SOME GROUPS OF FIBONACCI TYPE

D. L. JOHNSON and H. MAWDESLEY

(Received 22nd October 1973)
Communicated by G. E. Wall

1.

The recent resurgence of interest in the groups introduced in Conway (1967), together with their analogues, is recorded in Johnson, Wamsley and Wright (to appear).

Let $\bar{\gamma}$ be the automorphism of the free group $F_{n}=\left\langle x_{1}, \cdots, x_{n} \mid\right\rangle$ induced by permutation of subscripts in accordance with the cycle $\gamma=(12 \cdots n) \in S_{n}$. Given any word $w \in F_{n}$, we define $G_{n}(w)$ to be the group with generators x_{1}, \cdots, x_{n} and relators $w \bar{\gamma}^{i}, 0 \leqq i \leqq n-1$. By taking $w=x_{1} x_{2} x_{3}{ }^{-1}$, we obtain the groups studied in Conway (1967), while those of Johnson, Wamsley and Wright (to appear) and Campbell and Robertson (to appear) are given by $w=x_{1} x_{2} \cdots x_{r} x_{r+1}^{-1}$ and $w=x_{1} x_{2} \cdots x_{r} x_{r+k}^{-1}$ respectively (all subscripts being reduced modulo n to lie in the set $\{1,2, \cdots, n\}$). Dunwoody (to appear) and Mawdesley (1973) are concerned with the cases $w=x_{2} x_{n} x^{-1}$ and $w=x_{i} x_{j} x_{1}^{-1}$ respectively, In this article, which is largely a paraphrase of Mawdesley (1973), we give a description of these groups for all values of i, j with $n \leqq 6$.

2.

Lemma. (i) Given $w \in F_{n}$, let w^{\prime} be the word obtained by reversing the order of the generators and their inverses as they appear in w. Then $G_{n}(w) \cong G_{n}\left(w^{\prime}\right)$.
(ii) For any $w \in F_{n}, \alpha \in S_{n}$, we have $G_{n}(w) \cong G_{n}(w \bar{\alpha})$.

Proof. The required isomorphisms are induced by
(i) $x_{i} \mapsto x_{i}^{-1}$,
(ii) $x_{i} \mapsto x_{i \alpha}, \quad 1 \leqq i \leqq n$.

This lemma enables us to reduce substantially the n^{2} groups $G_{n}\left(x_{i} x_{j} x_{1}^{-1}\right)$.
We first exclude the cases $i=1$ and $j=1$, as they yield only the trivial group. In view of part (i, we need only consider one of $G_{n}\left(x_{i} x_{j} x_{1}^{-1}\right)$ and $G_{n}\left(x_{i} x_{1} x_{1}^{-1}\right)$ for all i, j. Finally, the groups identified in accordance with part (ii) are grouped together in the following table, together with the relevant values of α.

3.

TheOrem. The groups $G_{n}\left(x_{1} x_{j} x^{-1}\right)$ for $n \leqq 6$ are given by the following table.

$x_{1}=$	[] $\alpha G_{n}(w)$
x_{2}^{2}	Z_{3}
$n=2$	
x_{2}^{2} x_{3}^{2}	${ }_{(23)} Z_{7}$
$x_{2} x_{3}$	$4 Q_{8}$

$n=3$

x_{2}^{2} x_{4}^{2}	Z_{15} (24)
x_{3}^{2}	$Z_{3} * Z_{3}$
$x_{3} x_{4}$	4
$x_{3} x_{2}$	Z_{5}
$x_{2} x_{4}$	(24)

$$
n=4
$$

$x_{1}=$	[]	α
x_{2}^{2}		$G_{n}(w)$
x_{31}^{2}		(2354)
x_{5}^{2}		$(25)(34)$
x_{5}^{2}		(2453)
$x_{4} x_{5}$	2	Z_{11}
$x_{2} x_{4}$		(2354)
$x_{3} x_{2}$		$(25)(34)$
$x_{5} x_{3}$		(2453)
$x_{2} x_{5}$	3	$S L(2,5)$
$x_{3} x_{4}$		(2354)

$n=5$

$x_{1}=$		α	$G_{n}(w)$
x_{2}^{2}	$\underset{(26)(35)}{Z_{63}}$		
x_{6}^{2}			
x_{3}^{2}	$\begin{gathered} Z_{7} * Z_{7} \\ (26)(35) \end{gathered}$		
x_{5}^{2}			
x_{4}^{2}	$Z_{3} * Z_{3}{ }^{*} Z_{3}$		
$x_{5} x_{6}$	2		∞
$x_{3} x_{2}$	(26)(35)		
$x_{2} x_{4}$	$\begin{array}{r} Z_{9} \\ (26)(35) \\ \hline \end{array}$		
$x_{6} x_{4}$			
$x_{2} x_{6}$	3		∞
$x_{3} x_{4}$	1	$\begin{array}{r} Z_{7} \\ (26)(35) \end{array}$	
$x_{5} x_{4}$			
$x_{3} x_{5}$		$Q_{8}{ }^{*} Q_{8}$	
$x_{2} x_{5}$		56	
$x_{6} x_{3}$			(26)(35)

$n=6$
4.

Remarks. (i) Z_{n} stands for the cyclic group of order n, and Q_{8} for the quaternions of order 8.
(i) The reference numbers in the second column indicate when the group in question is considered elsewhere in the literature.
(iii) Free products clearly arise whenever $i-1$ and $j-1$ have a factor in common with n.
(iv) Of the remaining two infinite groups, one is dealt with in Conway (1967) and in Johnson, Wamsley and Wright (to appear), while the other is easily seen to have derived factor group isomorphic to $Z \times Z$.
(v) We attempt no general explanation of the rather unbalanced incidence of the members of S_{n} in the third column.
(vi) The groups Z_{7} and Z_{9} arising when $j=6$ are easily obtained.

In the next section we derive the two linear groups, and obtain the rather interesting group of order 56 in section 6.

5.

(i) Eliminating x_{2} and x_{4} from the relations

$$
x_{1}=x_{2} x_{4}, \quad x_{2}=x_{3} x_{1}, \quad x_{3}=x_{4} x_{2}, \quad x_{4}=x_{1} x_{3},
$$

we obtain

$$
x_{1}=x_{3} x_{1}^{2} x_{3} \quad x_{3}=x_{1} x_{3}^{2} x_{1}
$$

Substituting the second of these in the first, and manipulating the second, we obtain the equivalent relations,

$$
x_{1}=x_{3} x_{1}^{2}\left(x_{1} x_{3}^{2} x_{1}\right), \quad x_{3} x_{1}^{-1} x_{3} x_{1}^{-1}=x_{3}^{3}
$$

which under the substitution $x_{1} \leftrightarrow a, x_{3}^{-1} \mapsto b$ yield

$$
a^{3}=b^{3}=(a b)^{2}
$$

which define $S L(2,3)$.
(ii) Eliminating x_{3} and x_{5} from the relations $x_{1}=x_{2} x_{5}, x_{2}=x_{3} x_{1}$ $x_{3}=x_{4} x_{2}, x_{4}=x_{5} x_{3}, x_{5}=x_{1} x_{4}$, we obtain

$$
x_{2} x_{1} x_{4}=x_{1}, \quad x_{4} x_{2} x_{1}=x_{2}, \quad x_{1} x_{4}^{2} x_{2}=x_{4}
$$

Eliminating x_{4} using the second relation, we have

$$
x_{2} x_{1} x_{2} x_{1}^{-1} x_{2}^{-1}=x_{1}, \quad x_{1} x_{2} x_{1}^{-2}=x_{2} x_{1}^{-1} x_{2}^{-1}
$$

Postmultiplying the second of these by $x_{2} x_{1} x_{2}$ and using the first, we obtain

$$
x_{2} x_{1} x_{2}=x_{1} x_{2} x_{1}, \quad x_{1} x_{2} x_{1}^{-1} x_{2} x_{1}=x_{2}^{2}
$$

whence, using the first relation again,

$$
x_{2} x_{1} x_{2}=x_{1} x_{2} x_{1}, \quad x_{1} x_{2}^{2} x_{1}=x_{2}^{3} .
$$

The substitution $x_{2} \mapsto a, x_{1} x_{2} \mapsto b$ now yields

$$
a b=b^{2} a^{-1}, \quad b a b a^{-1}=a^{3},
$$

that is,

$$
a^{5}=b^{3}=(a b)^{2}
$$

which define $S L(2,5)$.

6.

We divide the proof that $G=G_{6}\left(x_{2} x_{5} x_{1}^{-1}\right)$ has order 56 into a number of steps.
(i) $x_{6}=x_{1} x_{4}$,

$$
x_{3}=x_{4} x_{1}
$$

$$
x_{2}=x_{3} x_{6}=x_{4} x_{1}^{2} x_{4}
$$

$$
x_{5}=x_{6} x_{3}=x_{1} x_{4}^{2} x_{1}
$$

$$
x_{4}=x_{5} x_{2}=x_{1} x_{4}^{2} x_{1} x_{4} x_{1}^{2} x_{4}
$$

$$
x_{1}=x_{2} x_{5}=x_{4} x_{1}^{2} x_{4} x_{1} x_{4}^{2} x_{1}
$$

Thus, G is generated by $x=x_{1}, y=x_{4}$ subject to therelations
(a) $x^{2} y x y^{3}=1$,
(b) $y^{2} x y x^{3}=1$.
(ii) A relation matrix for G / G^{\prime} is thus

$$
\left(\begin{array}{ll}
3 & 4 \\
4 & 3
\end{array}\right)
$$

showing that $\left|G: G^{\prime}\right|=7$. Furthermore, standard coset enumeration with respect to the subgroup $\langle x\rangle$ of G yields the permutation representation

$$
\begin{aligned}
G & \rightarrow S_{8} \\
x & \mapsto(2457863) \\
y & \mapsto(1268473),
\end{aligned}
$$

the transitivity of which yields that $|G| \geqq 56$. It remains only to show that G^{\prime} is a homomorphic image of $Z_{2} \times Z_{2} \times Z_{2}$, and this we now embark on.
(iii) Using both (a) and (b), we have

$$
y x y x=y^{-1} x^{-2}=y^{-1} y x y^{3}
$$

so that if

$$
\begin{gathered}
k=[x, y]=x^{-1} y^{-1} x y \\
k^{y}=x y^{-1}
\end{gathered}
$$

Since transposition of x and y is an automorphism of G, we also have

$$
\left(k^{-1}\right)^{x}=y x^{-1},
$$

whence:
(c)

$$
k^{x}=x y^{-1}=k^{y},
$$

so that k commutes with k^{x} (which we write $k \sim k^{x}$).

Clearly,
(d) $k^{x^{2}}=k^{x y}=k^{y x}=k^{y^{2}}=y^{-1} x$.
(iv) Thus,

$$
\begin{aligned}
k^{x^{3}} & =x^{-1}\left(y^{-1} x\right) x \\
& =[x, y] y^{-1} x \\
& =k k^{x^{2}}
\end{aligned}
$$

and so, since $k \sim k^{x}, k^{x^{2}} \sim k^{x^{3}}=k k^{x^{2}}$, and thus $k \sim k^{x^{2}}$.

$$
\begin{aligned}
k^{v^{3}} & =y^{-1}\left(y^{-1} x\right) y \\
& =y^{-1} x[x, y] \\
& =k^{x^{2}} k \\
& =k k^{x^{2}}, \text { since } k \sim k^{x^{2}}, \\
& =k^{x^{3}} .
\end{aligned}
$$

It follows from this, together with (c) and (d), that all conjugates of k by positive words in x and y commute, and that the value of the conjugate depends only on the length of the conjugating element.
(v) Squaring relation (b),

$$
\begin{aligned}
x^{-6} & =y^{2} x y^{3} x y \\
& =y^{2} x\left(x^{-1} y^{-1} x^{-2}\right) x y, \text { using (a) } \\
& =y x^{-1} y
\end{aligned}
$$

so that $y x^{6}=x y^{-1}$ and, transposing x and $y, x y^{6}=y x^{-1}$. Hence, the element

$$
\begin{equation*}
x^{7}=y^{-7}=\left(y^{-1} x\right)^{2}=\left(k^{x^{2}}\right)^{2}=\left(k^{2}\right)^{x^{2}} \tag{e}
\end{equation*}
$$

belongs to $Z(G)$. Thus, $k^{2} \sim x$, and so

$$
\begin{aligned}
k^{2}=\left(k^{x^{3}}\right)^{2} & =\left(k k^{x^{2}}\right)^{2} \\
& =k^{2}\left(k^{x^{3}}\right)^{2}, \text { since } k \sim k^{x^{2}} \\
& =k^{4}
\end{aligned}
$$

whence $k^{2}=1$. Finally, since $x^{7}, y^{7} \in Z(G)$, any $g \in G$ has the form $g=z p$, where $z \in Z(G)$ and p is a positive word in z and y. From the above, it now follows that G^{\prime} is generated by three commuting elements of order at most 2 , and this completes the proof.

7.

The group of order 56 just described has, in common with the series (see below) to which it belongs, a number of interesting properties.
(i) For any Mersenne prime $p=2^{n}-1$, the group $G L(n, 2)$ of automorphiphisms of $V(n, 2) \cong Z_{2}{ }^{\times n}$ contains an element of order p. Denote by M_{p} the resulting split extension of $V(n, 2)$ by Z_{p}. The first two members of this series of groups are respectively A_{4} and our group of order 56. It is somewhat surprising that A_{4} has deficiency -1 (and multiplicator Z_{2}), while M_{7} has deficiency zero. It would be interesting to know the multiplicators and deficiencies of the higher Mersenne groups.
(ii) Each M_{p} has a unique non-trivial normal subgroup.
(iii) Each M_{p} has elements of order 2 and p only.
(iv) Each M_{p} is a Frobenius group (see for example the representation in 6(ii)).

References

C. M. Campbell and E. F. Robertson (to appear), 'On a class of generalised Fibonacci groups'. J. H. Conway (1967), 'Solution to advanced problem 5327' Amer. Math. Monthly 74, 91-93. M. J. Dunwoody (to appear), 'A group presentation associated with a 3-dimensional manifold'. D. L. Johnson, J. W. Wamsley and D. Wright (submitted), 'The Fibonacci groups', Proc. London Math. Soc.
H. Mawdesley (1973), Some groups of Fibonacci type, M. Sc. Thesis (University of Nottingham. 1973).

Department of Mathematics
University of Nottingham
England.

