of the electron’s
guiding centre at the equator, averaged over all the
associated speeds V0s, during one bounce, as

〈V0〉 =
2
τb

∫ s′m

sm

V0s
ds

v ||(s)
. (17)

Hence the bounce-average angular drift speed is

θ r0sin2θ

r0sin3θ
r0 0

0'
P

P'

φ
V  δt

V   (θ) δt

os

CG

Figure 3—Diagram showing how the associated speed V0s is related to the instantaneous drift speed VCG.
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〈φ̇〉 = 〈V0/r0〉 =
2
r0τb

∫ s′m

sm

V0s
ds

v‖(s)

=
4

r0vτb

∫ π/2

θm

(
VCG(θ)
sin3 θ

)

× r0 sin θ(1 + 3 cos2 θ) 1
2 dθ

[1− sin2α0(1 + 3 cos2 θ) 1
2 / sin6θ] 1

2
, (18)

where we have used the same change of variables
as for equation (12). Upon substitution of VCG(θ)
using equation (13), using equation (4) for B0(θ),
and

Rc =
(
r0

3

)
sin θ(1 + 3 cos2 θ) 3

2

(1 + cos2 θ)
, (19)

we obtain

〈φ̇〉 =
3mec

2γβ2

2eB0r
2
?

(
r0

r?

)
g(α0) , (20)

where β = v/c and c is the speed of light. Here
g(α0) is the ratio of two integrals over θ. Both
integrals have an integrable singularity at θm and
due to the complexity of their integrands can only
be evaluated numerically. A reasonable fit to this
ratio, i.e. better than 1% for 6◦ ≤ α0 ≤ 180◦ (and
even at 3◦ having only a 1 ·5% error), is

g(α0) = 0 ·7 + 0 ·3 sinα0 . (21)

3 The Lorentz Factor

In the previous section we reviewed the basic concepts
necessary for calculating bounce-average quantities,
finishing with the derivation of the bounce-average
angular drift speed, which is dependent on several
quantities, not least in this context being the Lorentz
factor γ. In order to calculate how far an electron
drifts in a given time, we need to know how γ
changes with time due to synchrotron losses, which
is derived in this section. We also demonstrate the
validity of our assumption that the timescale of
synchrotron losses is very much greater than the
bounce time.

For the application under consideration here, the
opening angle of the wedge of enhanced number
density of mildly relativistic electrons in our model
of V471 Tau, the important timescale is the time
taken for a group of mildly relativistic electrons
to lose its energy and thermalise. In the case of
V471 Tau only synchrotron losses are taken into
consideration. In this case Coulomb collisions are
unimportant until the number density of thermal
electrons is so high that Razin supression reduces
the gyrosynchrotron emission to unobservable levels.
The other potentially important loss mechanism is
precipitation onto the K2 dwarf surface of those
electrons with equatorial pitch angle sufficiently

small that their mirror points are inside the star.
It can be shown (Nicholls & Storey 1999; Kundu et
al. 1987) that scattering is efficient in replenishing
those pitch angles that lead to precipitation, and so
it is reasonable to assume an isotropic distribution
throughout the magnetosphere. However, scattering
is not expected to take place uniformly throughout
the magnetosphere and the loss due to precipitation
is reduced by a factor related to the volume of the
magnetosphere in which scattering occurs. In this
paper loss through precipitation is assumed to be
negligible, so the opening angle calculated below
will be an upper limit.

Kardashev (1962) showed that for synchrotron
radiation the energy of the particle decreases as

dE

dt
∝ −B2 sin2αE2 , (22)

or in terms of the Lorentz factor (Petrosian 1985)

dγ

dt
= − 2e4

3(4πε0)c3m3
e

B2 sin2αγ2β2

= − aB2 sin2α(γ2 − 1) , (23)

where a = 2e4/3(4πε0)c3m3
e. Integrating equation

(23) yields

γ(t) =
(γ0 + 1) + (γ0 − 1) exp(−2aB2 sin2αt)
(γ0 + 1)− (γ0 − 1) exp(−2aB2 sin2αt)

, (24)

where γ0 is the initial Lorentz factor of the electron.
The radiation timescale is the time taken for the

electron to reach Lorentz factor γf , and is given by

tf =
1

2aB2 sin2α
ln
(

(γ0 − 1)(γf + 1)
(γ0 + 1)(γf − 1)

)
. (25)

In a uniform field B2 sin2α is constant, and for
sin2α close to zero, emission is suppressed as the
electron is travelling almost parallel to the magnetic
field line and therefore in an almost straight line.
However, in a dipole field B2 sin2α is changing
constantly. If the rate of change of B2 sin2α is very
much greater than the radiation timescale, that is
if the electron is losing energy sufficiently slowly
that it undergoes many bounces before its Lorentz
factor changes appreciably, then it is a reasonable
approximation to average B2 sin2α over a bounce
period and use the average in equation (28).

For the physical parameters applicable to V471
Tau, see Tables 1 and 2, the bounce period for
electrons on field lines that reach the white dwarf is
of the order of seconds to a few tens of seconds for
Lorentz factors greater than 3 and for the full range
of pitch angles. Using the model magnetic field
strength at the radius of the white dwarf (Nicholls
& Storey 1999), equation (25) yields a lower limit
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Table 2. Model parameters for V471 Tau (from Nicholls & Storey 1999)

Parameter Dipole magnetosphere Wind Enhanced region

Surface magnetic field at equator (tesla) 3 ·5× 10−3 1 ·0× 10−3 3 ·5× 10−3

Electron density at stellar surface (m−3)* 4 ·0× 108 4 ·0× 108 6 ·5× 1010

Power law dependence of electron density on radius∗ 0 ·0 −2 ·0 0 ·0
Power law dependence of electron density on energy∗ −2 ·0 −2 ·0 −2 ·0
Extent in stellar radii 3 ·9 13 ·0 3 ·9
∗ These parameters refer to the mildly-relativistic electrons.

to tf of 8× 108 s for an initial Lorentz factor of 3,
and a final Lorentz factor of 1 ·1. For initial Lorentz
factors higher than 3, tf will be even longer. So,
for V471 Tau it is a reasonable approximation to
use the average of B2 sin2α over a bounce period.

The bounce-average of B2 sin2α is

〈B2 sin2α〉 =
2
Sb

∫ π/2

θm

(
B2

0(r?/r0)6(1 + 3 cos2 θ)
sin12 θ

)

×
(

sin2α0(1 + 3 cos2 θ) 1
2

sin6θ

)

× r0 sin θ(1 + 3 cos2 θ) 1
2 dθ

[1− sin2α0(1 + 3 cos2 θ) 1
2 / sin6θ] 1

2
.

(26)

Again this yields a ratio of integrals that can only
be done numerically due to the complexity of the
integrands. The fit,

〈B2 sin2α〉 = B2
0

(
r?

r0

)6[
0 ·913 +

(
0 ·75
α0

)3 ·3]
,

(27)

to the ratio of integrals in equation (26) agrees to
better than 10% for all values of α0. Hence the
time dependence of γ is

γ(t) =
(γ0 + 1) + (γ0 − 1) exp(−2a〈B2 sin2α〉t)
(γ0 + 1)− (γ0 − 1) exp(−2a〈B2 sin2α〉t)

,

(28)

with 〈B2 sin2α〉 given by equation (27).
Substituting equation (27) into the radiation

timescale (25), we get

tf =
1

aB2
0(r?/r0)6[0 ·913 + (0 ·75/α0)3 ·3]

× ln
(

(γ0 − 1)(γf + 1)
(γ0 + 1)(γf − 1)

)
. (29)

An inspection of this equation shows that as
α0→ 0, tf→ 0, and hence tf ≤ 109 s, which is a total
reversal from the uniform field case stated above,
which can be understood as follows. In a uniform
magnetic field the magnetic field strength, and hence

the pitch angle of the electron, is unchanging, so
emission is most efficient for an electron with initial
pitch angle of π/2, and suppressed for initial pitch
angles of close to 0. However, in a dipole field the
magnetic field experienced by the electron changes
constantly with an associated change in pitch angle.
As sin2α0→ 0, θm→ 0, and so the electrons with
very small equatorial pitch angles reach very high
magnetic field strengths before they mirror. In
other words, the electrons with smallest equatorial
pitch angles spend the greatest amount of their
bounce period in regions where the magnetic field
is very large, and with their instantaneous pitch
angles close to π/2 where their radiation is most
efficient. Hence they will lose energy extremely
rapidly. However, electrons with equatorial pitch
angle of close to π/2 are trapped in low field regions
and hence take longer to radiate their energy.

In practise the electrons with small enough pitch
angle will precipitate onto the stellar surface, and the
average radiation time for the remaining electrons
will remain large. For electrons with α0 = π/2,
and hence trapped on the equator with unchanging
conditions, the radiation time is the same as for
electrons in a uniform magnetic field of the same
strength and with pitch angle of π/2, as expected.
For electrons that mirror just above the stellar
surface on a field line with r0 = dWD, the radiation
time is 2×106 s, about 5 orders of magnitude greater
than the bounce time. Hence the assumption of
the bounce time being very much shorter than the
radiation time, used to derive the expression for
tf and γ(t), is valid for our parameters of V471
Tau.

4 Calculation of the Average Drift Angle 〈φ〉
To calculate how far the electrons drift before they
have lost sufficient energy to be indistinguishable
from the ambient population of mildly relativistic
electrons we integrate 〈φ̇〉 with respect to time, from
t = 0 to tf and then average over α0.

The integral over time is∫ tf

0

dt〈φ̇〉 =
∫ tf

0

3mec
2γβ2

2eB0r
2
?

(
r0

r?

)
g(α0)dt . (30)

The only time-dependent quantity in equation (30)
is γβ2 = γ−1/γ. With γ(t) given by equation (28),
the integral becomes
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∫ tf

0

dt〈φ̇〉 =
3mec

2

2eB0r
2
?

(
r0

r?

)
g(α0)

a〈B2 sin2α〉
ln
(
γ0

γf

)
.(31)

All the α0 dependence is in the g(α0)/a〈B2 sin2α〉
term so the average over α0 becomes

1
aB2

0(r?/r0)6

∫ π/2

0

dα0
0 ·7 + 0 ·3 sinα0

1 + (0 ·75/α0)3 ·3
/∫ π/2

0

dα0 .

=
0 ·49

aB2
0(r?/r0)6 . (32)

Bringing this all together gives the average angle
through which the electrons drift in time tf :

〈φ〉 = 0 ·48
9(4πε0)m4

ec
5

4e5B3
0r

2
?

(
r0

r?

)7

ln
(
γ0

γf

)
. (33)

For a given system the pitch-angle-average drift
angle depends only on the equatorial radius, and
initial Lorentz factor. An electron with very large
γ0 drifts a very large distance before losing sufficient
energy to thermalise regardless of its equatorial
radius, for two reasons: its drift speed is initially
very large and it lives for a very long time, which
is why 〈φ〉→∞ as γ0→∞. Conversely, an electron
with a small initial Lorentz factor will not drift far
due to a low initial drift speed and short lifetime.
For an electron of given Lorentz factor the drift
speed is inversely proportional to both the magnetic
field strength and the radius of curvature of the
field, both of which decrease with equatorial radius.
Hence an electron of given Lorentz factor will drift
faster the further it is away from the star. As its
lifetime also increases with decreasing field strength,
an electron far from the star will drift further than
one close to the star.

5 Application to V471 Tau

In evaluating 〈φ〉 for a situation such as the opening
angle of the wedge of enhanced number density of
mildly relativistic electrons in the model for the
radio emission from V471 Tau, we have to determine
reasonable values for γf and γ0, and r0, and our
determination of these is discussed in this section.

The value of γf is chosen so that the population
of electrons accelerated in the interaction region
of the magnetospheres of the white dwarf and the
K2 dwarf has radiated sufficient energy that it
is indistinguishable from the ambient population
of gyrosynchrotron electrons. This defines the far
edge of the wedge, i.e. the edge furthest from the
longitude of the white dwarf. Numerical models
indicate that the enhanced mildly-relativistic electron
number density is much greater than the ambient
mildly-relativistic electron number density (Nicholls
& Storey 1999). Hence, at the far edge of the wedge
most of the electrons have thermalised, so we set

γf = 1 ·1. Gyrosynchrotron emission is by mildly
relativistic electrons with Lorentz factors of a few
to of order 10, which places an upper limit on γ0.

If the electrons were confined to a flux tube of
small cross sectional area, which extended to the
white dwarf radius, then the choice of r0 would be
obvious. However, numerical modelling (Nicholls &
Storey 1999) indicates that such a model is not
consistent with the data, whereas models with a
uniform distribution of mildly relativistic electrons
throughout the wedge of enhanced electron density
is much more consistent with the data, implying
that radial diffusion is efficient. Hence, the mildly-
relativistic electrons accelerated at r = dWD rapidly
diffuse to fill the entire wedge from the radius of the
white dwarf to the surface of the K2 star. It might
be thought that the region of enhanced electron
density would be narrow near the K2 surface, as
electrons near the surface of the star have a slow
drift speed and a short lifetime, with the region
getting wider and wider as the equatorial radius of
the electrons increases resulting in a faster initial
drift speed and a longer drift time. However, some
types of radial diffusion lead to an increase in
energy of the electron [those mechanisms that do
not violate the first or second adiabatic invariant,
where the first is defined in equation (7) and the
second is defined to be

∮
p ||ds]. If this type of radial

diffusion is important then the electrons that diffuse
inwards will drift further in φ than ones that diffuse
due to mechanisms that are energy conserving or
energy losing. Further, the same processes that
lead to radial diffusion near the white dwarf would
be expected to operate in other regions of the
magnetosphere of the K2 star, and so the inner
regions of the wedge of enhanced density would be
replenished by those electrons at the initial radius
of r0 = dWD, and this would give rise to a region
of enhanced number density that is independent of
equatorial radius of the electrons, out to the radius
of the white dwarf. Hence, we use r0 = dWD when
evaluating the drift angle. To calculate the exact
shape of the enhanced-density region is not necessary
for a comparison with our numerical modelling and
is beyond the scope of this paper.

A more exact calculation of the pitch angle average
between θm? to π/2, where θm? is the mirror point
on the surface of the K2 dwarf for r0 = dWD, does
not significantly change our results.

6 Results and Conclusion

We find from the analytic expression derived above
that for 2 ≤ γ0 ≤ 10, we have 65◦ ≤ 〈φ〉 ≤ 240◦,
and thus that a moderate-sized wedge of enhanced
mildly relativistic electron number density develops
for parameters applicable to V417 Tau. If the mildly-
relativistic electrons drift very slowly, or radiate all
their energy very swiftly, they would not drift far
from the white dwarf, but pile up in a thin wedge
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of very small opening angle. At the other extreme,
if the mildly-relativistic electrons drift very fast or
radiate their energy very slowly, then they would
drift many times around the star and smear out any
azimuthal structure in the number density of the
mildly-relativistic electrons. Our calculations show
that the middle ground of a moderate-sized wedge of
enhanced mildly-relativistic electron number density
forms.

In our numerical work (Nicholls & Storey 1999)
we use various models for the azimuthal distribution
of the mildly-relativistic electrons in the region of
enhanced density, to simulate the loss of energy of
the electrons through synchrotron radiation. Such
models include linear and power law decreases
of electron density with azimuthal angle. Those
models with an opening angle for the wedge of
90◦ <∼ 〈φ〉 <∼ 200◦, regardless of the way the electron
number density decreases with azimuthal angle,
best reproduce the orbital phases of the peaks and
troughs of the observed data. This range of angles
agrees closely with the estimates from the analytical
work above.

In summary, for mildly relativistic electrons we
have calculated analytically the bounce-average drift
velocity and the bounce-average lifetime tf in a
dipolar magnetic field, and used these expressions to
find the average angle through which such electrons
drift during time tf . We have applied this analytic

expression to the model for V471 Tau and shown
that the numerical results are consistent with the
analytic approximation.
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