Dietary methods and biomarkers of omega 3 fatty acids: a systematic review

Lluis Serra-Majem1,2*, Mariela Nissensohn1, Nina C. Øverby3 and Katalin Fekete4
1Department of Clinical Sciences, University of Las Palmas de Gran Canaria, PO Box 550 35080, Las Palmas de Gran Canaria, Spain
2Community Nutrition Research Centre of the Nutrition Research Foundation, University of Barcelona Science Park, Baldiri Retxac 4, 08028 Barcelona, Spain
3Faculty of Health and Sport, University of Agder, Service Box 422, 4604 Kristiansand, Norway
4Department of Biochemistry and Medical Chemistry, University of Pécs Szegeti út 12., H-7624 Pécs, Hungary

Abstract
The aims of the present study were to review the validity of dietary methods used to measure the usual long chain (LC) omega-3 polyunsaturated fatty acid (n-3 PUFA) intake of a population and to assess the usefulness of different biomarkers of n-3 PUFA in healthy humans. Two systematic literature searches were conducted until May 2011 to update previous systematic reviews. The first literature search aimed to find studies validating the methodology used for measuring the dietary intake of n-3 PUFA. The second search aimed to find human intervention studies in which n-3 PUFA status changed after 2 weeks of n-3 PUFA supplementation. Sixteen studies were identified for inclusion in the first review. Correlation coefficients between fatty acids in subcutaneous fat or blood lipids and dietary intake of n-3 PUFA from different questionnaires were similar. Subcutaneous fat has been reported as the best reference method for some authors, and these studies showed moderate correlation coefficients with no dietary intake method being superior to any other. As for the evaluation of biomarkers of docosahexaenoic acid (DHA, 22:6 n-3) and eicosapentaenoic acid (EPA, 20:5n-3) status in response to supplementation, the new search reaffirmed and reinforced the evidence supporting that plasma phospholipid DHA, erythrocyte DHA, and platelet DHA were all effective and robust biomarkers of DHA status. Our findings only confirmed earlier studies and did not provide evidence for reaching new conclusions.

Key words: Polyunsaturated fatty acids: Omega-3: Dietary intake: Nutritional status: Dietary methods: Biomarkers

Introduction
Nutritional epidemiological research requires addressing issues of measurement errors and inter and intra-individual variability, which are specific for each nutrient. Public health decisions must rely on valid and precise estimates of nutrient intake and status. There is a need to reach a consensus about the best available methods for assessing nutrient intake and status at the population level. In this article a literature review of dietary methods used to assess intake of n-3 PUFA is presented. Also biomarkers for n-3 PUFA status were analysed. The effect of dietary fats on health and disease has been of interest for many decades. The various health benefits of consuming the LC n-3 PUFA particularly eicosapentaenoic acid (EPA, 20:5n-3) and docosapentaenoic acid (DHA, 22:6n-3), have been widely reported. The LC n-3 PUFA are obtained predominantly from fish, seafood, meat, and eggs. However, various dietary supplements containing several hundred milligrams of LC n-3 PUFAs per dose are commonly available. Many clinical studies have assessed the effect of LC n-3 PUFA supplementation in restoring health and maintaining well-being. The majority of these reviews concluded that, although there was some indication of the beneficial effect of LC n-3 PUFA supplementation, further studies were needed to establish efficacy of their use. To date, there is lack of a universally accepted biomarker that reflects increased LC n-3 PUFA status in response to increased dietary intake or supplementation. It is even more important in epidemiologic studies assessing health effects of LC n-3 PUFA status in populations over a long-term period to understand which biomarkers truly reflect LC n-3 PUFA status. To assess the reliability of biomarkers in reflecting LC n-3 PUFA intake, it is necessary to review biomarker data from studies reporting a change in LC n-3 PUFA status. On the other hand it is also necessary to know the validity and reproducibility of dietary intake estimations of LC n-3 PUFA from different questionnaires with regard to the appropriate biomarkers. Therefore, the aims of this paper were to review the validity of methods used to measure the usual n-3 PUFA intake of a population and additionally, to assess the usefulness of different biomarkers of LC n-3 PUFA status in healthy humans.

* Corresponding author: L. Serra-Majem, email lserra@dcc.ulpgc.es
Methods

This article includes two updated systematic reviews. Both systematic literature searches were performed between March and May 2011. Two previous systematic reviews covering the objectives of both searches were conducted in 2007 and 2009 within the European Network of Excellence European micronutrient RECommendations Aligned (EURRECA)\(^\text{(2)}\).

For the first search updating the validity of methods to assess usual n-3 PUFA intake, the literature search was conducted in Medline, OvidSP and EMBASE using the following terms: ‘omega-3 fatty acid’, ‘fish oils’, ‘biomarker’, ‘nutritional assessment’, and ‘fat intake’ including MESH-terms. In total 286 articles were selected using Medline, 358 were selected from OvidSP and 330 were identified from EMBASE.

To select the articles to be included in the present review the following exclusion criteria were used: (a) studies conducted exclusively in diseased or institutionalised persons, (b) studies relating diseases to food consumption or nutrient intake, (c) intervention studies and other therapeutic studies with nutrients or drugs related to the metabolism of these nutrients, (d) studies in animals, (e) studies written in languages other than English or Spanish, (f) studies using single 24-hour recall or non validated FFQ, (g) studies related to fish consumption, (h) studies in infants and children, and (i) studies using another dietary method as a reference tool.

Nine hundred seventy four titles and abstracts were identified via electronic search. From these, 907 titles and abstracts were identified via electronic search. From these, 907 titles and abstracts were identified via electronic search. From these, 8 of them were chosen to update Table 1 elaborated in the original article from 2009\(^\text{(3)}\). In total 19 studies were reviewed (11 were already in the first review and 8 were consequently added). To assess the quality of the different calibration/validation studies a quality score system was developed\(^\text{(4)}\). This has been described in previous publications by Serra-Majem et al.\(^\text{(4)}\) and Øverby et al.\(^\text{(3)}\).

For the second search of the present article aiming to assess the utility of biomarkers for n-3 PUFA, another OvidSP and MEDLINE search was developed in order to refresh the search strategy developed by Fekete et al.\(^\text{(5)}\) in the systematic review of recovery studies. In this case, the search targeted intervention/recovery studies of n-3 PUFA using text terms with appropriate truncation and relevant indexing terms. The following strategy was applied: (n-3 LCPUFA terms) and (intervention study terms) and (human studies) and was limited to the last 4 years. The inclusion criteria was the same as that used by Fekete et al. (2007)\(^\text{(3)}\). Six hundred and twenty one titles and abstracts were identified via electronic search from these, only 8 studies were selected to update studies included in the initial study conducted by Fekete et al.\(^\text{(5)}\).

Biomarkers

Eighteen different biomarkers were used to characterize changes in LC n-3 PUFA status. Discussion is only included for those biomarkers used in more than 3 different studies. Data for each study included in the present analysis is described in Table 2. The effects of LC n-3 PUFA supplementation on each biomarker are detailed in Table 3. The main focus is directed towards the effect of DHA supplementation on biomarkers reflecting changes in DHA values. Plasma phospholipid DHA as well as erythrocyte and platelet DHA appear to be reliable and robust biomarkers as shown in Table 3.

Results

Dietary method studies

Details of the 19 papers selected are given in Table 1. In the 19 articles included in the review, 15 different food frequency questionnaires (FFQ) were validated. All FFQs were designed to capture the usual diet. Some questionnaires specifically asked only about n-3 PUFA rich food\(^\text{(1,6)}\) while others covered the whole diet with 66–360 food items included in the questionnaire\(^\text{(7–17)}\). A diet history questionnaire had been validated in one study\(^\text{(18)}\). Weighed records had been validated in 4 studies\(^\text{(12,19,20,21)}\).

In the presented studies the numbers of participants varied from 24 to 4439. The age distribution ranged from 18 to 86 years, with mean ages from 45 to 65 years. In total 15 different FFQs and dietary records or recalls in 5 different settings (varying number of days and season) were validated against subcutaneous fat, serum or plasma fatty acids.

Subcutaneous fat. Adipose tissue fatty acids were determined using chromatography and calculating the area under the curve for each of the fatty acids. All studies using fatty acids in tissue reported the same procedure with only slight modifications\(^\text{(7,8,10,13,14,19)}\).

Five different FFQ were validated against adipose tissue\(^\text{(7,8,10,13,14)}\). All these correlations were significant. Furthermore Markmann et al.\(^\text{(15)}\) validated weighed records (3 x 7 d) against subcutaneous fat. Only DHA crude correlations were significant. Finally Knutsen et al.\(^\text{(13)}\) validated eight different 24-h recalls of intake of ALA, EPA and DHA against subcutaneous fat. They found high adjusted correlations for ALA, while the correlations for EPA and DHA were lower (Table 1).

Blood component concentrations. After extraction and isolation the serum/plasma phospholipids were quantified by gas liquid chromatography after methylation\(^\text{(6,8,9,11,12,15–18,20–23)}\). Some expressed the serum phospholipids as mg fatty acid/l serum\(^\text{(22)}\), while most used percent of total fatty acid methyl esters\(^\text{(8,18,20)}\) or both\(^\text{(11)}\). For detailed descriptions refer to each particular study.

Twelve different FFQ were validated against erythrocytes, plasma or serum\(^\text{(1,6,8,9,11,12,15–17,22,24)}\). Sullivan et al.\(^\text{(11)}\) validated fatty acid estimated from a FFQ against both fatty acid from erythrocytes and from plasma. All the correlations were significant. Andersen et al.\(^\text{(16)}\), Hjortkær et al.\(^\text{(22)}\) and Hodge et al.\(^\text{(11)}\) reported significant correlations of approximately 0.50–0.60 between dietary intake of EPA and DHA estimated from the FFQ and concentrations of EPA and DHA in serum or plasma. Arsenault et al.\(^\text{(19)}\) reported adjusted correlations...
Table 1. Description of the studies included in this review validating intake of n-3 fatty acids (sorted by publication date). Crude and adjusted correlations for dietary methods vs. reference methods in the studies included.

<table>
<thead>
<tr>
<th>Author</th>
<th>Year pub</th>
<th>Country</th>
<th>Subjects (n)</th>
<th>Age</th>
<th>Dietary method which was validated</th>
<th>Reference method</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hunter et al.</td>
<td>1992</td>
<td>USA</td>
<td>118</td>
<td>45–65 years</td>
<td>FFQ1 and FFQ2</td>
<td>Subcutaneous fat aspirates from the lateral buttock</td>
<td>Crude: FFQ1: EPA: 0·43†,*** FFQ2: EPA: 0·48†,***</td>
</tr>
<tr>
<td>Marckmann et al.</td>
<td>1995</td>
<td>Denmark</td>
<td>24</td>
<td>20–29 years</td>
<td>Three × 7 d weighed food records</td>
<td>Fatty acid composition of subcutaneous fat</td>
<td>Energy adjusted: FFQ1: EPA: 0·47*** FFQ2: EPA: 0·47***</td>
</tr>
<tr>
<td>Ma et al.</td>
<td>1995</td>
<td>USA</td>
<td>3570</td>
<td>45–64 years</td>
<td>FFQ</td>
<td>Plasma cholesterol ester</td>
<td>Crude: ALA: 0·21§ EPA: 0·23§ DHA: 0·42§</td>
</tr>
<tr>
<td>Godley et al.</td>
<td>1996</td>
<td>USA</td>
<td>36 erythrocyte controls, 33 adipose tissue controls</td>
<td>46–86 years</td>
<td>FFQ</td>
<td>Erythrocyte membrane</td>
<td>Crude: EPA: 0·36† DHA: 0·19†</td>
</tr>
<tr>
<td>Hjartaker et al.</td>
<td>1997</td>
<td>Norway</td>
<td>234</td>
<td>40–42 years</td>
<td>FFQ</td>
<td>Adipose tissue Serum phospholipids fatty acid composition of subcutaneous fat</td>
<td>Crude: EPA: 0·33† DHA: 0·42† Crude: EPA: 0·58†,†,*** DHA: 0·53†,†,***</td>
</tr>
<tr>
<td>Andersen et al.</td>
<td>1999</td>
<td>Norway</td>
<td>119 adipose tissue samples, 135 blood samples</td>
<td>20–55 years</td>
<td>FFQ</td>
<td>Subcutaneous adipose tissue of the buttock Serum fatty acid</td>
<td>Crude: ALA: 0·42†,*** EPA: 0·52†,*** DPA: 0·39†,*** DHA: 0·49†,*** Crude: ALA: 0·28†,*** EPA: 0·51†,*** DPA: 0·38†,*** DHA: 0·52†,***</td>
</tr>
<tr>
<td>Norrish et al.</td>
<td>1999</td>
<td>New Zealand</td>
<td>480 age-matched community controls</td>
<td>69·1 (± 0·3) years</td>
<td>FFQ</td>
<td>Erythrocyte phosphatidylcholine Serum fatty acids</td>
<td>Crude (men/women): ALA: −0·1/0·26§ EPA: 0·64/0·61§,*** DPA: 0·00/0·17§ DHA: 0·46/0·46§,* Marine origin: n-3: 0·48/0·58§,*** Energy adjusted (men/women): ALA: −0·22/0·36 EPA: 0·64/0·65 DPA: 0·07/0·20 DHA: 0·44*/0·59*** Marine origin: n-3:0·51***/0·69***</td>
</tr>
<tr>
<td>Sasaki et al.</td>
<td>2000</td>
<td>Japan</td>
<td>42 men, 44 women</td>
<td>19–58 years</td>
<td>DHQ</td>
<td>Serum fatty acids</td>
<td></td>
</tr>
<tr>
<td>Author</td>
<td>Year pub</td>
<td>Country</td>
<td>Subjects (n)</td>
<td>Age</td>
<td>Dietary method which was validated</td>
<td>Reference method</td>
<td>Results</td>
</tr>
<tr>
<td>-----------------</td>
<td>----------</td>
<td>---------------</td>
<td>--------------</td>
<td>--------------</td>
<td>------------------------------------</td>
<td>-----------------</td>
<td>---</td>
</tr>
<tr>
<td>Kobayashi et al.</td>
<td>2001</td>
<td>Japan</td>
<td>87</td>
<td>50–59 years</td>
<td>7 d food weighed record</td>
<td>Serum phos-</td>
<td>Crude: Total n-3: 0.66§,*** ALA: 0.07§ EPA: 0.75§,*** DPA: 0.49§,*** DHA: 0.50§,*** Energy adjusted: Total n-3 0.76§,*** ALA: 0.09§ EPA: 0.89§,*** DPA: 0.54§,*** DHA: 0.61§,***</td>
</tr>
<tr>
<td>Baylin et al.</td>
<td>2002</td>
<td>Costa Rica</td>
<td>367 men, 136 women</td>
<td>Men 56 (±11) years, women 60 (±10) years</td>
<td>FFQ Adipose tissue of the buttock</td>
<td>Adipose tissue of the buttock</td>
<td>Crude: ALA: 0.34†,*** EPA: 0.15†,*** DPA: 0.03†,*** DHA: 0.18†,***</td>
</tr>
<tr>
<td>Kuriki et al.</td>
<td>2003</td>
<td>Japan</td>
<td>15 men, 79 women</td>
<td>35–55 years</td>
<td>7 d weighed record</td>
<td>Plasma fatty acids</td>
<td>Only adjusted presented (men/women): ALA: 0.35*/0.19 EPA: 0.57*/0.60*** DHA: 0.57*/0.3*** Adjusted for age and BMI</td>
</tr>
<tr>
<td>Knutsen et al.</td>
<td>2003</td>
<td>USA</td>
<td>49 black and 72 white</td>
<td>48 (±15.2) years</td>
<td>FFQ Adipose tissue from the buttock</td>
<td>Adipose tissue from the buttock</td>
<td>Crude (black/white): ALA: 0.29*/0.49 EPA: 0.19/–0.04 DPA: 0.05/–0.05</td>
</tr>
<tr>
<td>Sullivan et al.</td>
<td>2006</td>
<td>Australia</td>
<td>53</td>
<td>19–58 years</td>
<td>FFQ</td>
<td>Red blood cell fatty acids</td>
<td>Crude: Total n-3 PUFA: 0.50†,* EPA: 0.40†,* DPA: 0.05†,*** DHA: 0.39†,*</td>
</tr>
<tr>
<td>Hodge et al.</td>
<td>2007</td>
<td>Australia</td>
<td>4439</td>
<td>40–69 years</td>
<td>FFQ</td>
<td>Plasma phos-</td>
<td>Crude: Total n-3 %: 0.31† ALA: 0.07† EPA: 0.18† DHA: 0.4† Energy adjusted: Total n-3: 0.57† ALA: 0.24† EPA: 0.40† DHA: 0.78†,***</td>
</tr>
<tr>
<td>McNaughton et al.</td>
<td>2007</td>
<td>Australia</td>
<td>43</td>
<td>28–75 years</td>
<td>FFQ</td>
<td>Plasma phos-</td>
<td>Crude: Total n-3 0.38†,* ALA: 0.00† EPA: 0.21† DPA: 0.05†,*** DHA: 0.32†,*</td>
</tr>
<tr>
<td>Author</td>
<td>Year pub</td>
<td>Country</td>
<td>Subjects (n)</td>
<td>Age</td>
<td>Dietary method which was validated</td>
<td>Reference method</td>
<td>Results</td>
</tr>
<tr>
<td>------------------------</td>
<td>----------</td>
<td>-------------</td>
<td>--------------</td>
<td>----------------</td>
<td>-------------------------------------</td>
<td>------------------</td>
<td>---</td>
</tr>
<tr>
<td>Sun et al.</td>
<td>2007</td>
<td>USA</td>
<td>306</td>
<td>43–69 years</td>
<td>Weighed record</td>
<td>Plasma phospholipid fatty acids</td>
<td>Crude: Total n-3 PUFA: 0·33†,* ALA: 0·09† EPA: 0·22† DPA: 0·25† DHA: 0·43†,*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FFQ</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Crude: Total n-3: (n 130): 0·31†,* ALA: 0·23† EPA: (n 130): 0·27†,* DPA: 0·01† DHA: 0·47†</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Energy adjusted§§: Total n-3: (n 130): 0·30†,** ALA: 0·23†,** EPA: (n = 130): 0·21†,* DPA: – 0·03† DHA: 0·48†,**</td>
</tr>
<tr>
<td>Erythrocyte</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Only adjusted presented††:</td>
<td></td>
<td>Crude: Total n-3: (n 132): 0·42†,** ALA: 0·17† EPA: (n 132): 0·23†,** DPA: 0·02† DHA: 0·54†</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Energy adjusted§§: Total n-3: (n 132): 0·41†,** ALA: 0·18†,** EPA: (n 132): 0·38†,** DPA: 0·01†,* DHA: 0·56†,**</td>
</tr>
<tr>
<td>Arsenault et al.</td>
<td>2008</td>
<td>USA</td>
<td>129 normal clinical diagnosis</td>
<td>72.6 (so 8.0) years</td>
<td>FFQ</td>
<td>Plasma phospholipid fatty acids</td>
<td>Only adjusted presented§§: EPA: 0·38§ DHA: 0·49§</td>
</tr>
<tr>
<td>Astorg et al.</td>
<td>2008</td>
<td>France</td>
<td>276 men, 257 women</td>
<td>Men 45–60 years, women 35–60 years</td>
<td>15 d 24 h records</td>
<td>Plasma fatty acids</td>
<td>Crude (men/women): ALA: 0·06/0·05† EPA: 0·24/0·27†,** DPA: 0·08/0·07† DHA: 0·25/0·27†,**</td>
</tr>
<tr>
<td>Sublette et al.</td>
<td>2010</td>
<td>USA</td>
<td>61</td>
<td>18–73 years</td>
<td>FFQ</td>
<td>Plasma fatty acids</td>
<td>Crude: ALA: 0·22† EPA: 0·38†,** DHA: 0·50†,****</td>
</tr>
</tbody>
</table>

DHQ, diet history questionnaire; ALA, α-linolenic acid; DPA, docosapentanoic acid.
Significance: * P<0·05; ** P<0·01; *** P<0·001; **** P<0·0001.
† Spearman correlation.
‡ Marine intake of n-3 FA.
§ Pearson correlation.
|| Deattenuated with the within-to-between person variance ratio for intake of FA.
†† Corrected after attenuation correction factor.
§§ Adjusted for age at blood drawing, BMI, current weight, smoking status, postmenopausal status, postmenopausal hormone use, period of blood assay, and fasting status at blood drawing.
|| Adjusted for age and total energy intake.
<table>
<thead>
<tr>
<th>Author/year</th>
<th>Country</th>
<th>Age</th>
<th>Sex</th>
<th>No. included</th>
<th>Short description of intervention</th>
<th>Latest time point</th>
<th>No. in intervention</th>
<th>No. in control at latest time</th>
<th>Study design</th>
<th>Biomarkers reported</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allard (1997)</td>
<td>Canada</td>
<td>20–60 y</td>
<td>M</td>
<td>40</td>
<td>3·06 g EPA + 2·26 g DHA</td>
<td>6 wk</td>
<td>18</td>
<td>19</td>
<td>RCT p</td>
<td>PPL</td>
</tr>
<tr>
<td>Barceló-Coblijn (2008)</td>
<td>Canada</td>
<td>> 48</td>
<td>X</td>
<td>62</td>
<td>1·2 g ALA; 2·4 g ALA; 3·6 g ALA; 0·6 g (fish oil EPA-DHA); 1·2 g (fish oil EPA-DHA); 0·6 g/d EPA or DHA + 1·2 g/d ALA</td>
<td>12 wk</td>
<td>12 + 10 + 10 + 10 + 10 + 10</td>
<td>9</td>
<td>RCT p</td>
<td>RBC, PPL</td>
</tr>
<tr>
<td>Banaa (1999)</td>
<td>Norway</td>
<td>34–60 y</td>
<td>X</td>
<td>156</td>
<td>3·3 g EPA + 1·8 g DHA</td>
<td>10 wk</td>
<td>72</td>
<td>74</td>
<td>RCT p</td>
<td>PPL</td>
</tr>
<tr>
<td>Brady (2004)</td>
<td>United Kingdom</td>
<td>35–70 y</td>
<td>M</td>
<td>29</td>
<td>1·47 g EPA + 1·0 g DHA</td>
<td>6 wk</td>
<td>15 + 14</td>
<td>15 + 14</td>
<td>B/A P</td>
<td>Plat</td>
</tr>
<tr>
<td>Christensen (1999)</td>
<td>Denmark</td>
<td>38 ± 11 y</td>
<td>X</td>
<td>60</td>
<td>3 g EPA + 2·9 g DHA; 0·9 g EPA + 0·8 g DHA</td>
<td>12 wk</td>
<td>20 + 20</td>
<td>20</td>
<td>RCT p</td>
<td>G, Plat</td>
</tr>
<tr>
<td>Cleland (1992)</td>
<td>Australia</td>
<td>Adults</td>
<td></td>
<td>32</td>
<td>1·6 g EPA + 0·32 g DHA</td>
<td>4 wk</td>
<td>13 + 15</td>
<td>13 + 15</td>
<td>B/A P</td>
<td>NPL</td>
</tr>
<tr>
<td>Conquer (1998)</td>
<td>Canada</td>
<td>30–34 y</td>
<td>X</td>
<td>22</td>
<td>0·75 g DHA; 1·5 g DHA</td>
<td>6 wk</td>
<td>6 + 7</td>
<td>6</td>
<td>RCT p</td>
<td>PPL, NEFA</td>
</tr>
<tr>
<td>Conquer (1999)</td>
<td>Canada</td>
<td>29·5 ± 1·5 y</td>
<td>M</td>
<td>20</td>
<td>1·3 g EPA + 1·7 g DHA</td>
<td>6 wk</td>
<td>9</td>
<td>10</td>
<td>RCT p</td>
<td>PPL, NEFA</td>
</tr>
<tr>
<td>Damsgaard (2007)</td>
<td>Denmark</td>
<td>9 mo</td>
<td>X</td>
<td>94</td>
<td>0·57 g EPA + 0·38 g DHA</td>
<td>12 wk</td>
<td>24</td>
<td>24</td>
<td>RCT p</td>
<td>E</td>
</tr>
<tr>
<td>DeLany (1990)</td>
<td>USA</td>
<td>19–31 y</td>
<td>M</td>
<td>15</td>
<td>1·13 g EPA + 0·7 g DHA; 4·53 g EPA + 2·73 g DHA</td>
<td>5 wk</td>
<td>5 + 4</td>
<td>5</td>
<td>RCT p</td>
<td>PPL</td>
</tr>
<tr>
<td>Dunstan (2004)</td>
<td>Australia</td>
<td>32·4 ± 0·5 y</td>
<td>F</td>
<td>98</td>
<td>1·1 g EPA + 2·2 g DHA</td>
<td>17 wk</td>
<td>36</td>
<td>37</td>
<td>RCT p</td>
<td>E</td>
</tr>
<tr>
<td>Dyerberg (2004)</td>
<td>Denmark</td>
<td>20–60 y</td>
<td>M</td>
<td>58</td>
<td>0·79 g EPA + 0·5 g DHA</td>
<td>8 wk</td>
<td>24</td>
<td>26</td>
<td>RCT p</td>
<td>Plat</td>
</tr>
<tr>
<td>Engström (2003)</td>
<td>Sweden</td>
<td>26–65 y</td>
<td>X</td>
<td>16</td>
<td>0·11 g EPA + 0·18 g DHA</td>
<td>3 wk</td>
<td>8 + 8</td>
<td>8 + 8</td>
<td>B/A P</td>
<td>PPL</td>
</tr>
<tr>
<td>Hagve (1993)</td>
<td>Norway</td>
<td>19–22 y</td>
<td>F</td>
<td>16</td>
<td>3·3 g EPA + 1·8 g DHA</td>
<td>4 wk</td>
<td>8</td>
<td>8</td>
<td>RCT p</td>
<td>EPL</td>
</tr>
<tr>
<td>Harris (2008)</td>
<td>Canada</td>
<td>21–49 y</td>
<td>F</td>
<td>23</td>
<td>0·104 g EPA + 0·378 g DHA</td>
<td>16 wk</td>
<td>11</td>
<td>12</td>
<td>RCT p</td>
<td>RBC, PPL</td>
</tr>
<tr>
<td>Helland (2000)</td>
<td>Norway</td>
<td>19–35 y</td>
<td>X</td>
<td>341</td>
<td>0·52 g EPA + 0·33 g DHA</td>
<td>16 wk</td>
<td>14 + 16 + 17</td>
<td>14</td>
<td>RCT p</td>
<td>PPL</td>
</tr>
<tr>
<td>Higgins (2001)</td>
<td>Ireland</td>
<td>19–63 y</td>
<td>X</td>
<td>62</td>
<td>0·34 g EPA + 0·22 g DHA; 0·17 g EPA + 0·11 g DHA</td>
<td>2 wk</td>
<td>7</td>
<td>7</td>
<td>B/A P</td>
<td>PPL, PCE, PTG, HDL PL</td>
</tr>
<tr>
<td>Hodge (1993)</td>
<td>Australia</td>
<td>30–6 y</td>
<td>F</td>
<td>7</td>
<td>0·55 g EPA + 0·39 g DHA</td>
<td>2 wk</td>
<td>7</td>
<td>7</td>
<td>B/A P</td>
<td>PPL</td>
</tr>
<tr>
<td>Hoffman (2004)</td>
<td>USA</td>
<td>6 mo</td>
<td>X</td>
<td>55</td>
<td>0·083 g DHA</td>
<td>26 wk</td>
<td>25</td>
<td>26</td>
<td>RCT p</td>
<td>E</td>
</tr>
<tr>
<td>Itomura (2005)</td>
<td>Japan</td>
<td>9–12 y</td>
<td>X</td>
<td>179</td>
<td>0·12 g EPA 1·052 g DHA</td>
<td>12 wk</td>
<td>26</td>
<td>23</td>
<td>RCT p</td>
<td>EPL</td>
</tr>
<tr>
<td>Karan (1997)</td>
<td>Netherlands</td>
<td>56·2 ± 16·5 y</td>
<td>M</td>
<td>58</td>
<td>2·43 g EPA + 0·49 g DHA; 1·62 g EPA + 0·33 g DHA; 0·81 g EPA + 0·16 g DHA</td>
<td>52 wk</td>
<td>14 + 15 + 15 + 14</td>
<td>14</td>
<td>RCT p</td>
<td>PCE, E</td>
</tr>
<tr>
<td>Kew (2004)</td>
<td>United Kingdom</td>
<td>23–65 y</td>
<td>X</td>
<td>42</td>
<td>0·85 g EPA + 0·49 g DHA</td>
<td>4 wk</td>
<td>11</td>
<td>11</td>
<td>RCT p</td>
<td>PPL, N</td>
</tr>
<tr>
<td>Khan (2003)</td>
<td>United Kingdom</td>
<td>40–65 y</td>
<td>X</td>
<td>56</td>
<td>0·02 g EPA + 0·04 g DHA</td>
<td>32 wk</td>
<td>28</td>
<td>28</td>
<td>RCT p</td>
<td>PPL</td>
</tr>
<tr>
<td>Laidlaw (2003)</td>
<td>Canada</td>
<td>36–68 y</td>
<td>F</td>
<td>8</td>
<td>2·32 g EPA + 1·68 g DHA</td>
<td>4 wk</td>
<td>8</td>
<td>8</td>
<td>B/A P</td>
<td>PPL</td>
</tr>
<tr>
<td>Mann (2010)</td>
<td>Australia</td>
<td>20–50 y</td>
<td>X</td>
<td>27</td>
<td>0·21 g EPA + 0·03 g DPA + 0·81 g DHA; 0·34 g EPA + 0·23 g DPA + 0·45 g DHA</td>
<td>2 wk</td>
<td>10 + 8</td>
<td>6</td>
<td>RCT p</td>
<td>Plat</td>
</tr>
<tr>
<td>Mantzios (1994)</td>
<td>Australia</td>
<td>25–44 y</td>
<td>M</td>
<td>15</td>
<td>1·62 g EPA + 1·08 g DHA</td>
<td>4 wk</td>
<td>15</td>
<td>15</td>
<td>B/A P</td>
<td>PPL, PCE, PTG</td>
</tr>
<tr>
<td>McDaniel (2010)</td>
<td>USA</td>
<td>18–45 y</td>
<td>X</td>
<td>30</td>
<td>1·6 g EPA + 1·2 g DHA</td>
<td>4 wk</td>
<td>16</td>
<td>14</td>
<td>RCT p</td>
<td>PPL</td>
</tr>
<tr>
<td>Mills (2004)</td>
<td>United Kingdom</td>
<td>21–44 y</td>
<td>M</td>
<td>50</td>
<td>2·1 g EPA + 0·9 g DHA</td>
<td>12 wk</td>
<td>10 + 10 + 10 + 10 + 10 + 10</td>
<td>10</td>
<td>RCT p</td>
<td>PPL, PCE, PTG, PBMC</td>
</tr>
<tr>
<td>Mills (1995)</td>
<td>Canada</td>
<td>21–41 y</td>
<td>X</td>
<td>18</td>
<td>0·74 g EPA + 0·51 g DHA</td>
<td>6 wk</td>
<td>8</td>
<td>9</td>
<td>RCT p</td>
<td>E ghosts</td>
</tr>
<tr>
<td>Author/year</td>
<td>Country</td>
<td>Age</td>
<td>Sex</td>
<td>No. included</td>
<td>Short description of intervention</td>
<td>Latest timepoint</td>
<td>No. in intervention</td>
<td>No. in control at latest time</td>
<td>Study design</td>
<td>Biomarkers reported</td>
</tr>
<tr>
<td>-------------</td>
<td>--------------</td>
<td>---------</td>
<td>-------</td>
<td>--------------</td>
<td>-----------------------------------</td>
<td>------------------</td>
<td>---------------------</td>
<td>--------------------------</td>
<td>---------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>Milte (2007)</td>
<td>Australia</td>
<td>53 y</td>
<td>X</td>
<td>75</td>
<td>0.52 g DHA + 0.12 g EPA; 1.04 g DHA + 0.24 g EPA; 1.56 g DHA + 0.36 g EPA</td>
<td>12 wk</td>
<td>17 + 20 + 19</td>
<td>19</td>
<td>RCT p</td>
<td>RBC</td>
</tr>
<tr>
<td>Minns (2010)</td>
<td>USA</td>
<td>18–36 mo</td>
<td>X</td>
<td>86</td>
<td>0.043 g DHA; 0.13 g DHA</td>
<td>9 wk</td>
<td>29 + 29</td>
<td>28</td>
<td>RCT p</td>
<td>RBC, PPL</td>
</tr>
<tr>
<td>Montgomery (2003)</td>
<td>United Kingdom</td>
<td>Pregnant</td>
<td>F</td>
<td>100</td>
<td>0.04 g EPA + 0.2 g DHA</td>
<td>25 wk</td>
<td>30</td>
<td>29</td>
<td>RCT p</td>
<td>E, P</td>
</tr>
<tr>
<td>Murphy (2007)</td>
<td>Australia</td>
<td>20–65 y</td>
<td>X</td>
<td>86</td>
<td>0.125 g EPA + DHA</td>
<td>24 wk</td>
<td>38</td>
<td>32</td>
<td>RCT p</td>
<td>RBC</td>
</tr>
<tr>
<td>Neubronner (2011)</td>
<td>Germany</td>
<td>30–75 y</td>
<td>X</td>
<td>129</td>
<td>1.01 g EPA + 0.67 g DHA; 0.12 g EPA + 0.53 g DHA; 0.29 g DHA; 0.57 g DHA</td>
<td>24 wk</td>
<td>41 + 45</td>
<td>43</td>
<td>RCT p</td>
<td>RBC</td>
</tr>
<tr>
<td>Otto (2000)</td>
<td>Netherlands</td>
<td>20–45 y</td>
<td>F</td>
<td>75</td>
<td>0.57 g DHA</td>
<td>4 wk</td>
<td>12</td>
<td>12</td>
<td>RCT p</td>
<td>PPL, EPL</td>
</tr>
<tr>
<td>Palozza (1996)</td>
<td>Italy</td>
<td>25–46 y</td>
<td>X</td>
<td>40</td>
<td>4.1 g EPA + 3.6 g DHA; 2.7 g EPA + 2.4 g DHA; 1.4 g EPA + 1.1 g DHA</td>
<td>28 wk</td>
<td>10 + 10 + 10</td>
<td>10</td>
<td>RCT p</td>
<td>P, E</td>
</tr>
<tr>
<td>Park (2002)</td>
<td>USA</td>
<td>37–43 y</td>
<td>X</td>
<td>33</td>
<td>4 g EPA or 4 g DHA</td>
<td>4 wk</td>
<td>10 + 10</td>
<td>11</td>
<td>RCT p</td>
<td>Plat</td>
</tr>
<tr>
<td>Rees (2006)</td>
<td>United Kingdom</td>
<td>18–70 y</td>
<td>M</td>
<td>169</td>
<td>1.35 g EPA + 0.3 g DHA; 2.7 g EPA + 0.6 g DHA; 4.5 g EPA + 0.9 g DHA</td>
<td>12 wk</td>
<td>39 + 38 + 38</td>
<td>40</td>
<td>RCT p</td>
<td>PPL, PBMC PL</td>
</tr>
<tr>
<td>Sanders (2006)</td>
<td>United Kingdom</td>
<td>29–35 y</td>
<td>X</td>
<td>80</td>
<td>1.5 g DHA</td>
<td>4 wk</td>
<td>40</td>
<td>39</td>
<td>RCT p</td>
<td>P, EPL</td>
</tr>
<tr>
<td>Sanjurjo (2004)</td>
<td>Spain</td>
<td>31–34 y</td>
<td>F</td>
<td>20</td>
<td>0.04 g EPA + 0.2 g DHA</td>
<td>14 wk</td>
<td>8</td>
<td>8</td>
<td>RCT p</td>
<td>P</td>
</tr>
<tr>
<td>Smuts (2003)</td>
<td>USA</td>
<td>16–35 y</td>
<td>F</td>
<td>48</td>
<td>0.184 g DHA</td>
<td>14 wk</td>
<td>18</td>
<td>19</td>
<td>RCT p</td>
<td>PPL, PTG, EPL</td>
</tr>
<tr>
<td>Sørensen (1998)</td>
<td>Denmark</td>
<td>29–60 y</td>
<td>M</td>
<td>50</td>
<td>0.37 g EPA + 0.54 g DHA</td>
<td>4 wk</td>
<td>21</td>
<td>24</td>
<td>RCT p</td>
<td>LDL</td>
</tr>
<tr>
<td>Stark (2000)</td>
<td>Canada</td>
<td>43–60 y</td>
<td>F</td>
<td>36</td>
<td>2.4 g EPA + 1.6 g DHA</td>
<td>4 wk</td>
<td>18</td>
<td>17</td>
<td>RCT p</td>
<td>PPL</td>
</tr>
<tr>
<td>Sørensen (1998)</td>
<td>United Kingdom</td>
<td>26–59 y</td>
<td>X</td>
<td>44</td>
<td>0.21 g DHA</td>
<td>8 wk</td>
<td>20</td>
<td>20</td>
<td>RCT p</td>
<td>PPL, PCE, PTG, NEFA</td>
</tr>
<tr>
<td>Thies (2001)</td>
<td>United Kingdom</td>
<td>56–69 y</td>
<td>X</td>
<td>24</td>
<td>0.7 g DHA; 0.72 g EPA + 0.28 g DHA</td>
<td>12 wk</td>
<td>8 + 7</td>
<td>8</td>
<td>RCT p</td>
<td>PBMC PL</td>
</tr>
<tr>
<td>Vognild (1998)</td>
<td>Norway</td>
<td>16–69 y</td>
<td>X</td>
<td>228</td>
<td>0.7 g EPA + 1 g DHA; 0.5 g EPA + 0.6 g DHA; 0.5 g EPA + 0.8 g DHA; 1 g EPA + 1.5 g DHA; 1.3 g EPA + 1.8 g DHA</td>
<td>12 wk</td>
<td>35 + 36 + 3-8 + 36 + 3-4</td>
<td>36</td>
<td>RCT p</td>
<td>P, Plat</td>
</tr>
<tr>
<td>Wallace (2000)</td>
<td>Ireland</td>
<td>20–26 y</td>
<td>F</td>
<td>25</td>
<td>0.35 g EPA + 0.32 g DHA</td>
<td>4 wk</td>
<td>13 + 12</td>
<td>13 + 12</td>
<td>RCT p</td>
<td>Plat</td>
</tr>
<tr>
<td>Yaqoob (2000)</td>
<td>United Kingdom</td>
<td>39–49 y</td>
<td>X</td>
<td>16</td>
<td>2.1 g EPA + 1.1 g DHA</td>
<td>12 wk</td>
<td>8</td>
<td>8</td>
<td>RCT p</td>
<td>PPL, PBMC</td>
</tr>
</tbody>
</table>

1 M, exclusively male group; EPA, eicosapentaenoic acid; DHA, docosahexaenoic acid; RCT, randomized controlled trial; p, parallel; PPL, plasma phospholipids; X, mixed sex group; ALA, a-linolenic acid; B/A, before-after study; Plat, total platelets; G, total granulocyte; NPL, neutrophil phospholipid; NEFA, nonesterified fatty acids; E, total erythrocytes; F, exclusively female group; EPL, erythrocyte phospholipid; P, total plasma; PCE, plasma cholesteryl esters; PTG, plasma triacylglycerols; PL, phospholipids; N, total neutrophils; DPA, docosapentanoic acid; PBMC, peripheral blood mononuclear cells
between dietary intake of fatty acids estimated from the FFQ in controls and concentrations of fatty acid in plasma of 0·38 for EPA and 0·49 for DHA. Godley et al.(10) reported correlations between dietary intake of EPA and DHA estimated from the FFQ and concentrations of EPA and DHA in erythrocyte membrane ranging from 0·19 to 0·36. This is the smallest value found for DHA in the blood biomarkers. Sublette et al.(5) reported significant correlations between dietary intake of ALA, EPA and DHA estimated from the FFQ and concentrations of ALA, EPA and DHA in plasma of 0·22 for ALA, 0·38 for EPA and 0·50 for DHA, which was the highest value found for the different biomarkers utilized. Sun et al.(15) reported a significant adjusted correlation of 0·56 between dietary intake of DHA estimated from the FFQ and concentrations of DHA in erythrocytes.

One dietary history questionnaire was also validated against serum fatty acid and high crude (r 0·46) and adjusted (r 0·59) correlations were reported for intake of EPA for men(38). This questionnaire was self-administered and was somewhat similar to a FFQ.

Three studies have validated weighed records (all with seven or more days) against serum, erythrocytes or plasma fatty acids(12,20,21). Kobayashi et al.(20) presented a very high correlation coefficient for EPA, crude (r 0·75) and adjusted (r 0·89), as well as the best adjusted correlations for DHA and total n-3 PUFA from weighed records validated against serum fatty acids (r 0·61). Kuriki et al.(21) obtained adjusted correlations for dietary intake of EPA measured with weighed records against plasma concentrations of EPA (r 0·57) and for DHA (r 0·57). McNaughton et al.(12) showed a crude correlation of 0·43 for DHA measured with weighed records validated against DHA concentration in plasma and a lower correlation coefficient for EPA (r 0·22). Similar correlations were observed when the intake was measured with a FFQ (DHA r 0·32 and EPA r 0·21). All three studies presented low correlations for ALA(12,20,21).

Biomarker study

A total of 8 new studies were incorporated to the 41 previously included papers identified in the study by Fekete et al.(5).

Details of the biomarkers analysed are given in Table 2 which include 49 recovery studies of n-3 PUFA biomarkers. In this study, as summarized in Table 3, Total plasma lipid DHA appears to be a good biomarker of DHA status, which reacts rapidly to supplementation and is sensitive to supplementation dose. It appears to be reliable in adults, mixed sex studies, and those with moderate baseline DHA status, but it is not clear for which other population subgroups its application can be reliable. Moreover, plasma phospholipid DHA appears to be a good biomarker of DHA status. It reacts rapidly to supplementation and is also sensitive to supplementation dose. This biomarker appears to respond appropriately in adults, males, females, those with low, moderate, or high baseline DHA status, those who used marine oil, seafood, or single cell oils, and in those whose dose amounts were ≤2500 mg/d of DHA. There were insufficient studies to assess the effectiveness of plasma phospholipid DHA in other population subgroups. With reference to Plasma phospholipid EPA, it appeared to be a good biomarker for EPA status in men and women and those who had low, moderate, and high EPA status.

Table 3. Primary analyses (pooled data on the longest duration and the highest supplementation dose) for each identified biomarker3

<table>
<thead>
<tr>
<th>Biomarker</th>
<th>No. of studies (no. of included participants)</th>
<th>Pooled effect size, WMD (95 % CI)2</th>
<th>I2</th>
<th>Appears effective as a biomarker?3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plasma DHA</td>
<td>6 (262)</td>
<td>1·13 (0·54, 1·71)</td>
<td>88·7</td>
<td>Yes</td>
</tr>
<tr>
<td>Plasma phospholipid DHA</td>
<td>24 (1023)</td>
<td>2·51 (1·97, 3·00)</td>
<td>95·0</td>
<td>Yes</td>
</tr>
<tr>
<td>Plasma phospholipid EPA</td>
<td>16 (759)</td>
<td>4·07 (2·90, 5·24)</td>
<td>99·0</td>
<td>Yes</td>
</tr>
<tr>
<td>Plasma triacylglycerol DHA</td>
<td>5 (116)</td>
<td>0·86 (0·08, 1·65)</td>
<td>92·1</td>
<td>Yes</td>
</tr>
<tr>
<td>Plasma cholesteryl ester DHA</td>
<td>5 (110)</td>
<td>0·42 (0·13, 0·71)</td>
<td>92·2</td>
<td>Yes</td>
</tr>
<tr>
<td>Plasma nonesterified DHA</td>
<td>3 (72)</td>
<td>1·35 (0·11, 2·59)</td>
<td>95·0</td>
<td>Yes</td>
</tr>
<tr>
<td>Erythrocyte DHA</td>
<td>12 (570)</td>
<td>2·43 (1·04, 3·91)</td>
<td>95·0</td>
<td>Yes</td>
</tr>
<tr>
<td>Erythrocyte phospholipid DHA</td>
<td>6 (229)</td>
<td>0·97 (0·50, 1·43)</td>
<td>72·3</td>
<td>Yes</td>
</tr>
<tr>
<td>Young erythrocyte ghosts DHA</td>
<td>1 (17)</td>
<td>1·00 (–4·07, 2·07)</td>
<td>N/A</td>
<td>Unclear</td>
</tr>
<tr>
<td>Old erythrocyte ghosts DHA</td>
<td>1 (17)</td>
<td>1·70 (0·32, 3·08)</td>
<td>N/A</td>
<td>Unclear</td>
</tr>
<tr>
<td>Platelet DHA</td>
<td>9 (251)</td>
<td>1·29 (0·92, 1·56)</td>
<td>81·9</td>
<td>Yes</td>
</tr>
<tr>
<td>Granulocyte DHA</td>
<td>1 (40)</td>
<td>0·60 (0·32, 0·88)</td>
<td>N/A</td>
<td>Unclear</td>
</tr>
<tr>
<td>Neutrophil DHA</td>
<td>1 (20)</td>
<td>2·80 (0·01, 5·59)</td>
<td>N/A</td>
<td>Unclear</td>
</tr>
<tr>
<td>Neutrophil phospholipid DHA</td>
<td>2 (28)</td>
<td>0·04 (–0·15, 0·23)</td>
<td>N/A</td>
<td>Unclear</td>
</tr>
<tr>
<td>PBMC DHA</td>
<td>2 (36)</td>
<td>0·06 (–0·36, 0·48)</td>
<td>0</td>
<td>Unclear</td>
</tr>
<tr>
<td>PBMC phospholipid DHA</td>
<td>3 (94)</td>
<td>0·70 (–0·66, 2·06)</td>
<td>93·9</td>
<td>Unclear</td>
</tr>
<tr>
<td>LDL DHA</td>
<td>2 (73)</td>
<td>0·60 (0·59, 0·61)</td>
<td>0</td>
<td>Unclear</td>
</tr>
<tr>
<td>HDL phospholipid DHA</td>
<td>1 (7)</td>
<td>0·80 (0·07, 1·53)</td>
<td>N/A</td>
<td>Unclear</td>
</tr>
</tbody>
</table>

Modified and updated from Fekete et al.(5).

1 WMD, weighted mean difference; DHA, docosahexaenoic acid; EPA, eicosapentaenoic acid; N/A, no available data; PBMC, peripheral blood mononuclear cell.

2 All studies are in %DHA of total fatty acids unless otherwise stated.

3 To claim that a biomarker was effective (reflected change in status) within a review, 3 conditions needed to be met: (1) statistical significance within a forest plot (95 % CI did not include 0 or P≤0·05); (2) ≥3 trials contributed data; and (3) between intervention and control arms in the studies contributing data there were ≥50 participants. To claim that a biomarker was ineffective, 4 conditions had to be met: (1) lack of statistical significance within a forest plot (95 % CI included 0 or P≥0·05); (2) ≥3 trials contributed data; (3) between intervention and control arms in the studies contributing data there were ≥50 participants; and (4) study results were approximately similar (heterogeneity levels were acceptable so that I2 < 50 %).

4 %EPA of total fatty acid.

5 μg/g protein.
or high baseline EPA, which reacts rapidly to supplementation and is sensitive to supplementation dose.

Plasma triacylglycerol DHA could be a good biomarker of DHA status, but there were insufficient studies to allow exploration of which population groups it may be most effective in. Plasma cholesterol ester-DHA appears to be a good biomarker of DHA status at lower-dose supplementation, but it is not clear within which population groups it is effective or whether it works well at higher doses of supplementation. Plasma nonesterified fatty acid DHA may be a good biomarker of DHA status, but there were insufficient studies to allow for the exploration of appropriateness of its use in different population groups and doses. Erythrocyte membrane total lipid DHA appears to be a good biomarker of DHA status, and the data suggest that there is a dose response. Although it seems to be an effective biomarker in infants for most doses, confirmation is not possible due to limited data. Erythrocyte membrane phospholipid DHA appears to be a good biomarker of DHA status and although it seems to be an effective biomarker in adults, children and adolescents, as well as in pregnant or lactating women and at most doses, this cannot be confirmed due to limited data. Total platelet lipid DHA could be a good biomarker of DHA status, but there was no apparent dose response. For Peripheral blood mononuclear cell phospholipid DHA, the response of peripheral blood mononuclear cell phospholipid DHA values to DHA supplementation did not appear to be a good biomarker of DHA status. For other potential biomarkers of DHA status, evidence was insufficient for young erythrocyte ghost DHA, old erythrocyte ghost DHA, granulocyte DHA, neutrophil DHA, neutrophil phospholipid DHA, peripheral blood mononuclear cell total lipid DHA, LDL DHA, and HDL phospholipid DHA.

Discussion

In a validation study, the reference method used should be as accurate as possible. A validation study is also called a relative validation/calibration study when one dietary method is compared to another dietary method, most often FFQ v. several days of food records. The limitations with this approach are the considerable individual day-to-day variation, which reduces the possibility of obtaining a true measure of usual intake with few recording days, as well as reporting bias since both self-administered dietary assessment questionnaires and dietary records are based on self-reporting. FFQs often overestimate intake of energy and nutrients, while food records often underreport energy and nutrient intakes.

As such, we thought it best to exclude those questionnaires where validation was made against another dietary measurement tool. An alternative to relative validations is the use of biomarkers, whose primary advantage is that these measurements are objective and the sources of errors for a biomarker and a dietary assessment method are independent. The n-3 PUFA are largely exogenic, meaning that there is no synthesis of n-3 PUFA in the body and that intake via diet and supplements are the major source, making the correlations with biomarkers easier. There are several choices of a biomarker for the measurement of LC n-3 PUFA, and those presented in this review were fatty acids in adipose tissue, erythrocytes and plasma. Adipose tissue fatty acids are generally considered the best source of assessing long-term fatty acid intake. Erythrocytes may be a useful marker as they can provide an indication of the previous 120-d intake of LC n-3 PUFA. Plasma fatty acids reflect intake of fatty acids over the past few days or more. Most of the included studies have presented the correlations, both crude and adjusted. The correlation coefficients obtained from the validation studies can reflect the capability of the method to rank individuals according to fatty acid intake.

Subcutaneous fat

Fatty acids estimated from six different FFQs, one weighed record and one recall were validated against subcutaneous fat, which the literature describes as the best reference method. The correlation coefficients observed in all the studies were in the range of 0·30–0·66 for ALA, EPA and DHA. In summary, none of the dietary methods validated against subcutaneous fat and presented here seem to be superior than the others in relation to ranking the dietary intake of n-3 PUFA. Two articles related to subcutaneous fat were found for this updated review, the correlation coefficient range for EPA was 0·15–0·33 and for DHA 0·18–0·42. This suggests a weaker correlation when compared to the previous correlation reported by Markman et al. which showed the highest correlation coefficient (0·66) amongst all the included studies.

Blood component composition

Dietary intake of n-3 PUFA estimated from eleven different FFQs, one diet history questionnaire and three weighed record studies was validated against fatty acids in serum, plasma or erythrocytes. Both fatty acids in plasma, erythrocytes and serum were found to be good biomarkers of LC n-3 PUFA. The correlation coefficients observed between the intake of fatty acids measured by most FFQs, the diet history questionnaire and the weighed records were at the same range (r 0·40–0·60). The best correlation was observed in the study by Kobayashi et al. comparing the dietary intake of fatty acids from weighed records with fatty acids in serum phospholipids (EPA, r 0·89). However, there was no clear tendency among the three studies comparing fatty acids from weighed records with fatty acids in blood. As such, it seems that weighed records were the best method to measure n-3 PUFA intake.

Most correlation coefficients from the studies comparing dietary intake with fatty acids in blood parameters were in the same range as the ones observed for fatty acids in adipose tissue (r 0·40–0·60). There were two studies with a lower correlation and one with a correlation higher than this range. For ALA most studies presented low correlations between dietary intake and blood parameters in both previous and updated versions of this review. In the present updated review, the correlation coefficient range for
Dietary methods and biomarkers of omega 3 fatty acids

S73

eychrocyte EPA was 0.23–0.38 and for erethrocyte DHA 0.19–
0.56 which suggests an acceptable and a reasonable good cor-
relation coefficient respectively(10,15). Regarding plasma phos-
pholipid EPA the correlation range was 0.21–0.38 and for
DHA 0.25–0.50(16,19,23), again showing an acceptable and
reasonably good correlation coefficient, respectively. It is
important to highlight that none of the current correlation
coefficients found in this updated review were higher than
those previously reported in the original article; however the
same levels were maintained. This implies that any additional
validation study will unlikely produce higher correlation
estimates between questionnaires and biomarkers.

The estimation of summarised crude and adjusted corre-
lations for all the validation studies of FFQs using biomarkers
as the reference method indicates that the FFQ gives ‘acceptable’
values for total n-3 PUFA, EPA and DHA. The summarised crude
and adjusted correlations for the two studies validating weighed
records against biomarkers indicate ‘acceptable’ estimates for
total n-3 PUFA, while the estimates obtained a higher ranking
of ‘good’ for EPA and DHA. As expected, the weighed records
seem to be superior to the FFQ in reference to estimating intakes
of EPA and DHA.

Biomarkers were more accurate than different dietary
methods to rank individuals. One limitation with food records
is that subjects are prone to underestimate their food intake
when they keep food records(24). The true food consumption
of n-3 FA most likely lies somewhere between the weighed
records and the FFQ. According to the systematic review,
none of the dietary assessment methods used to assess n-3
PUFA seem to be highly superior to another, with weighed
records being slightly better than FFQs. Most studies pre-
presented correlation coefficients ranging from 0.40 to 0.60.
This also confirmed the view that employing an FFQ
to assess n-3 PUFA requires that it be validated against reliable
and valid biomarkers, and that validation studies of dietary
methods for measuring intakes of n-3 FA could be improved.

Additionally, after analyzing the 18 different potential bio-
makers of LC n-3 PUFA status reported in Table 3, we
could argue that plasma phospholipid DHA, erethrocyte
DHA and platelet DHA were all effective biomarkers of
DHA status. With regard to other biomarkers (plasma DHA,
plasma triacylglycerol DHA, plasma cholesteryl ester
DHA, plasma nonesterified DHA, erethrocyte phospholipid
DHA, and plasma phospholipid EPA) we could not find any
additional evidence to support modifying or promoting
previously published statements from Fekete et al.(25).

Still and all, it is worth noting that the health benefits of
increasing LC n-3 PUFA dietary intake need to be evaluated
in RCTs investigating specific clinical outcomes. There are
some clear limitations found. First, the number of studies
reporting data on different potential biomarkers is limited.
This situation reduced our ability to explore which population
subgroups or in which types of intervention the biomarkers
are effective. Second, we were able to focus on the effect of
supplementing DHA only, whereas LC n-3 PUFA supplemen-
tation usually consists of a complex mixture of LC n-3
PUFAs that may interconvert with each other(17,27). Third, the
close-response curve of the incorporation of DHA (or any
other fatty acid) may differ between the distinct blood com-
ponent constituents(28,29); hence, it may be assumed, with
good reason, that the uniform time duration and dose cat-
egories may have differently influenced the evaluation of the
biomarkers.

Although several clinical studies have investigated the
response of various biomarkers to modified n-3 fatty acid
intake(26–35) and important theoretical considerations have
also been published(34,35,36), we still do not have enough
data available in the literature. Which biomarker might be sen-
sitive enough to detect changes of a given dose of LC n-3
PUFA supplementation in a given clinical condition or popu-
lation group? Further research is needed to characterize and
to understand the meaning of the different correlations
between intake estimates and biomarkers of LC n3 PUFA in
distinct population groups and environments.

Acknowledgements and disclosures

The preparatory meetings for this series of reviews on fat and
health were funded by Puleva Food. Neither Lluís Serra-Majem
nor Mariela Nissensohn, Nina C Øverby or Katalin Fekete have
conflicts of interest to disclose. Lluís Serra-Majem and Mariela
Nissensohn contributed to the design of the strategy for the lit-
erature search, double screened and selected the retrieved
documents. Authors acknowledge Alexandra Santos Johnson
and Melània Morales Sanchez from the Department of Clinical
Sciences of the University of Las Palmas de Gran Canaria
(ULPGC) the support provided to select and retrieve the docu-
ments, as well as Francisco Fumagallo from the Library of the
School of Health Sciences at the ULPGC. Nina C Øverby and
Katalin Fekete provided previous literature searches and analy-
ysis. Lluís Serra-Majem prepared the main outline of the manu-
script and all authors contributed to the preparation of the manu-
script.

References

dation of a long-chain omega-3 polyunsaturated fatty acid
food frequency questionnaire. Lipids 41, 845–850.
produce the evidence-based EURRECA toolkit to support
nutrition and food policy. Eur J Nutr 47, Suppl. 1, 2–16.
assessment methods on n-3 fatty acid intake: a systematic
(2009) Evaluating the quality of dietary intake validation
assessment of n-3 long-chain polyunsaturated fatty acid
status in humans: a systematic review. Am J Clin Nutr 89,
2070S–2084S.
6. Sublette ME, Segal-Isaacsen CJ, Cooper TB, et al. (2011) Vali-
dation of a food frequency questionnaire to assess intake of
n-3 polyunsaturated fatty acids in subjects with and without
measures of fatty acid intake by subcutaneous fat aspirate,
food frequency questionnaire, and diet records in a free-

ation of a food frequency questionnaire with weighed
records, fatty acids, and alpha-tocopherol in adipose tissue

of estimated dietary eicosapentaenoic acid and docosahexae-
noic acid intakes determined by interviewer-administered
food frequency questionnaire among older adults with
mild-to-moderate cognitive impairment or dementia. Am J
Epidemiol 170, 95–103.

between biomarkers of omega-3 fatty acid consumption and
questionnaire data in African American and Caucasian
United States males with and without prostate carcinoma.
Cancer Epidemiol Biomarkers Prev 5, 115–119.

phospholipid fatty acid composition as a biomarker of habit-
ual dietary fat intake in an ethnically diverse cohort. Nutr
Metab Cardiovasc Dis 17, 415–426.

between biomarkers of omega-3 fatty acid consumption and
questionnaire data in a free-living population of US men. Am J
Epidemiol 135, 418–427.

on of adipose tissue fatty acids with dietary fatty acids as
measured by 24-hour recall and food frequency question-
naire in Black and White Adventists: the Adventist Health

plasma and erythrocyte fatty acid content as biomarkers of

cancer risk and consumption of fish oils: a dietary bio-
marker-based case-control study. Br J Cancer 81, 1238–1242.

composition as an indicator of habitual dietary fat intake in
middle-aged adults. The Atherosclerosis Risk in Commu-

based validation of a self administered diet history question-
naire for Japanese subjects. J Nutr Sci Vitaminol (Tokyo) 46,

markers of habitual fish intake in adipose tissue. Am J Clin

measurement of serum phospholipid fatty acid as a bio-
marker of specific fatty acid intake in middle-aged Japanese

centrations of (n-3) highly unsaturated fatty acids are good
biomarkers of relative dietary fatty acid intakes: a cross-

fatty acid composition and habitual intake of marine foods
registered by a semi-quantitative food frequency question-

n-3 polynsaturated fatty acids as biomarkers of their dietary
intakes: a cross-sectional study within a cohort of
middle-aged French men and women. Eur J Clin Nutr 62,
1155–1161.

of weighed dietary records in studies of diet and health. BMJ
300, 708–712.

tion of energy intake data using fundamental principles of
energy physiology: 2. Evaluating the results of published

133, Suppl. 3, 925S–932S.

conversion, and dose response of n-3 fatty acids in
humans. Am J Clin Nutr 83, 147S–1476S.

the fatty acid composition of erythrocyte membranes after
moderate intake of n-3 polyunsaturated fatty acids: study

inhibition of platelet aggregation after n2 fatty acid ethyl
ester ingestion by healthy volunteers. Am J Clin Nutr 61,
607–613.

30. Silverman DI, Ware JA, Sacks FM, et al. (1991) Comparison of
the absorption and effect on platelet function of a single
dose of n-3 fatty acids given as fish or fish oil. Am J Clin

the n-3 eicosapentaenoic and docosahexaenoic acids as
ethyl esters and triglycerides by humans. Am J Clin Nutr 53,
1185–1190.

(1999) Incorporation and washout of orally administered
n-3 fatty acid ethyl esters in different plasma lipid fractions.
Br J Nutr 82, 481–488.

33. Cao J, Schwichtenberg KA, Hanson NQ, et al. (2006) Incor-
poration and clearance of omega-3 fatty acids in erythrocyte
membranes and plasma phospholipids. Clin Chem 52,
2265–2272.

acids in cardiac biopsies from heart transplantation patients:
correlation with erythrocytes and response to supplemen-

35. Fokkema MR, Smit EN, Martini IA, et al. (2002) Assessment of
essential fatty acid and omega3-fatty acid status by
measurement of erythrocyte 20:5 omega 9 (Mead acid),
3. Prostaglandins Leukot Essent Fatty Acids 67,
345–356.

omega-3 fatty acid ratio and risk for coronary artery disease.
Am J Cardiol 98, 191–261.

dation during n-3 fatty acid and vitamin E supplementation

seed oil and fish-oil capsule consumption alters human red
blood cell n-3 fatty acid composition: a multiple-dosing trial
comparing 2 sources of n-3 fatty acid. Am J Clin Nutr 88,
801–809.

acid intakes determined by interviewer-administered
food frequency questionnaire among older adults with
mild-to-moderate cognitive impairment or dementia. Am J
Epidemiol 135, 418–427.

