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Abstract. We give a geometric proof of a formula, due to Segal and Wilson, which describes

the order of vanishing of the Riemann theta function in the direction which corresponds to the
direction of the tangent space of a Riemann surface at a marked point. While this formula
appears in the work of Segal and Wilson as a by-product of some nontrivial constructions

from the theory of integrable systems (loop groups, infinite-dimensional Grassmannians,
tau functions, Schur polynomials, etc.) our proof only uses the classical theory of linear sys-
tems on Riemann surfaces.
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1. Introduction

The fundamental paper by Segal and Wilson [SW] on soliton equations leads to an

explicit formula for computing the vanishing of the Riemann theta function in a

direction which is natural from the geometric point of view. In order to present this

formula, let C be a compact Riemann surface (of genus g > 1), let p 2 C and let Y
denote the theta divisor Y � Picg�1ðCÞ. Also let W denote Riemann’s theta func-

tion, for which ðWÞ ¼ Y. For a point L 2 Y, consider the embedding C !

Picg�1ðCÞ: q 7!Lðq � pÞ. The natural direction alluded to above is the tangent space

Xp to this embedded curve at L. Following [SW] the vanishing of W at L in the direc-
tion of Xp, denoted ordLðW;XpÞ is obtained by considering the infinite subset of Z,

defined by

SL ¼ fs 2 Z j h0ðLððs þ 1ÞpÞÞ ¼ h0ðLðspÞÞ þ 1g:

In fact, the sections of L over C n fpg define an infinite-dimensional planeW, which is

an element of the Sato Grassmannian and the vanishing of the tau function in the

KP-direction is, according to [SW, Prop. 8.6], given by the codimension of W,
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which is explicitly given by the finite sum
P

i5 0 i � si, upon writing SL ¼

fs0 < s1 < s2 < � � �g. The tau function coincides, up to an exponential factor,

with the Riemann theta function of C ([SW, Th. 9.11]) and the tangent direction

Xp coincides with the KP-direction (see [S, Lemma 5 and Appendix 0]). Therefore,

the order of vanishing is given by ordLðW;XpÞ ¼
P

i5 0 i � si:

The purpose of this paper is to give an algebraic-geometric proof of this result.

Our proof uses (only) the classical theory of linear systems on Riemann surfaces

and it highlights the geometric meaning of the order of vanishing. As is pointed

out in [SW, footnote p. 51] an independent (analytical) proof of this formula has also

been given by John Fay (see [F]), by using the theory of theta functions.

The first step of our approach consists of an interpretation of the order of vanish-

ing as the intersection multiplicity of the theta divisor with a copy of C, properly

embedded (at least around L) in Picg�1ðCÞ. If we pull back the theta divisor using

this embedding we find a divisor R on C which is the sum of the ramification divisors

of the maps jk
L: C ! Grasskþ1ðH

0ðLÞ�Þ, which are the natural generalizations of the
morphisms jL: C ! PðH0ðLÞ�Þ defined by the linear system jLj (assumed here base
point free). It follows that the order of vanishing is given by the multiplicity of p in R,

leading to ordLðW;XpÞ ¼
Pn

i¼1 mi � i, where fm1 < � � � < mng is the gap sequence

GpðLðnpÞÞ of LðnpÞ at p. This formula is independent of n, which is assumed suffi-

ciently large (e.g. n ¼ g will do). Noticing that for n ¼ g one has si ¼ g � mg�i (for

i ¼ 0; . . . ; g � 1) from which Formula (1) follows at once.

Notice that the Segal–Wilson formula for the vanishing of the tau function may

also be applied in the case of tau functions that come from singular curves. It would

be interesting to adapt our geometric arguments to this case, leading to a formula for

the vanishing of the theta functions for singular curves, as proposed in [SW, Remark

6.13].

The structure of this paper is as follows. In Section 2 we fix the notation and we

recall the notions of gap numbers for arbitrary line bundles. In Section 3 we translate

the order of vanishing of the theta function in terms of intersection theory and we

show that this order is given as an inflectionary weight. This is used in Section 5

to obtain an explicit formula, which we show to be equivalent to the formula by

Segal and Wilson.

2. Preliminaries

In this section we introduce the notation and collect some results on curve theory.

Throughout the whole paper C denotes a compact Riemann surface of genus g

and p 2 C a marked point.

For a divisor D on C we denote by OCðDÞ the corresponding line bundle and for a

line bundle L on C its linear system is denoted by jLj. We use the standard abbre-
viations h0ðLÞ for dimH0ðC;LÞ and LðDÞ for L�OCðDÞ, where L is any line bundle

and D is any divisor on C. We will use the Riemann–Roch theorem in the form
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h0ðLÞ ¼ h0ðoC � L�1
Þ � g þ degðLÞ þ 1;

where L is any line bundle on C and oC is the canonical bundle of C.

We now recall the notions of gap numbers and inflectionary weights. For proofs

and details we refer to [Mi, Sect. VII.4] and to [ACGH, Ch. 1 Ex. C].

Let L be a line bundle on C of positive degree and let q 2 C. An integer m5 1 is

called a gap number for L at q if

h0ðLð�mqÞÞ ¼ h0ðLð�ðm � 1ÞqÞÞ � 1;

and the set GqðLÞ of gap numbers for L at q is called the gap sequence of L at q; its

cardinality is r ¼ h0ðLÞ and no gap number is larger than degLþ 1. Writing

GqðLÞ ¼ f14m1 < m2 < � � � < mr 4 degLþ 1g;

we have that m1 > 1 if and only if q is a base point of L and that mr ¼ degLþ 1 if

and only if L ¼ OCðdegL � qÞ. For a general point q 2 C the gap sequence of L at q is
f1; 2; . . . ; h0ðLÞg; a point q for which the gap sequence of L at q is not of this form is

called an inflection point for L. Notice that q is an inflection point if and only if

h0ðLð�rqÞÞ 6¼ 0, where r ¼ h0ðLÞ.
If the linear system jLj is base point free the inflection points have the following

geometric interpretation. Consider the morphism jL: C ! PðH0ðLÞ�Þ defined by

the linear system jLj. For a generic q 2 C there is a unique k-dimensional osculating

plane to jLðCÞ at jLðqÞ, yielding a well-defined morphism

jk
L: C ! Grasskþ1ðH

0ðLÞ�Þ; ð1Þ

called the k-th associated map. This way one arrives at h0ðLÞ � 1 associated maps

ji�1
L ; i ¼ 1; . . . ; h0ðLÞ � 1; ðj0L ¼ jLÞ. In these terms a point q is an inflection point

if and only if q is a ramification point of one of the maps jk
L. We denote the rami-

fication divisor of jk
L by RkðLÞ and we define RðLÞ ¼

Ph0ðLÞ�1
k¼1 Rk�1ðLÞ. The

multiplicity wqðLÞ of q in RðLÞ is called the inflectionary weight of q with respect

to L and is given by

wqðLÞ ¼
Xh0ðLÞ
i¼1

ðmi � iÞ: ð2Þ

When L is not base point free we define the inflectionary weights wqðLÞ by (2) and the
ramification divisor RðLÞ by RðLÞ ¼

P
q wqðLÞq. This divisor admits an alternative

description as the zero divisor of W ¼ WðzÞðdzÞ
nðn�1Þ
2 where z is a local coordinate,

n ¼ h0ðLÞ and WðzÞ ¼ Wð f1; . . . ; fnÞ is the Wronskian with respect to any basis

f1; . . . ; fn of H0ðLÞ. In particular W is a holomorphic section of the line bundle

Ln
� o

nðn�1Þ
2

C .

Taking L ¼ oC one recovers the well-known notion of the gap sequence of q 2 C,

denoted by Gq, and the above definition of the inflectionary points and weights redu-

ces, by a simple application of Riemann–Roch, to the standard definition of

Weierstraß points and their weights.
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Finally let us fix our conventions about the Jacobian JðCÞ of C. By definiton

JðCÞ ¼ H0ðoCÞ
�=H1ðC;ZÞ, so that the vector space H0ðoCÞ

� is canonically identified

with the tangent space of JðCÞ at every point. By the Abel–Jacobi theorem there is a

canonical isomorphism JðCÞ ’ Pic0ðCÞ. Moreover every line bundle L on C of degree

g � 1 induces an isomorphism JðCÞ ’ Pic0ðCÞ ! Picg�1ðCÞ; P 7!L� P. For our
purposes it is convenient to work with Picg�1ðCÞ rather than Pic0ðCÞ. So in the sequel

we identify JðCÞ with Picg�1ðCÞ without further notice; the underlying isomorphism

(respectively line bundle defining the isomorphism) will always be evident from the

context. The main advantage working with JðCÞ ¼ Picg�1ðCÞ is, that we have a cano-

nical theta divisor Y ¼ fL 2 JðCÞ j h0ðLÞ > 0g. By Riemann–Roch, Y is invariant

with respect to the natural involution

i: JðCÞ ! JðCÞ; iðLÞ ¼ oC � L�1: ð3Þ

More precisely we have h0ðLÞ ¼ h0ðiðLÞÞ for any L 2 Y.
We denote by W the Riemann theta function on H0ðoCÞ

� for which p�Y is the zero

divisor of W, where p is the natural projection H0ðoCÞ
�
! JðCÞ.

For any L 2 JðCÞ we have an embedding aL;p of C into JðCÞ, given by

aL;pðqÞ ¼ Lðq � pÞ. Clearly for different L and p the maps aL;p only differ by a trans-
lation on JðCÞ.

3. Geometric Description of the Order of Vanishing

Let L 2 JðCÞ and let X be a one-dimensional subvector space of the tangent space

H0ðoCÞ
� at L. Choose any point l in the fiber of p over L and consider the affine line

l þ X which passes through l and which has direction X. The order of vanishing of

WjlþX at the point l is independent of the choice of l 2 p�1ðLÞ. So define the order

of vanishing of W at L in the direction of X, denoted ordLðW;XÞ, as ordlWjlþX. If Y does

not contain the straight line �XX ¼ pðl þ XÞ then there exists a small neighborhood U

of l in l þ X such that pðUÞ \Y ¼ fLg and ordLðW;XÞ ¼ ðpðUÞ �YÞL, the intersection

multiplicity of Y with pðUÞ at L.
Let Xp denote the tangent space to aL;pðCÞ at L. Notice that, as a subvector space

of H0ðoCÞ
�, Xp does not depend on L but only on the point p 2 C. We wish to com-

pute ordLðW;XpÞ for an arbitrary L 2 Y; if L =2Y then this order is trivially zero. It

can be shown? that for all C; L and p that �XXp is not contained in Y, which is clearly
true as soon as C; L or p is generic. For computing ordLðW;XpÞ the idea is to replace

pðUÞ by a complete curve which, around L, looks like pðUÞ. Notice that if L 2 Y we

cannot use aL;pðCÞ because the latter does not necessarily intersect Y properly. Con-

sider for any integer n 6¼ 0 the morphism

aL;p;n: C ! JðCÞ; aL;p;nðqÞ ¼ Lðnq � npÞ: ð4Þ

?This follows from [SW, Prop. 8.6 and Th. 9.11] but a geometric proof of this (geometric!) property is

unknown.
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Notice that aL;p;nðpÞ ¼ L and that for a small neighborhood V of p in C the tangent

space to aL;p;nðV Þ at L is precisely Xp.

LEMMA 3.1. For all L 2 JðCÞ and n > 0 we have

ð1Þ aL;p;nðCÞ and Y intersect properly if and only if h0ðLð�npÞÞ ¼ 0;

ð2Þ aL;p;�nðCÞ and Y intersect properly if and only if h0ðiðLÞð�npÞÞ ¼ 0.

Proof. We prove (1), the proof of (2) is similar. Recall that an irreducible curve

intersects a divisor properly precisely when the curve is not contained in the support

of the divisor. So aL;p;nðCÞ and Y do not intersect properly if and only if

h0ðLðnq � npÞÞ > 0 for all q 2 C. We claim that this is equivalent to h0ðLð�npÞÞ > 0.

Indeed, by Riemann–Roch

h0ðLðnq � npÞÞ ¼ h0ðiðLÞðnp � nqÞÞ;

and

h0ðiðLÞðnpÞÞ ¼ h0ðLð�npÞÞ þ n:

So h0ðLðnp � nqÞÞ > 0 for all q 2 C if and only if h0ðiðLÞðnpÞÞ > n, leading to our

claim. &

In particular, when jnj5 g then

ordLðW;XpÞ ¼ ðY � aL;p;nðVÞÞL;

where V is a small neighborhood of p in C. Pulling this intersection back to C we get

that for any jnj5 g

ordLðW;XpÞ ¼ multpða�L;p;nYÞ:

This multiplicity will be computed in the next section.

4. The Divisor a�
L;p;�nY

The aim of this section is to prove the following

THEOREM 4.1. For all L 2 JðCÞ; p 2 C, and n > 0 with h0ðiðLÞð�npÞÞ ¼ 0;

a�L;p;�nY ¼ RðLðnpÞÞ:

For the proof we need the following proposition:

PROPOSITION 4.2. For all L 2 JðCÞ; p 2 C and n > 0

a�L;p;�nOJðCÞðYÞ ¼ ðLðnpÞÞn � o
nðn�1Þ
2

C :
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Proof. Step I: The case n ¼ 1 follows exactly from [LB] Lemma 11.3.4 with

x ¼ 0; k ¼ L, and c ¼ p.

Step II: For n5 1 consider the difference map

dn
L: C2n �! JðCÞ; dn

Lðp1; q1; . . . ; pn; qnÞ ¼ L
X

i
pi � qi

� �

and denote by pn
i : C2n �!C the ith projection. We show by induction on n that for

all n5 1 and all L 2 JðCÞ

dn�
L OJðCÞðYÞ ¼

On

i¼1

pn
2i�1

�ðoC � L�1
Þ � pn

2i
�L

� �
�

�OC2n

X
14 i<j4 2n

ð�1Þiþjþ1
ðpn

i ; p
n
j Þ

�D

 !
; ð5Þ

where D denotes the diagonal in C2.

For n ¼ 1 we have to show that

d1L
�OJðCÞðYÞ ¼ p11

�
ðoC � L�1

Þ � p12
�L�OC2ðDÞ

for all L 2 Picg�1ðCÞ. According to the Seesaw Principle (see [LB] A.9) it suffices to

show that the restrictions to C � fqg and fqg � C of both sides of the equation coin-

cide for all q 2 C. But since the composition of d1L with the natural embedding

C ’ C � fqg �!C � C is the map i � aoC�L�1;q;�1 and i�Y ¼ Y we have, using Step I,

d1L
�OJðCÞðYÞjC � fqg ¼ a�oC�L�1;q;�1

OJðCÞðYÞ ¼ oC � L�1
ðqÞ

¼ p11
�
ðoC � L�1

Þ � p12
�L�OC2 ðDÞjC � fqg;

and similarly for the restriction to fqg � C.

Now suppose n > 1 and Equation (5) holds for all n0 < n. Restricting both sides

of Equation (5) to C2n�2 � fp; qg and fp1; q1; . . . ; pn�1; qn�1g � C2 for all p; q;

p1; q1; . . . ; pn�1; qn�1 2 C, and using the induction hypothesis for n0 ¼ n � 1 and

n0 ¼ 1 respectively, the Seesaw Principle implies that also Equation (5) holds.

Step III: Consider the embedding |p: C�!C2n; |pðqÞ ¼ ð p; q; . . . ; p; qÞ and

notice that dn
L � |p ¼ aL;p;�n, so that

a�L;p;�nOJðCÞðYÞ ¼ |�pd
n
L
�OJðCÞðYÞ:

It follows that a�L;p;�nOJðCÞðYÞ can be computed from (5). Since

ðpn
i ; p

n
j Þ � |pðqÞ ¼

ð p; pÞ; i; j odd,
ðq; qÞ; i; j even,
ð p; qÞ or ðq; pÞ; otherwise,

8<
:
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we have that

|�p ðp
n
i ; p

n
j Þ

�OC2 ðDÞ ¼
OC; i, j odd,
o�1

C ; i, j even,
OCð pÞ otherwise.

8<
:

It follows that the pull back by |p of the right hand side of (5) equals Ln
ðn2pÞ � o

nðn�1Þ
2

C .

This completes the proof. &

Proof of Theorem 4.1. By the choice of n we have h0ðLðnpÞÞ ¼ n and the curve

aL;p;�nðCÞ intersects the divisor Y properly. The line bundle ðLðnpÞÞn � o
nðn�1Þ
2

C has two

distinguished divisors, namely a�L;p;�nY (according to Proposition 4.2) and RðLðnpÞÞ

(according to Section 2). Moreover, these divisors have the same support, since by

definition q 2 a�L;p;�nY if and only if aL;p;�nðqÞ 2 Y, i.e., h0ðLðnp � nqÞÞ > 0, and this

is the case if and only if q is an inflection point for the line bundle LðnpÞ. For generic

L and p the line bundle LðnpÞ admits only normal inflection points, so

RðLðnpÞÞ ¼
Pn2g

i¼1 qi with pairwise different points qi, and hence RðLðnpÞÞ ¼ a�L;p;�nY.
This equality extends to all L and p for which a�L;p;�nY exists and by Lemma 3.1 this

is exactly the set fðL; pÞ 2 JðCÞ � C j h0ðiðLÞð�npÞÞ ¼ 0g. &

Remark 1. Similarly one can show that if aL;p;nðCÞ intersects Y properly, then

a�L;p;nY ¼ RðiðLÞðnpÞÞ.

5. Formula(s) for the Order of Vanishing

In this section we prove the following theorem:

THEOREM 5.1. For every L 2 Y

ordLðW;XpÞ ¼
X
m

m � g þ h0ðLððg � mÞpÞÞ; ð6Þ

where the sum runs over the g integers m satisfying h0ðLððg � mÞpÞÞ ¼

h0ðLððg � m þ 1ÞpÞÞ � 1.

We will obtain it as a direct consequence of the following proposition:

PROPOSITION 5.2. With n chosen such that aL;p;�nðCÞ intersects Y properly ðe.g.,

n ¼ gÞ, the order of vanishing of W at L in the direction Xp is the inflectionary weight of

p with respect to LðnpÞ. Therefore,

ordLðW;XpÞ ¼
Xn

i¼1

mi � i:

where fm1 < � � � < mng is the gap sequence GpðLðnpÞÞ of LðnpÞ at p.
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Proof. According to Section 3 and Theorem 4.1 we have that

ordLðW;XpÞ ¼ multpða�L;p;�nYÞ ¼ wpðLðnpÞÞ ¼
Xn

i¼1

mi � i: &

Proof of Theorem 5.1. By definition the sum in Equation (6) runs over the set

GpðLðgpÞÞ ¼ fm1 < � � � < mgg of gap numbers of LðgpÞ at p. An immediate compu-

tation shows that h0ðLððg � miÞpÞÞ ¼ g � i for i ¼ 1; . . . ; g. So the assertion follows

from Proposition 5.2 with n ¼ g. &

We now relate Theorem 5.1 to the Formula (1), given by Segal and Wilson. Recall

from the introduction the infinite set

SL ¼ fs 2 Z j h0ðLððs þ 1ÞpÞÞ ¼ h0ðLðspÞÞ þ 1g:

PROPOSITION 5.3. Denote SL ¼ fs0 < s1 < s2 < � � �g. Then

ordLðW;XpÞ ¼
X
i5 0

i � si:

Proof. Note first that s05 � degL� 1 ¼ �g. For �g4 s4 g � 1 we have that

s 2 SL if and only if g � s 2 GpðLðgpÞÞ ¼ fm1 < � � � < mgg, so that si ¼ g � mg�i for

i ¼ 0; . . . ; g � 1. On the other hand n 2 SL for any n5 g so that sn ¼ n for any n5 g.

Summing up we find

X
i5 0

i � si ¼
Xg�1
i¼0

i � g þ mg�i ¼
Xg

i¼1

mi � i:

Hence Formula (1) follows from Proposition 5.2. &
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