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Abstract

The Archimedean components of triangular norms (which turn the closed unit interval into an abelian,
totally ordered semigroup with neutral element 1) are studied, in particular their extension to triangular
norms, and some construction methods for Archimedean components are given. The triangular norms
which are uniquely determined by their Archimedean components are characterized. Using ordinal sums
and additive generators, new types of left-continuous triangular norms are constructed.
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1. Introduction

Equipped with a triangular norm as binary operation, the unit interval is an abelian,
totally ordered semigroup having 1 as neutral element. Triangular norms were intro-
duced by Schweizer and Sklar [30] in the framework of probabilistic metric spaces
(see [12, 31]), and they were originally used to carry over the triangle inequality from
classical metric spaces to this more general setting, following some ideas outlined by
Menger [24].

Although no representation of the class of all t-norms is known so far, a well-known
fact is that continuous t-norms are just ordinal sums in the sense of Clifford [4] of
continuous Archimedean t-norms [23, 31]. However, Archimedean components are
not yet fully understood in the case of general (not necessarily continuous) t-norms.
The aim of this paper is to contribute to this understanding.
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240 Erich Peter Klement, Radko Mesiar and Endre Pap [2]

Archimedean components of triangular norms are convex subsemigroups of the
unit interval. The relationship between t-norms and their Archimedean components
is studied, in particular, the conditions under which a t-norm is uniquely determined
by its Archimedean components. This naturally leads to the construction of t-norms
from Archimedean components and, subsequently, of Archimedean components them-
selves.

We characterize the class of triangular norms which are uniquely determined by
their Archimedean components (Theorem 4.4). In general, we give explicit formulae
for the strongest t-norm having a given system of Archimedean components, and
(under some additional assumptions) for the weakest t-norm which can be written as
an ordinal sum, as well as for the weakest t-norm having among their Archimedean
components the given ones. A general construction of t-norms from Archimedean
components is given, and several construction methods for non-trivial Archimedean
components are presented. In particular, the construction suggested in Proposition 5.3
always yields left-continuous Archimedean components generated by continuous,
non-increasing additive generators which, in combination with Theorem 2.5, gives
rise to a rich class of left-continuous t-norms.

The problems studied here add new insights and construction methods for general
t-norms. This contributes to several fields of applications where the need for a
deeper understanding of (left-continuous) t-norms has significantly increased over
the last years. In many-valued logics based on residuated lattices [11, 13, 18, 34]
the conjunction is evaluated by lower semicontinuous functions, which are just left-
continuous t-norms if the set of truth values equals [0, 1]. Similar is the situation in the
field of probabilistic metric spaces, in the general theory of non-additive measures and
integrals [21, 29], in chaos theory and dynamical systems [32], and in the modelling
of preference structures [8] and of cooperative games [2].

After presenting the most important facts about triangular norms and ordinal sums
we introduce and discuss in Section 3 Archimedean classes and components. Section 4
deals with extensions of Archimedean components to triangular norms, paying special
attention to uniqueness of extensions. Finally we present some construction methods
for Archimedean components.

2. Triangular norms and ordinal sums

A triangular norm (t-norm for short) T is a binary operation on the closed unit
interval [0, 1] such that ([0, 1], T) is an abelian semigroup with neutral element 1
which is compatible with the natural order < on [0, 1]. Basic examples of t-norms
are the minimum 7M, the product TP, the Lukasiewicz t-norm TL given by Th(x, v) =
max(x + y — 1, 0), and the drastic product TD with TD(1, x) — TD(x, 1) = x, and
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[3] Archimedean components of triangular norms 241

TD(x, y) = 0 otherwise. Clearly, for each t-norm T we have TD < T < 7^. For more
details on triangular norms we refer to [18].

Several specific notions, properties and constructions from semigroup theory were
studied for t-norms, such as the Archimedean property, the cancellation law, nilpotent
elements, zero divisors and ordinal sums [18, 31]. We only recall that a t-norm T is
Archimedean if for each (x, y) e]0, 1[2 there is an n e N with x^ < y, where x{?]

is defined inductively by 4 " = * and 4" + 1 ) = T{x("\ x). We may write xM for xf
if T is clear from context.

Continuous t-norms turn [0, 1] into a topological semigroup [3] (more precisely, into
an /-semigroup [7,26, 28]). We have the following representations [18, 23, 31], using
the pseudo-inverse f("]) : [0, oo] —• [0, 1] of a non-constant non-increasing function
t: [0, 1] -> [0, oo] which is given by

?<-'>(» = SUp{x 6 [0, 1] | t{x) > u]

(using the convention sup 0 = inf [0, 1] = 0). Note that in the case of a continuous,
strictly decreasing function t satisfying t (1) = 0 we have

[0 if « > r(0).

THEOREM 2.1. Afunction T : [0, I]2 —¥• [0, 1] is a continuous Archimedean t-norm
if and only if there is a continuous, strictly decreasing function t : [0, 1] —> [0, oo]
with r(l) = 0 such that

(1) T(x,y) = t(-l)(t(x) + t(y)).

In general, given a (not necessarily continuous) t-norm 7\ each strictly decreasing
function t : [0, 1] -> [0, oo] which is right-continuous in 0, satisfies f (1) = 0 and,
for all (x,y) e [0, I]2, t(x) + t(y) e Ran(f) U [t(0), oo] such that (1) holds, is
called an additive generator of T, and it is uniquely determined by T up to a positive
multiplicative constant. Thus, Theorem 2.1 states that continuous Archimedean t-
norms are characterized by having continuous additive generators. Note that each
t-norm possessing an additive generator is necessarily Archimedean.

THEOREM 2.2. A function T : [0, I]2 -*• [0, 1] is a continuous t-norm if and
only if there exist a family (Ta)aeA of continuous Archimedean t-norms and a family
(]aa, ba[)a€A of non-empty, pairwise disjoint open subintervals o/[0, 1] such that T
equals the ordinal sum ({aa, ba, Ta))aeA, that is,

(2) T(x,y) =
(ba - a.) Ta ( f — — , j — ^ ) if (x,y)e [aa, ba[

2;
b /— aa ba — aa

min(;c,y) otherwise.
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Let us now recall some well-known facts about Archimedean t-norms. Each
Archimedean t-norm satisfies T(x, x) < x for all x e]0, 1[. The converse is not true,
in general. See, for example, [31, page 60] or Example 1 below. However, if a right-
continuous t-norm T satisfies T(x, x) < x for all x e]0, 1[ then it is Archimedean.

The continuous Archimedean t-norms without zero divisors are called strict, and
each of them is isomorphic to the product t-norm TP. Each strict t-norm satisfies the
cancellation law on ]0, I]2, and each of its additive generators t is unbounded, that is,
satisfies f(0) = oo.

The non-strict continuous Archimedean t-norms are called nilpotent, and each of
them is isomorphic to the Lukasiewicz t-norm TL. Each nilpotent t-norm T satisfies
the cancellation law on its positive domain T~x (]0, 1]), each of its additive generators t
is bounded, that is, satisfies t(0) < oo, and each x e]0, 1[ is both a zero divisor and a
nilpotent element of T.

As an immediate consequence of these facts, a t-norm T is continuous if and
only if it is isomorphic to some ordinal sum of t-norms ((aa, ba, Ta))a€A where each
summand Ta equals either TP or TL.

Although the structure of continuous t-norms as ordinal sums of continuous Archi-
medean t-norms has been known for several decades, a deeper study of general (not
necessarily continuous) t-norms from the semigroup theory point of view only recently
gained new momentum. Using the unique infinite dyadic representation of numbers
x = Y1T=\ 1/2*" in ]0, 1], where (xn)neN is a strictly increasing sequence of positive
integers, the following examples appear in [18]:

EXAMPLE 1. The functions TUT2: [0, I]2 - • [0, 1] defined by

r,(,,,)=|I:»'1/2""+'- "O-fie
\min(x,y) otherwise,

T , r , I]2;
[0 otherwise,

are strictly monotone t-norms (that is, they satisfy the cancellation law on ]0, I]2) which
are discontinuous at each point (x, y) e]0, I]2 having at least one coordinate with a
finite dyadic representation. We have T\(x,x) < x and T2(x, x) < x, respectively, for
all* e]0, 1[, and T2 is left-continuous. However T\ is Archimedean while T2 is not.

Also the exact relationship between general t-norms and ordinal sums of semigroups
was clarified recently. Some special semigroups introduced as t-subnorms in [16] and
as tosabs in [20] proved to be useful in this context.

DEFINITION 2.3. Let / be a non-empty subinterval of the closed unit interval

[0, 1].
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(i) A totally ordered abelian semigroup (/, *) where * is bounded from above by
the minimum will be called a tosab.

(ii) A tosab ([0, 1], *) is called a t-subnorm.

In [20, Proposition 2.3] it was shown that the only way to obtain a t-norm as an
ordinal sum of semigroup operations is to construct certain ordinal sums of tosabs.

PROPOSITION 2.4. Let ([0, 1], *) be the ordinal sum of a family of semigroups
((Xa,*a))aeA,thatis, {Xa \a € A} is a partition of[0, 1] and for all (x, y) e [0, I]2

we have

I x*ay if(x,y)eXl;
min(x,y) otherwise.

Then the operation * is a t-norm if and only if each (Xa, *a) is a tosab, if the order on
A is compatible with the usual order on [0, 1], and if there is anoio € A such that 1 is
the neutral element of*ao.

In [16] ordinal sums of t-subnorms yielding t-norms were studied, and in [20,
Theorem 3.1] it was shown that this construction is the most general way to obtain
t-norms as ordinal sums of semigroups.

THEOREM 2.5. Let Tbe a t-norm. Then ([0, 1], T) is an ordinal sum of semigroups
if and only if T is an ordinal sum oft-subnorms, that is, there exist a family (*a)aeA of
t-subnorms and a family (]aa, ba[)a€A of pairwise disjoint open subintervals of[0, 1]
such that, whenever bao = 1 for some «o € A, then *ao is a t-norm, and whenever
baa

 = afiofor some <XQ, po 6 A then either *ao is a t-norm or *^ has no zero divisors,
and such that

• ) if (xy) e]ab]2;aa + (ba-aa)l- - • „ - - ) if (x,y) e]aa,ba];
T(x,y)=- \ba - aa ba — aaj

mm(x,y) otherwise.

3. Archimedean classes and components

When investigating the structure of t-norms, their Archimedean subsemigroups
play an important role (compare [9]).

DEFINITION 3.1. Let T be a t-norm. Two elements x, y e [0, 1] are called Archi-
medean equivalent if there is an n e N such that xin) < y < x or y(n) < x < y. For
eachx e [0, 1], the equivalence class Ix containing* is called a T-Archimedean class
of T or Archimedean class if T is either irrelevant or clear from context.
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Clearly, as noted in [14], each Archimedean class is a convex subset of [0, 1].
Obviously, by complete analogy we may define the Archimedean classes of tosabs
and, in particular, of t-subnorms.

PROPOSITION 3.2. Let T be a t-norm.

(i) For all (x, y) e [0, I]2, we have IT(x<y) = I^D(Xiy).

(ii) For each x 6 [0, 1], the pair (Ix, T\q) is a subsemigroup o/([0, 1], T), and it
is called an Archimedean component of T.

PROOF. Property (i) follows from the fact that T{x,x) < T(x, y) < x whenever
x < y, and (ii) is immediate from (i). •

As a consequence, for two t-norms Ti and T2 with the same Archimedean compo-
nents we have xff = x(^ for each x e [0, 1] and n e N.

A necessary and sufficient condition for a singleton [x} to be a (trivial) Archime-
dean class for a t-norm T is that T(y, z) = x holds if and only if min(v, z) = x. As a
consequence, {1} is an Archimedean class of each t-norm T.

It is easy to see that a triangular norm is Archimedean if and only if its only
non-trivial Archimedean class is either [0, 1[ or ]0, 1[.

Each Archimedean component (Ix, T\Q) of T is a tosab. As a consequence,
Archimedean components can be used as summands in the construction given in
Proposition 2.4, thus leading to a t-norm. From [18, Proposition 1.6 and Theorem 2.12]
the following characterization of Archimedean components follows immediately.

LEMMA 3.3. A totally ordered abelian semigroup (I, *) is an Archimedean compo-
nent of some t-norm T if and only if either I = {1} or I is a convex subset of[0, 1[
such that for all x e I we have lim^oo x^n) = inf / .

Observe that in the case / = [0, 1[ or / =]0, 1[ the pair (/, *) is an Archimedean
component of some t-norm T if and only if for each x e]0, 1[ wehavelimn_oox(n) = 0,
that is, if and only if T is Archimedean.

Clearly, for each t-norm the set of all Archimedean components forms a partition
of [0, 1]. Moreover, if for each non-empty subset A c [0, 1] we put IA = {JxeA h,
then (IA, T\,2) is a totally ordered abelian semigroup whose semigroup operation
is bounded from above by the minimum. That means, if the set A is convex then
UA, T\p) is a tosab. For each x e [0, 1], (Ix, T\if) is the maximal Archimedean
subsemigroup containing x.

For an arbitrary t-norm T, the ordinal sum of its Archimedean components as
introduced in Proposition 2.4 has the same Archimedean components as T.
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PROPOSITION 3.4. Let T be a t-norm and {(Ix, T\,2) | x e [0, 1]} the set of Archi-

medean components. Then the ordinal sum of the Archimedean components is the
strongest t-norm which has the same Archimedean components as T.

PROOF. Observe first that \Jxe[0 u Ix = [0, 1], that the ordinal sum * of the Archi-
medean components is a t-norm because of Proposition 2.4 and that * and T coincide
on UJ£[o i] '* • Therefore, the ordinal sum * has the same Archimedean components
as T. Moreover, since * coincides on [0, I]2 \ U*e[o n ^l w i t n TM, * is the strongest
t-norm with this property. •

EXAMPLE 2. For the nilpotent minimum TnM [18] given by

DM f° if * +y < 1;
T (x, y) = \

lmin(x,y) otherwise,

the only non-trivial Archimedean component of 7nM is ([0, 1/2], *,) with x *t y = 0
for all (JC, y) 6 [0, 1/2]2. The ordinal sum * of the Archimedean components of TnM

is given by

[0 if ( x , y ) e [ 0 , 1/2]2;
x * y = \

v) otherwise.

Clearly, * and rn M have the same Archimedean components. Moreover, for each
set A with [0, 1/2]2 C A C [ 0 , l[2 \ ] l /2, l[2 satisfying, for each (x, y) e A, both
(y, x) € A and [0, x] x [0, y] c A, the function TA : [0, I]2 -> [0, 1] defined by

10 if (x,y) eA;

min(x,y) otherwise.

is a t-norm which has the same Archimedean components as T***.

REMARK. (i) Because of Theorem 2.2, each continuous t-norm T is uniquely
determined by its non-trivial Archimedean components.

(ii) As a consequence, each continuous t-norm T is uniquely determined when all
the sequences (x(n))n£f)j are known (this was shown for strict t-norms in [17]).

(iii) Since the only non-trivial Archimedean classes of an Archimedean t-norm
are [0, 1[ or ]0, 1[, two continuous t-norms with the same Archimedean classes are
isomorphic.
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4. Extension of Archimedean components to t-norms

As just observed, a continuous t-norm is uniquely determined by its Archimedean
components. Then, however, it is important to determine the Archimedean tosabs
related to continuous t-norms. The proof of the following is obvious.

LEMMA 4.1. A non-trivial Archimedean tosab (/, *) is an Archimedean component
of some continuous t-norm T if and only if either I = [a, b[ or I =]a, b[for some
a, b 6 [0, 1], * is continuous and satisfies \in\y/i,x * y — x.

Note that, whenever a non-trivial Archimedean tosab (/, *) with / = [a, b[ or
/ =]a, b[ is an Archimedean component of some continuous t-norm, then * satisfies
the conditional cancellation law, that is, x*y=x*z>a implies y = z-

In general, starting with an arbitrary family of pairwise disjoint Archimedean
tosabs ((/ a , *a))aeA, by adding a family of trivial Archimedean tosabs ((/^, *^))^B

with B = [0, 1] \ [JaeA h and lp = {/?}, we obtain a family of pairwise disjoint
Archimedean tosabs ((/,,, *Y))Y^AUB such that {/,, | y e A U B] is a partition of
[0, 1]. Applying to this family ((/,,, *Y))yeAUB of tosabs the same construction as in
Proposition 3.4, that is, defining the binary operation * on [0, 1] by

I x*ay if (x,y) e /a
2;

min(.x,v) otherwise,
it is clear that * is always a t-subnorm, and that * is a t-norm if and only if 1 ^ UaeA h •
Obviously, * is the strongest t-subnorm (respectively t-norm) having all the tosabs
(h, *a) we started with as Archimedean components. However, as we have seen in
Example 2, * is not necessarily the unique t-(sub)norm having all these Archimedean
components.

The following result, whose proof is again straightforward, will be helpful for
determining the uniqueness of t-norms with given Archimedean components.

LEMMA 4.2. Let T be a t-norm and {Ix \ x e [0, 1]} the set of Archimedean
components. Then the following are equivalent:

(i) For each t-norm t with T ^ T, there is an element x e [0, 1] such that the
Archimedean component (Ix, T\^z-)2) of T and the Archimedean component (Ix, T\ii)
of T are different.

(ii) For all (x,y) e [0, I ] 2 with x < y, there is a unique totally ordered abelian
semigroup (I{x,y), *), where the operation * is bounded from above by the minimum,
such that both (Ix, T\IJ) and (Iy, 7" j/2) are subsemigroups of(I{xy\, *).
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[9] Archimedean components of triangular norms 247

Recall that /(Xi>) = IM U IM and observe that, for each t-norm T and for each
x 6 [0, 1] whose Archimedean class is a singleton (that is, Ix = {*}), assertion (ii) in
Lemma 4.2 holds because of the monotonicity and boundary conditions of triangular
norms. As a consequence, it suffices to consider non-trivial Archimedean classes. We
shall look at some important special cases.

LEMMA 4.3. Assume that Iu equals [a, b[ or ]a, b[ and let (/„, *„) be an Archime-
dean component of some t-norm T such that for each x e]a, b[ there is a y e]a, b[
with x *u y > a and such that the conditional cancellation law holds. Then, putting
/ = / , U Ib, the semigroup (I, T\ii) is the ordinal sum of(Iu, *„) and (Ib, T\,2).

PROOF. It suffices to show that T(x,b) = x for all x e /„. Clearly, b is an
idempotent element of T. Suppose that we have T(x, b) = v < x for some x e Iu.
Then necessarily x e]a, b[ and x *u y = T(x, y) > a for some y e]a, b[. Thus
a < T(x, y) < T(x, b) = v, and we have T(v, z) = v *u z > a for some z e]a, b[.
Moreover,

v *u T(b, z) = T(v, T(b, z)) = T(T(x, T(b, b)), z)

= T(T(x,b),z) = T(v,z) = v*uz

and, by cancellation, T(b, z) = z- Then also

x *„ z = x *u T(b, z) = T(T(x, b), z) = T(v, z) = v *u z,

implying x — v, contradicting our assumption. •

Summarizing these results, we obtain the following sufficient condition for the
uniqueness of t-norms with given Archimedean components.

THEOREM 4.4. Let T be a t-norm and suppose that each of its non-trivial Archi-
medean components satisfies the hypotheses of Lemma 4.3. Then there is no other
t-norm T having the same Archimedean components as T.

Theorem 4.4 allows the relationship between continuous t-norms and their Archi-
medean components to be strengthened (not supposing explicitly the continuity of T).

COROLLARY 4.5. Let T be a t-norm, suppose that each of its non-trivial com-
ponents is continuous and satisfies the hypotheses of Lemma 4.3 and, additionally,
\\mz/bx T(y, z) = v if x € [0, 1], y e lx and bx — sup Ix. Then T is a continuous
t-norm, and it is uniquely determined by its Archimedean components.

Observe that the non-trivial components of the t-norms considered in Example 2
and [31, page 60] do not satisfy the hypotheses of Lemma 4.3.
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EXAMPLE 3. Assume that T is a t-norm whose Archimedean components are
([0, l/2[, *i) with x *! y = x • y, ([1/2, 1[, *2) with x *2 y = 1/2, and the triv-
ial component ({1}, *). Then we get

x-y if (x,y)e{0, l/2[2;

1/2 if ( * , y ) e [ l / 2 , 1[2;T(x,y) =

min(x,y) otherwise,

that is, T necessarily is the ordinal sum of its Archimedean components.

As already observed, each family ((/„, *a))a<EA of pairwise disjoint Archimedean
tosabs satisfying Iao = {1} for some a0 e A whenever 1 € {Ja€A Ia can be extended
to a t-norm with no additional non-trivial Archimedean components by means of
the ordinal sum construction (after filling, if necessary, the gaps in the given system
of Archimedean tosabs by singleton components), and the resulting t-norm T is the
strongest t-norm coinciding, for each a e A, with *a on I2. This fact is due to the
simple observation that, for each subinterval / of [0, 1], (/, *) with x * y = min(.x, y)
is the strongest tosab acting on T and that it is an Archimedean component only if
/ is a singleton. Clearly a weakest tosab acting on a subinterval / of [0, 1] exists
if c = inf / e / , in which case the semigroup operation * : I2 -> / is given by
x * y = c.

COROLLARY 4.6. Let ((Ia, *a))aeA be a family of pairwise disjoint Archimedean
tosabs satisfying Iao = {1} for some aQ € A whenever 1 € [Ja€A Ia, and assume that
[0, 1[\ U a e A /« = U/3eB Jp w'tn CP = m f Jp e H and that there are no y,8 e B such
that y ^ 8 and JY U Js is an interval. Then the function Tw : [0, I]2 -> [0, 1] given by

(3) Tw(x,y) =

x *ay if (x,y) e /o
z;

cp if(x,y)eJj\

min(;c,;y) otherwise,

is a t-norm. It is the weakest t-norm which coincides, for each a e A, with *a on / 2

and which can be written as an ordinal sum of tosabs.

If the hypotheses of Corollary 4.6 are satisfied then the t-norm Tw given by (3) will
be called a w-ordinal sum.

Let (Ta)aeA be a family of t-norms and (]aa, ba[)a€A be a family of non-empty,
pairwise disjoint open subintervals of [0, 1]. The most important feature of the
ordinal sum T = ((aa,ba, Ta))a€A of t-norms [18] given by (2) is that T coincides
with the appropriate linear transformations of the t-norms Ta on the set [JaeA [aa, ba]

2.
By filling gaps with the minimum, we obviously obtain the strongest possible t-norm
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which coincides with such linear transformations. If the topological closure of the set
Uae/t [a<" ba\ is a proper subset of [0, 1], it is always possible to construct other t-norms
which are ordinal sums of semigroups which coincide with linear transformations on

Recall that the set [0, l [ \Ua e /»[ a« ' ^«f c a n alw ays be written as the union of
pairwise disjoint intervals Uses fy> where each Yp is a component with respect to
connectedness containing a smallest element, that is, each Yp is of the form [cp, dp[
or [cp,dp\.

COROLLARY 4.7. Let T = ((aa, ba, Ta))aeA be an ordinal sum of t-norms. Then
the w-ordinal sum Tw : [0, I]2 —> [0, 1] of the summands (aa, ba, Ta) given by

Tw(x,y) =

aa + (ba ~ aa) Ta , if (x,y) e [aa, ba[ \
\ba-aa ba-aaj

cp if(x,y)eYJ\

min(x,)') otherwise,

is the weakest t-norm which is an ordinal sum of semigroups and which contains all
the original summands of T.

PROOF. This follows directly from Proposition 2.4 taking into account that the
weakest semigroup operation *p on Yp is given by x *p y — cp. •

Obviously, all non-trivial Archimedean components of T are also Tw-Archime-
dean. However, additional non-trivial Tw -Archimedean components occur if at least
one interval Yp is non-trivial. Clearly Tw = T in Corollary 4.7 if and only if [0, 1]
equals the topological closure of [Ja€A [aa, ba].

In general, the iw-ordinal sum Tw cannot be written as an ordinal sum of t-norms
containing all the original summands: for example, starting with the ordinal sum of
t-norms

n + 4 n + 3

then Tw coincides with the t-norm * given in Example 2, which is not an ordinal sum
of t-norms (only an ordinal sum of t-subnorms) containing all the original summands.
However, for a finite index set A = {1,2,... ,n] the ui-ordinal sum Tw turns out to
be an ordinal sum of t-norms containing the original summands. Put B = {0, 1} U
{au bu a2, b2,..., an, bn) = {c0, cu • • •, cm) with 0 = c0 < Cj < • • • < cm = 1 and,

for i € { 1 , 2 , . . . , / n } ,

(4) fl = \T> i f a ' = C ' - :

/D otherwise,
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where To is the drastic product. Then Tw can be written as an ordinal sum of t-norms
as follows:

(5) Tw =
i€(l,2 m)

Note that in (4) the t-norm To can be replaced by an arbitrary t-norm and formula (5)
still will yield a t-norm which coincides with T on the square [a,-, bt]

2 for each
i € {1, 2, . . . , n}. If, for example, we replace TD by the Lukasiewicz t-norm TL and if
Tx, T2,..., Tn are all (associative) copulas [19,27], then formula (5) gives the weakest
(associative) copula containing all the summands (a,-, bit Tt).

Observe that the ^-ordinal sum Tw given in Corollary 4.7 is the weakest t-norm
coinciding with T on the square [aa, ba]

2 for each a e A if and only if the topological
closure of \^}aeA[aa, ba] is a closed interval of the form [0, c] for some c e]0, 1]. It
was shown in [6] that the weakest t-norm T coinciding with T on the square [aa, ba]

2

for each a e A (which in general is not an ordinal sum of semigroups containing all
the original summands) is given by

I , ,u ^T I '"»'v>a,x)-aa mm(ba, y) - aa \
sup \ aa + (ba - aa) Ta I ,

[ \ ba — aa ba - aa J
T(x,y)={ a eA, aa <min(x,y)\ if rnax^, y) < 1;

min(;c,y) otherwise.

Note that, using the notation of Corollary 4.7, the t-norm f can be rewritten as follows:

T(x,y) =

aa + (ba - aa) Ta I , I if (x, y) € [aa, ba[
2;

\t>a — aa t>a — aa /
if min(A:, y) € Yp and

max(j:, y) < 1;

otherwise.

5. Construction of Archimedean components

As we have seen in Section 4, Archimedean components (tosabs) are, on one hand,
essential tools when constructing triangular norms. Indeed, the knowledge of all
Archimedean components of a t-norm induces full information about the trajectories
(x(n))n€H for each x e]0, 1[. To pass from the trajectories to the Archimedean com-
ponents is possible in special cases only, for example, if the t-norm is continuous. It
is for this reason that the trajectories of a continuous t-norm determine this t-norm
uniquely [17] (compare Remark 3).
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On the other hand, in order to construct new t-norms (for example, as ordinal
sums of semigroups) it is important to know a rich variety of possible Archimedean
components.

LEMMA 5.1. Let (G, <, *) be an abelian, totally ordered Archimedean semigroup.
Then for all u,veGwe have u *v <u, that is, * is bounded above by the minimum
operator induced by <.

PROOF. Suppose to the contrary that there exist u,v e G such that u < u * v. By
a simple induction u -< u * vM for all n e N. Since * is Archimedean, v^ < u
and u(2q) = (u * H)(<7) ^ « for some p, q e N. In particular u < u * u(p) < u * u.
Again, by a simple induction, w -< w("' for all n > 2, so, in particular, u < u(2p) -< u,
a contradiction. •

Because of Lemma 5.1 it is clear that, given an abelian, totally ordered Archimedean
semigroup (G, ;<, *), a subinterval / of [0, 1[ and an order preserving bijection (p :
/ -> G, then also (/, <, *ip), where *9 is given by x *<p y — cp~l(<p(x) * <p(y)), is a
tosab and hence an Archimedean component of some t-norm. A semigroup (G, <, *)
which satisfies the hypotheses of Lemma 5.1 and which is isomorphic to some tosab
will be called a fitting Archimedean semigroup.

EXAMPLE 4. (i) The semigroup (]l ,oo[, •<,+) with x < y if and only if
x > y is a fitting Archimedean semigroup: the pair Qa, b[, +v) is an Archimedean
component for each open subinterval ]a, b[ of [0, 1[ and for each order preserving
bijection <p : (]a, b[, <) -> (]1, oo[, <).

(ii) Coming back to the t-norms T\ and T2 in Example 1, equip the set G of
strictly increasing sequences of positive integers which are proper subsequences of
(n)n£N with the inverse lexicographic order •<, that is, (xn)neN •< (yn)neN if and only
if there is an nQ e N such that xno > yna and xn = yn for all n < n0. Defining
the operation * on G by (xn)n€N * (yn)neN = (xn + yn)n€N and the order preserving
bijection <p : (]0, 1[, <) - • (G, <) by <p-l((xn)n€H) = £ ~ , 1/2*-, then (G, *) is a
fitting Archimedean semigroup and (]0, 1[, 7i|]0 ip) is a T\-Archimedean component
which is isomorphic to (G, *).

Now, put H = GU{(n)neN)> introduce the order rz on H by keeping the original order
< on G and by supposing that the sequence (n)n£N be the greatest element of H, and
define the binary operation o on H by On)nefci ° {yn)n^H = (xn + yn — n + l)nEN- Then,
for a fixed m e N, f : (]1 - 1/2"1"1, 1 - l /2m] , < ) - • (//, c ) given by

n=l
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is an order preserving bijection, and (]1 — \/2m~l, 1 — l/2m], o ,̂) is a ^-Archime-
dean component.

We present here three further ways for producing Archimedean components. The
first has a straightforward proof, the second uses pseudo-inverses, and the third starts
from a finite semigroup.

PROPOSITION 5.2. Let (/, *) be an Archimedean component, let x € I and put
Jx = [0,x] D / and Kx = [0, x[P\I. Then (Jx, *\ji) and (Kx, *\K2) are Archimedean
components.

PROPOSITION 5.3. Let I be a subinterval of [0, 1[ and let f : I ->•](), oo[ be a
continuous non-increasing function which is unbounded if inf / ^ /. Define the
operation * on I by

(6) x*y=f(-')(f(x)+f(y)),

where / ( - 1 ) is the pseudo-inverse off. Then (/, *) is an Archimedean component,
and the semigroup operation * is left-continuous.

PROOF. Observe first that * is well defined. Also, / ( " " is right-continuous, and
the continuity o f / implies the strict monotonicity of/(~1} on the range of / and
also / o f(~l\x) = x for all x in the range of / . Since the range of / is an
interval, the operation * is associative and we have JC*"* = / (~"(n • / (x)), implying
Hindoo xln) = inf / for each x e I. The rest of the proof is straightforward. •

In combination with Theorem 2.5, the method described in Proposition 5.3 allows
large classes of left-continuous t-norms to be constructed as follows (recall that exactly
the left-continuous t-norms possess a residuum which is often used as interpretation
of the implication in many-valued and fuzzy logics [11, 13]): given an arbitrary
family (]aa, ba[)aeA of pairwise disjoint open subintervals of [0, 1] and a family (fa :
[aa, ba] —> [0, oo])ae/t of continuous non-increasing functions satisfying/o(l) = 0
whenever ba = 1 and such that, if ba = ap for some a, fi e A, fp(ap) is finite only if
fa(ba) = 0, then the function T : [0, I]2 -> [0, 1] given by

T{x } = \f}(f«<.x) +/.00) ^ (*. y) eK, ba]
2;

\min(x,y) otherwise,

is a left-continuous t-norm.

PROPOSITION 5.4. Consider a finite set G with cardinality n and an abelian, totally
ordered Archimedean semigroup (G, o) (observe that o is necessarily nilpotent). For
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each subinterval [a, b[ o/[0, 1] and for all n-element subsets A = {a®, a\, ..., <zn-i}
with a = OQ < ax < • • • < an_\ < b, let (A,o) be the abelian, totally ordered
Archimedean semigroup which is isomorphic to (G, o). Putting x * y = xA o yA,
where xA = max{w e A | w < x), then ([a, b[, *) is an Archimedean component, and
the semigroup operation * is right-continuous.

PROOF. The proof follows from (x * y)A = xA o yA and from the right continuity
of the function T : [a, b[-> A defined by r(x) = xA. •

REMARK. (i) If an Archimedean component (/, *) has an additive generator
/ : / ->]0, oo[ and if the Archimedean components (Jx,*\ji) and (Kx,*\Ki) are
obtained as in Proposition 5.2, then these semigroups are generated by the additive
generators/ \Jx a n d / \Kx, respectively.

(ii) As a consequence of [25] we have: if in an Archimedean component (/, *)
the operation * has an additive generator/ : / —>]0, oo[, then * is continuous if and
only if the function / is strictly monotone on the set {x e I \ there is some y G / such
that* < y * y}.

EXAMPLE 5. Consider the function / : [0, l[->- [0, oo] which is given by / (x) =
max(10 — 18.x, 1). Because of (ii) above the operation * on [0, 1[ given by (6) is
continuous. According to Proposition 5.3, ([0, 1[, *) is an Archimedean component
of the uniquely determined t-norm T given by

|

min(x,v) if max(x,y) = 1;

max I min I x, - I + min I y, - I , 0 1 otherwise.
Puttingxo= 1/2 we obtain JXo = [0, 1/2] a n d / \JJO(X) = 1 0 - 1 8 x . Obviously,/ \JXQ

generates *\ji (which coincides with T\ji).

6. Concluding remarks

Continuous t-norms are just ordinal sums of continuous Archimedean t-norms, the
latter being generated by continuous additive generators (see Theorems 2.2 and 2.1).
Left-continuous t-norms and the corresponding residual implications (which are linked
by the Galois connection [10]) play a crucial role in many-valued logics, but no char-
acterization of left-continuous t-norms is known so far. Concerning the relationship
between left-continuous and continuous t-norms, note that left-continuous t-norms
which are either Archimedean or which are generated by some additive generator are
necessarily continuous [18, 22, 33]. Proposition 5.3, applied to continuous Archi-
medean components (that is, to special threads [5, 15], for example to Archimedean
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components which are generated by continuous additive generators), gives rise to
new left-continuous t-norms. Such left-continuous t-norms can be characterized in
very special cases only, for example, if their Archimedean components satisfy the
cancellation law in which case they are generated because of [1]. However, if the
Archimedean components of such left-continuous t-norms cannot be extended to /-
semigroups [7,26,28] or if they do not satisfy the cancellation law, the characterization
of those t-norms is still an open problem.
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