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Toward neural-network-based large eddy
simulation: application to turbulent channel flow
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A fully connected neural network (NN) is used to develop a subgrid-scale (SGS) model
mapping the relation between the SGS stresses and filtered flow variables in a turbulent
channel flow at Reτ = 178. A priori and a posteriori tests are performed to investigate
its prediction performance. In a priori test, an NN-based SGS model with the input
filtered strain rate or velocity gradient tensor at multiple points provides highest correlation
coefficients between the predicted and true SGS stresses, and reasonably predicts the
backscatter. However, this model provides unstable solution in a posteriori test, unless
a special treatment such as backscatter clipping is used. On the other hand, an NN-based
SGS model with the input filtered strain rate tensor at single point shows an excellent
prediction capability for the mean velocity and Reynolds shear stress in a posteriori test,
although it gives low correlation coefficients between the true and predicted SGS stresses
in a priori test. This NN-based SGS model trained at Reτ = 178 is applied to a turbulent
channel flow at Reτ = 723 using the same grid resolution in wall units, providing fairly
good agreements of the solutions with the filtered direct numerical simulation (DNS) data.
When the grid resolution in wall units is different from that of trained data, this NN-based
SGS model does not perform well. This is overcome by training an NN with the datasets
having two filters whose sizes are bigger and smaller than the grid size in large eddy
simulation (LES). Finally, the limitations of NN-based LES to complex flow are discussed.

Key words: turbulence modelling

1. Introduction

In large eddy simulation (LES), the effect of the subgrid-scale (SGS) velocity fluctuations
on the resolved flow should be modelled, and thus the aim of SGS modelling is to find the
relations between the resolved flow variables and SGS stresses. A conventional approach
for SGS modelling is to approximate the SGS stresses with the resolved flow variables
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in an arithmetic form based on turbulence theory and hypothesis. For example, an eddy
viscosity model is based on the Boussinesq hypothesis that linearly relates the SGS stress
tensor τ with the resolved strain rate tensor S̄, i.e. τ − 1

3 tr(τ )I = −2νtS̄, where I is the
identity tensor, and νt is an eddy viscosity to be modelled with the resolved flow variables
(see, for example, Smagorinsky 1963; Nicoud & Ducros 1999; Vreman 2004; Nicoud
et al. 2011; Verstappen 2011; Rozema et al. 2015; Trias et al. 2015; Silvis, Remmerswaal
& Verstappen 2017). Some models dynamically determine the coefficients of the eddy
viscosity models (Germano et al. 1991; Lilly 1992; Ghosal et al. 1995; Piomelli & Liu
1995; Meneveau, Lund & Cabot 1996; Park et al. 2006; You & Moin 2007; Lee, Choi &
Park 2010; Verstappen et al. 2010). Other types of SGS model include the similarity model
(Bardina, Ferziger & Reynolds 1980; Liu, Meneveau & Katz 1994; Domaradzki & Saiki
1997), the mixed model (Bardina et al. 1980; Zang, Street & Koseff 1993; Liu et al. 1994;
Vreman, Geurts & Kuerten 1994; Liu, Meneveau & Katz 1995; Salvetti & Banerjee 1995;
Horiuti 1997; Akhavan et al. 2000), and the gradient model (Clark, Ferziger & Reynolds
1979; Liu et al. 1994). These models have been successfully applied to various turbulent
flows, but there are still drawbacks to overcome. For example, the eddy viscosity model
is purely dissipative, and thus the energy transfer from subgrid to resolved scales (i.e.
backscatter) cannot be predicted. On the other hand, the scale similarity model (SSM)
provides the backscatter but does not dissipate energy sufficiently, and thus simulations
often diverge or produce inaccurate results. Therefore, an additional eddy-viscosity term
is introduced and usually coupled with the SSM to properly dissipate the energy (Bardina
et al. 1980; Liu et al. 1994; Langford & Moser 1999; Sarghini, Piomelli & Balaras 1999;
Meneveau & Katz 2000; Anderson & Domaradzki 2012). The dynamic version of the eddy
viscosity model can predict local backscatter with negative νt, but an averaging procedure
or ad hoc clipping on negative νt is required in actual LES to avoid numerical instability
(Germano et al. 1991; Lilly 1992; Ghosal et al. 1995; Meneveau et al. 1996; Park et al.
2006; Thiry & Winckelmans 2016).

An alternative approach for SGS modelling is to use high-fidelity direct numerical
simulation (DNS) data. The optimal LES (Langford & Moser 1999; Völker, Moser &
Venugopal 2002; Langford & Moser 2004; Zandonade, Langford & Moser 2004; Moser
et al. 2009), based on the stochastic estimation (Adrian et al. 1989; Adrian 1990), is such
an approach, where a prediction target, e.g. the SGS force (divergence of the SGS stress
tensor), is expanded with input variables (velocity and velocity gradients). The coefficients
of the input variables are found by minimizing the mean-squared error between the true
and estimated values of the prediction target. Another example is to use a machine-learning
algorithm such as the fully connected neural network (FCNN). The FCNN is a nonlinear
function that maps the predefined input variables and prediction target, where the target
can be the SGS stresses or SGS force. Like the optimal LES, the weight parameters
of the FCNN are found by minimizing a given loss function such as the mean-squared
error. In the case of two-dimensional decaying isotropic turbulence, Maulik et al. (2018)
applied an FCNN-based approximate deconvolution model (Stolz & Adams 1999; Maulik
& San 2017) to LES, where the filtered vorticity and streamfunction at multiple grid
points were the inputs of FCNNs and the corresponding prediction targets were the
deconvolved vorticity and streamfunction, respectively. This FCNN-based LES showed a
better prediction of the kinetic energy spectrum than LES with the dynamic Smagorinsky
model (DSM; see Germano et al. 1991; Lilly 1992). Maulik et al. (2019) used the same
input together with eddy-viscosity kernels, but had the SGS force as the target. In a
posteriori test, this FCNN model reasonably predicted the kinetic energy spectrum even
though the prediction performance was not much better than those of the Smagorinsky and

914 A16-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

93
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.931


Toward neural-network-based large eddy simulation

Leith models (Leith 1968) with the model coefficients of Cs = 0.1–0.3 in νt = (CsΔ̄)2|S̄|,
where Δ̄ is the grid spacing and |S̄| =

√
2S̄ijS̄ij. In the case of three-dimensional forced

isotropic turbulence, Vollant, Balarac & Corre (2017) used an FCNN with the target of
the SGS scalar flux divergence ∇ · (uφ − ūφ̄) and the input of S̄, where ū and φ̄ are
the filtered velocity and passive scalar, respectively. They showed that the results from
FCNN-based LES were very close to those from the filtered DNS (fDNS). Zhou et al.
(2019) reported that using the filter size as well as the velocity gradient tensor as the input
variables was beneficial to predict the SGS stresses for the flow having a filter size different
from that of trained data. Xie, Wang & E (2020a) used an FCNN to predict the SGS force
with the input of ∇ū at multiple grid points, and this FCNN performed better than DSM
for the prediction of energy spectrum. In the case of three-dimensional decaying isotropic
turbulence, Wang et al. (2018) adopted the velocity and its first and second derivatives
for the input of FCNN to predict the SGS stresses, and showed better performance in a
posteriori test than that of DSM. Beck, Flad & Munz (2019) used a convolutional neural
network (CNN) to predict the SGS force with the input of the velocity in whole domain,
and showed in a priori test that the CNN-based SGS model predicted the SGS force better
than an FCNN-based SGS model did. In the case of compressible isotropic turbulence,
Xie et al. (2019a) used FCNNs to predict SGS force and divergence of SGS heat flux,
respectively, with the inputs of ∇ũ, ∇2ũ, ∇T̃ , ∇2T̃ , ρ̄ and ∇ρ̄ at multiple grid points,
where ρ is the fluid density, and ũ and T̃ are the mass-weighting-filtered velocity and
temperature, respectively. Xie et al. (2019b) applied FCNNs to predict the coefficients of

a mixed model with the inputs of |ω̃|, θ̃ ,
√

α̃ijα̃ij,
√

S̃ijS̃ij, |∇T̃|, where |ω̃|, θ̃ , α̃ij and S̃ij

are the mass-weighting-filtered vorticity magnitude, velocity divergence, velocity gradient
tensor and strain rate tensor, respectively. Xie et al. (2019c) trained FCNNs with ∇ũ, ∇2ũ,
∇T̃ and ∇2T̃ at multiple grid points as the inputs to predict SGS stresses and SGS heat
flux, respectively. Xie et al. (2020b) used FCNNs to predict SGS stresses and SGS heat

flux with the inputs of ∇ũ, ∇̂̃u, ∇T̃ and ∇ ˆ̃T at multiple grid points, where the filter size of
Δ̂ is twice that of Δ̃. They (Xie et al. 2019a,b,c, 2020b) showed that the FCNN-based LES
provided more accurate kinetic energy spectrum and structure function of the velocity than
those based on DSM and dynamic mixed model.

Unlike for isotropic turbulence, the progress in LES with an FCNN-based SGS model
has been relatively slow for turbulent channel flow. Sarghini, de Felice & Santini (2003)
trained an FCNN with the input of filtered velocity gradient and ū′

iū
′
j to predict the

model coefficient of the Smagorinsky model for a turbulent channel flow, where ū′
i is the

instantaneous filtered velocity fluctuations. Pal (2019) trained an FCNN to predict νt in the
eddy viscosity model with the input of filtered velocity and strain rate tensor. In Sarghini
et al. (2003) and Pal (2019), however, FCNNs were trained by LES data from traditional
SGS models, i.e. mixed model (Bardina et al. 1980) and DSM, respectively, rather than
by fDNS data. Wollblad & Davidson (2008) trained an FCNN with fDNS data to predict
the coefficients of the truncated proper orthogonal decomposition (POD) expansion of
the SGS stresses with the input of ū′

i, wall-normal gradient of ū′
i, filtered pressure (p̄)

and wall-normal and spanwise gradients of p̄. They showed from a priori test that the
predicted SGS stresses were in good agreement with those from fDNS data. However,
the FCNN alone was unstable in a posteriori test, and thus the FCNN combined with the
Smagorinsky model was used to conduct LES, i.e. τij = cbτ

FCNN
ij + (1 − cb)τ

Smag
ij , where

τFCNN
ij and τ

Smag
ij were the SGS stresses from the FCNN and Smagorinsky model (with
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Cs = 0.09), respectively, and cb was a weighting parameter needed to be tuned. Gamahara
& Hattori (2017) used FCNNs to predict the SGS stresses with four input variable sets,
{∇ū, y}, {∇ū}, {S̄, R̄, y} and {S̄, y}, where R̄ is the filtered rotation rate tensor and y is
the wall-normal distance from the wall. They showed in a priori test that the correlation
coefficients between the true and predicted SGS stresses from {∇ū, y} were highest among
four input sets, and even higher than those from traditional SGS models (gradient and
Smagorinksy models). However, a posteriori test (i.e. actual LES) with {∇ū, y} did not
provide any advantage over the LES with the Smagorinsky model. This kind of the
inconsistency between a priori and a posteriori tests had been also observed during the
development of traditional SGS models (Liu et al. 1994; Vreman, Geurts & Kuerten 1997;
Park, Yoo & Choi 2005; Anderson & Domaradzki 2012).

Previous studies (Wollblad & Davidson 2008; Gamahara & Hattori 2017) showed that
FCNN is a promising tool for modelling SGS stresses from a priori test, but it is unclear
why FCNN-based LESs did not perform better for a turbulent channel flow than LESs
with traditional SGS models. Thus, a more systematic investigation on the SGS variables
such as the SGS dissipation and transport is required to diagnose the performance of
FCNN. The input variables for the FCNN should be also chosen carefully based on
the characteristics of the SGS stresses. Therefore, the objective of the present study is
to develop an FCNN-based SGS model for a turbulent channel flow, based on both a
priori and a posteriori tests, and to find appropriate input variables for the successful
LES with FCNN. We train FCNNs with different input variables such as S̄ and ∇ū,
and the target to predict is the SGS stress tensor. We also test ū and ∂ū/∂y as the input
for FCNN (note that these were the input variables of the optimal LES for a turbulent
channel flow by Völker et al. 2002). The input and target data are obtained by filtering the
data from DNS of a turbulent channel flow at the bulk Reynolds number of Reb = 5600
(Reτ = uτ δ/ν = 178), where uτ is the wall-shear velocity, δ is the channel half height and
ν is the kinematic viscosity. In a priori test, we examine the variations of the predicted
SGS dissipation, backscatter and SGS transport with the input variables, which are known
to be important variables for successful LES of a turbulent channel flow (Piomelli, Yu &
Adrian 1996; Völker et al. 2002; Park et al. 2006). In a posteriori test, we perform LESs
with FCNN-based SGS models at Reτ = 178 and estimate their prediction performance by
comparing the results with those from the fDNS data and LESs with DSM and SSM (Liu
et al. 1994). The details about DNS and FCNN are given in § 2. The results from a priori
and a posteriori tests at Reτ = 178 are given in § 3. Applications of the FCNN trained
at Reτ = 178 to LES of a higher-Reynolds-number flow (Reτ = 723) and to LES with a
different grid resolution at Reτ = 178 are also discussed in § 3, followed by conclusions
in § 4.

2. Numerical details

2.1. NN-based SGS model
The governing equations for LES are the spatially filtered continuity and Navier–Stokes
equations,

∂ ūi

∂xi
= 0, (2.1)

∂ ūi

∂t
+ ∂ ūiūj

∂xj
= − ∂ p̄

∂xi
+ 1

Re
∂2ūi

∂xj∂xj
− ∂τij

∂xj
, (2.2)
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where x1 (=x), x2 (=y) and x3 (=z) are the streamwise, wall-normal and spanwise
directions, respectively, ui (=u, v, w) are the corresponding velocity components, p is the
pressure, t is time, the overbar denotes the filtering operation and τij (=uiuj − ūiūj) is the
SGS stress tensor. We use a FCNN (denoted as NN hereafter) with the input of the filtered
flow variables to predict τij. The database for training the NN is obtained by filtering the
instantaneous flow fields from DNS of a turbulent channel flow at Reτ = 178 (see § 2.2). To
estimate the performance of the present NN-based SGS model, we perform two additional
LESs with the DSM (Germano et al. 1991; Lilly 1992) and SSM (Liu et al. 1994).
For the DSM, τij − 1

3τkkδij = −2C2|S̄|S̄ij, where C2 = −1
2 〈LijMij〉h/〈MijMij〉h, |S̄| =√

2S̄ijS̄ij, S̄ij = 1
2 (∂ ūi/∂xj + ∂ ūj/∂xi), Lij = ˜̄uiūj − ˜̄ui ˜̄uj, Mij = (Δ̃/Δ̄)

2| ˜̄S| ˜̄Sij−˜|S̄|S̄ij, Δ̄ and

Δ̃ (=2Δ̄) denote the grid and test filter sizes, respectively, and 〈〉h denotes averaging in
the homogeneous (x and z) directions. For the SSM, τij = ˜̄uiūj − ˜̄ui ˜̄uj, where k̃cut = 0.5k̄cut
and kcut is the cut-off wavenumber.

The NN adopted in the present study has two hidden layers with 128 neurons per hidden
layer, and the output of the NN is the six components of τij (figure 1). Previous studies
used one (Gamahara & Hattori 2017; Maulik & San 2017; Maulik et al. 2018; Zhou et al.
2019) or two (Sarghini et al. 2003; Wollblad & Davidson 2008; Vollant et al. 2017; Wang
et al. 2018; Maulik et al. 2019; Xie et al. 2019a,b,c, 2020a,b) hidden layers, and Gamahara
& Hattori (2017) showed that 100 neurons per hidden layer were sufficient for the accurate
predictions of τij for a turbulent channel flow in a priori test. We also tested NN with three
hidden layers, but more hidden layers than two did not further improve the performance
both in a priori and a posteriori tests (see the Appendix).

In the present NN, the output of the mth layer, h(m), is as follows:

h(1)
i = qi (i = 1, 2, . . . , Nq);

h(2)
j = max[0, r(2)

j ], r(2)
j

= γ
(2)
j

⎛⎝ Nq∑
i=1

W(1)(2)
ij h(1)

i + b(2)
j − μ

(2)
j

⎞⎠/
σ

(2)
j + β

(2)
j ( j = 1, 2, . . . , 128);

h(3)
k = max[0, r(3)

k ], r(3)
k

= γ
(3)
k

⎛⎝ 128∑
j=1

W(2)(3)
jk h(2)

j + b(3)
k − μ

(3)
k

⎞⎠/
σ

(3)
k + β

(3)
k (k = 1, 2, . . . , 128);

h(4)
l = sl =

128∑
k=1

W(3)(4)
kl h(3)

k + b(4)
l (l = 1, 2, . . . , 6),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(2.3)

where qi is the input, Nq is the number of input components, W (m)(m+1) is the weight
matrix between the mth and (m + 1)th layers, b(m) is the bias of the mth layer, sl is
the output and μ(m), σ (m), γ (m) and β(m) are parameters for a batch normalization
(Ioffe & Szegedy 2015). We use a rectified linear unit (ReLU; see Nair & Hinton
2010), h(m) = max[0, r(m)], as the activation function at the hidden layers. We also tested
other typical activation functions such as sigmoid and hyperbolic tangent functions, but

914 A16-5

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

93
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.931


J. Park and H. Choi

Input layer

(1st layer)

Hidden layer

(2nd layer)

Hidden layer

(3rd layer)

Output layer

(4th layer)

qNq

q2

q1 s1 = τ xx

s2 = τ xy

s3 = τ xz

s4 = τ yy

s5 = τ yz

s6 = τ zz

Figure 1. Schematic diagram of the present NN with two hidden layers (128 neurons per hidden layer).
Here, q (=[q1, q2, . . . , qNq ]T) is the input of NN, Nq is the number of input components (see table 1) and
s (=[s1, s2, . . . , s6]T) is the output of NN.

the convergence of the loss function (2.4) was faster with the ReLU than with others.
Here W (m)(m+1), b(m), γ (m) and β(m) are trainable parameters that are optimized to
minimize the loss function defined as

L = 1
2Nb

1
6

6∑
l=1

Nb∑
n=1

(
sfDNS

l,n − sl,n

)2 + 0.005
∑

o

w2
o, (2.4)

where sfDNS
l,n is the SGS stresses obtained from fDNS data, Nb is the number of minibatch

data (128 in this study following Kingma & Ba 2014) and wo denotes the components of
W (m)(m+1). An adaptive moment estimation (Kingma & Ba 2014), which is a variant of
gradient descent method, is applied to update the trainable parameters and the gradients
of the loss function with respect to those parameters are calculated through the chain rule
of derivatives (Rumelhart, Hinton & Williams 1986; LeCun, Bengio & Hinton 2015). All
training procedures are conducted using the Python open-source library TensorFlow.

We choose five different input variables (corresponding to NN1–NN5), as listed in
table 1. Six components of S̄ij and nine components of ᾱij (=∂ ūi/∂xj) at each grid point
are the inputs to NN1 and NN2, respectively, and the output is six components of τij
at the same grid location. The input ᾱij is selected for NN2 because τij can be written
as τij = 2γ ᾱikᾱjk + O(γ 2), where γ (ζ ) = ∫ ∞

−∞ ξ2G(ξ, ζ ) dξ and G(ξ, ζ ) is the kernel
of the filter (Bedford & Yeo 1993). On the other hand, a general class of SGS model
based on the local velocity gradient (Lund & Novikov 1992; Silvis et al. 2019) can be
expressed as τij = ∑5

k=0 c(k)T(k)
ij , where c(k) is the model coefficient, T(0)

ij = δij, T(1)
ij = S̄ij,

T(2)
ij = S̄ikS̄kj, T(3)

ij = R̄ikR̄kj, T(4)
ij = S̄ikR̄kj − R̄ikS̄kj, T(5)

ij = S̄ikS̄klR̄lj − R̄ikS̄klS̄lj and R̄ij is
the filtered rotation rate tensor. Thus, NN1 can be regarded as an SGS model including
T(0)

ij , T(1)
ij and T(2)

ij , but it directly predicts τij through a nonlinear process of NN rather
than predicting c(k). In NN3 and NN4, a stencil of data at 3(x) × 3(z) grid points are the
input, and τij at the center of this stencil is the output. In NN5, the filtered velocity and
wall-normal velocity gradient at 3(x) × 3(z) grid points are the input variables, and the
output is the same as that of NN3 and NN4. The use of a stencil of data for NN3–NN5
is motivated by the results of Xie et al. (2019c) that using a stencil of input variables (ᾱij
and temperature gradient) predicted τij better than using the same input only at one grid
point. The choice of ūi and ∂ ūi/∂y as the input of NN5 is also motivated by the results of
optimal LES by Völker et al. (2002), in which LES with the input of both ūi and ∂ ūi/∂y
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NN model Input variable(s) Input grid point(s) Number of input components (Nq)

NN1 S̄ij 1 6
NN2 ᾱij 1 9
NN3 S̄ij 3(x) × 3(z) 54
NN4 ᾱij 3(x) × 3(z) 81
NN5 ūi and ∂ ūi/∂y 3(x) × 3(z) 54

Table 1. Input variables of NN models.

outperformed that with the input of ūi alone. We also considered an NN with the input
of ūi at nx(x) × 3( y) × nz(z) grid points, where nx = nz = 3, 5, 7, or 9. The results with
these three-dimensional multiple input grid points were little different in a priori tests from
that of NN5. As shown in § 3, the results with NN3–NN5 in a priori tests are better than
those with NN1 and NN2 (single input grid point), but actual LES (i.e. a posteriori test)
with NN3–NN5 are unstable. Therefore, we did not seek to adopt more input grid points.
Note also that we train a single NN for all y locations using pairs of the input and output
variables. The relations between these variables are different for different y locations, and
thus y locations are implicitly embedded in this single NN. One may train an NN at each
y location, but this procedure increases the number of NNs and the memory size. On the
other hand, Gamahara & Hattori (2017) provided y locations as an additional input variable
for a single NN, but found that the result of a priori test with y location was only slightly
better than that without y location. Therefore, we do not attempt to include y location as
an additional input variable in this study.

While training NN1–NN5, the input and output variables are normalized in wall units,
which provides successful results because the flow variables in turbulent channel flow
are well scaled in wall units (see § 3). As the performance of an NN depends on the
normalization of input and output variables (see, for example, Passalis et al. 2019),
we considered two more normalizations: one was with the centreline velocity (Uc) and
channel half height (δ), and the other was such that the input and output variables
were scaled to have zero mean and unit variance at each y location, e.g.τ ∗

ij (x, y, z, t) =
(τij(x, y, z, t) − τmean

ij ( y))/τ rms
ij ( y) (no summation on i and j), where the superscripts mean

and rms denote the mean and root-mean-square (r.m.s.) values, respectively. The first
normalization was not successful for the prediction of a higher-Reynolds-number flow
with an NN trained at lower Reynolds number, because the near-wall flow was not properly
scaled with this normalization. The second normalization requires a priori knowledge on
τmean

ij ( y) and τ rms
ij ( y) even for a higher-Reynolds-number flow to predict. Thus, we did not

take the second normalization either.
Figure 2 shows the variations of the training error ετ with the epoch, and the correlation

coefficients ρτ between true and predicted SGS stresses for NN1–NN5, where ετ and ρτ

are defined as

ετ = 1
2Ndata

1
6

6∑
l=1

Ndata∑
n=1

(
sfDNS

l,n − sl,n

)2
, (2.5)

ρτ =
6∑

l=1

Ndata∑
n=1

(
sfDNS

l,n sl,n

)/ ⎛⎝
√√√√ 6∑

l=1

Ndata∑
n=1

(
sfDNS

l,n

)2

√√√√ 6∑
l=1

Ndata∑
n=1

(
sl,n

)2

⎞⎠ . (2.6)
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Figure 2. Training error and correlation coefficient by NN1–NN5: (a) training error versus epoch;
(b) correlation coefficient. In (a), red solid line, NN1; blue solid line, NN2; red dashed line, NN3; blue dashed
line, NN4; green solid line, NN5. In (b), gray and black bars are the correlation coefficients for training and test
datasets, respectively, where the number of test data is the same as that of the training data (Ndata = 1 241 600
(§ 2.2)).

Here, one epoch denotes one sweep through the entire training dataset (Hastie, Tibshirani
& Friedman 2009), and Ndata is the number of entire training data. The training errors
nearly converge at 20 epochs (figure 2a). In terms of computational time using a single
graphic process unit (NVIDIA GeForce GTX 1060), about 1 min is spent for each
epoch. The correlation coefficients from the training and test datasets are quite similar to
each other (figure 2b), indicating that severe overfitting is not observed for NN1–NN5.
The training error and correlation coefficient are smaller and larger, respectively, for
NN3–NN5 than those for NN1 and NN2.

Sarghini et al. (2003) and Pal (2019) indicated that required computational time for their
LESs with NNs was less than that with traditional SGS models. When an NN is used for
obtaining the SGS stresses, its cost depends on the numbers of hidden layers and neurons
therein as well as the choices of input and output variables. Actually, in the present study,
the computational time required for one computational time-step advancement with NN1
is approximately 1.3 times that with a traditional SGS model such as DSM.

2.2. Details of DNS and input and output variables
A DNS of turbulent channel flow at Reb = 5600 (Reτ = 178) is conducted to obtain the
input and output of NN1–NN5 (table 1), where Reb is the bulk Reynolds number defined by
Reb = Ub(2δ)/ν, Ub is the bulk velocity and Reτ = uτ δ/ν is the friction Reynolds number.
The Navier–Stokes and continuity equations are solved in the form of the wall-normal
vorticity and the Laplacian of the wall-normal velocity, as described in Kim, Moin &
Moser (1987). The dealiased Fourier and Chebyshev polynomial expansions are used in
the homogeneous (x and z) and wall-normal (y) directions, respectively. A semi-implicit
fractional step method is used for time integration, where a third-order Runge–Kutta
and second-order Crank–Nicolson methods are applied to the convection and diffusion
terms, respectively. A constant mass flux in a channel is maintained by adjusting the mean
pressure gradient in the streamwise direction at each time step.

Table 2 lists the computational parameters of DNS, where Nxi are the numbers of grid
points in xi directions, Lxi are the corresponding computational domain sizes, �x and
�z are the uniform grid spacings in x and z directions, respectively, and �y+

min is the
smallest grid spacing at the wall in the wall-normal direction. Here Δx and Δz are the
filter sizes in x and z directions, respectively, and they are used for obtaining fDNS data.
We apply the spectral cut-off filter only in the wall-parallel (x and z) directions as in the
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Reb Reτ Nx, Ny, Nz Lx/δ, Lz/δ �x+, �z+, �y+
min �T+ �+

x , �+
z

5600 178 96, 97, 96 2π, π 11.7, 5.8, 0.1 9.4 69.9, 35.0
27 600 723 192, 193, 192 π, 0.5π 11.8, 5.9, 0.1 11.4 71.0, 35.5

Table 2. Computational parameters of DNS. Here, the superscript + denotes the wall unit and �T is the
sampling time interval of the instantaneous DNS flow fields for constructing the input and output database.

previous studies (Piomelli et al. 1991, 1996; Völker et al. 2002; Park et al. 2006). The use
of only wall-parallel filters can be justified because small scales are efficiently filtered out
by wall-parallel filters and wall-normal filtering through the truncation of the Chebyshev
mode violates the continuity unless the divergence-free projection is performed (Völker
et al. 2002; Park et al. 2006). The Fourier coefficient of a filtered flow variable ˆ̄f is defined
as

ˆ̄f (kx, y, kz, t) = f̂ (kx, y, kz, t) H
(
kx,cut − |kx|

)
H

(
kz,cut − |kz|

)
, (2.7)

where f̂ is the Fourier coefficient of an unfiltered flow variable f , H is the Heaviside
step function and kx,cut and kz,cut are the cut-off wavenumbers in x and z directions,
respectively. The filter sizes in table 2, Δ+

x and Δ+
z , are the same as those in Park

et al. (2006), and the corresponding cut-off wavenumbers are kx,cut = 8 (2π/Lx) and
kz,cut = 8 (2π/Lz), respectively. We use the input and output database at Reτ = 178 to train
NN1–NN5. The training data are collected at every other grid point in x and z directions to
exclude highly correlated data, and at all grid points in y direction from 200 instantaneous
fDNS fields. Then, the number of training data from 200 fDNS fields is 1 241 600
(=200 × NfDNS

x /2 × NfDNS
z /2 × Ny), where NfDNS

x = Lxkx,cut/π and NfDNS
z = Lzkz,cut/π.

We have also tested 300 fDNS fields for training NNs, but their prediction performance for
the SGS stresses is not further improved, so the number of training data used is sufficient
for the present NNs. A DNS at a higher Reynolds number of Reτ = 723 is also carried
out, and its database is used to estimate the prediction capability of the present NN-based
SGS model for untrained higher-Reynolds-number flow.

3. Results

In § 3.1, we perform a priori tests for two different Reynolds numbers, Reτ = 178 and 723,
in which the SGS stresses are predicted by NN1–NN5 with the input variables from fDNS
at each Reynolds number, and compared with the SGS stresses from fDNS. Note that
NN1–NN5 are constructed at Reτ = 178 and Reτ = 723 is an untrained higher Reynolds
number. The filter sizes used in a priori tests, Δ+

x and Δ+
z , are given in table 2. In § 3.2, a

posteriori tests (i.e. actual LESs solving (2.1) and (2.2)) with NN1–NN5 are performed for
a turbulent channel flow at Reτ = 178 and their results are compared with those of fDNS.
Furthermore, LES with NN1 (trained at Reτ = 178) is carried out for a turbulent channel
flow at Reτ = 723 and its results are compared with those of fDNS. Finally, in § 3.3, we
provide the results when the grid resolution in LES is different from that used in training
NN1, and suggest a way to obtain good results.

3.1. A priori test
Figure 3 shows the mean SGS shear stress 〈τxy〉 and dissipation 〈εSGS〉 predicted by
NN1–NN5, together with those of fDNS and from DSM and SSM, where εSGS = −τijS̄ij
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Figure 3. Mean SGS shear stress and dissipation predicted by NN1–NN5 (a priori test at Reτ = 178):
(a) mean SGS shear stress 〈τxy〉; (b) mean SGS dissipation 〈εSGS〉. •, fDNS; red solid line, NN1; blue solid
line, NN2; red dashed line, NN3; blue dashed line, NN4; green solid line, NN5; +, DSM; �, SSM.

NN1 NN2 NN3 NN4 NN5 DSM SSM

ρτxy 0.231 0.432 0.414 0.630 0.600 0.090 −0.016
ρεSGS 0.358 0.472 0.507 0.624 0.576 0.165 0.081

Table 3. Correlation coefficients between the true and predicted τxy and εSGS.

and 〈 〉 denotes the averaging in the homogeneous directions and time. Predictions of 〈τxy〉
by NNs (except that by NN2) are better than those by DSM and SSM, and NN5 provides
an excellent prediction of 〈εSGS〉 albeit other NN models are also good in the estimation
of 〈εSGS〉. Table 3 lists the correlation coefficients ρ between the true and predicted τxy
and εSGS, respectively. The values of τxy predicted by DSM and SSM have very low
correlations with true τxy, as reported by Liu et al. (1994) and Park et al. (2005). On
the other hand, NN1–NN5 have much higher correlations of τxy and εSGS than those by
DSM and SSM, indicating that instantaneous τxy and εSGS are relatively well captured by
NN1–NN5. These SGS variables are even better predicted by having the input variables at
multiple grid points (NN3–NN5) than at single grid point (NN1 and NN2). As we show
in the following, however, high correlation coefficients of τxy and εSGS in a priori test do
not necessarily guarantee excellent prediction performance in actual LES.

Figure 4(a) shows the mean SGS transport 〈TSGS〉, where TSGS = ∂(τijūi)/∂xj. Völker
et al. (2002) indicated that a good prediction of 〈TSGS〉 is necessary for an accurate LES,
and the optimal LES provided good representation of 〈TSGS〉 in a posteriori test. Among
NN models considered, NN5 shows the best agreement of 〈TSGS〉 with that of fDNS,
but NN1 and NN2 are not good at accurately predicting 〈TSGS〉 although they are still
better than SSM. Figure 4(b) shows the mean backward SGS dissipation (backscatter, i.e.
energy transfer from subgrid to resolved scales), 〈ε−

SGS〉 = 1
2 〈εSGS − |εSGS|〉. 〈ε−

SGS〉 = 0
for DSM owing to the averaging procedure in determining the model coefficient. The
mean backscatters from SSM and NN3–NN5 show reasonable agreements with that of
fDNS, but NN1 and NN2 severely underpredict the backscatter. An accurate prediction
of backscatter is important in wall-bounded flows, because it is related to the bursting
and sweep events (Härtel et al. 1994; Piomelli et al. 1996). However, SGS models
with non-negligible backscatter such as SSM do not properly dissipate energy and incur
numerical instability in actual LES (Liu et al. 1994; Akhavan et al. 2000; Meneveau &
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Figure 4. Mean SGS transport and backward SGS dissipation predicted by NN1–NN5 (a priori test at Reτ =
178): (a) mean SGS transport 〈TSGS〉; (b) mean backward SGS dissipation (backscatter) 〈ε−

SGS〉. •, fDNS; red
solid line, NN1; blue solid line, NN2; red dashed line, NN3; blue dashed line, NN4; green solid line, NN5; +,
DSM; �, SSM.

Katz 2000; Anderson & Domaradzki 2012). For this reason, some NN-based SGS models
suggested in the previous studies clipped the backscatter to be zero for ensuring stable LES
results (Maulik et al. 2018, 2019; Zhou et al. 2019). Therefore, the accuracy and stability
in the solution from LES with NN3–NN5 may not be guaranteed, even if these models
properly predict the backscatter and produce high correlation coefficients between the true
and predicted SGS stresses.

Figure 5 shows the statistics from a priori test for Reτ = 723 with NN-based SGS
models trained at Reτ = 178. The statistics predicted by NN1–NN5 for Reτ = 723 show
very similar behaviours to those for Reτ = 178, except for an underprediction of 〈τxy〉
by NN1 (similar to that by DSM) which does not degrade its prediction capability in a
posteriori test (see § 3.2).

3.2. A posteriori test
In this section, a posteriori tests (i.e. actual LESs) with NN-based SGS models are
conducted for a turbulent channel flow with a constant mass flow rate (Reb = 5600
or 27 600). Numerical methods for solving the filtered Navier–Stokes and continuity
equations are the same as those of DNS described in § 2.2. Table 4 shows the
computational parameters of LES. The grid resolution for the cases of LES178 is the same
as that of Park et al. (2006). The cases of LES178 have nearly the same grid resolutions
in wall units (because of slightly different values of Reτ ) in x and z directions as those
of fDNS used in training NNs, and the cases of LES178c and LES178f use larger and
smaller grid sizes in x and z directions than those of trained data, respectively. In the case
of LES723 (Reτ = 723), the grid sizes in wall units in x and z directions are nearly the
same as those of trained data.

In the present LESs with NN3–NN5 and SSM, we clip the SGS stresses to be zero
wherever backscatter occurs, i.e. τij = 0 when εSGS < 0, as done in the previous studies
(Maulik et al. 2018, 2019; Zhou et al. 2019). Otherwise, the solution diverges. While
removing the backscatter, we rescale the SGS stresses to maintain the net amount of SGS
dissipation in the computational domain V as follows:

τ ∗
ij = 1

2

[
1 + sign(εSGS)

]
τij ·

∫
V

εSGS dV

1
2

∫
V

(εSGS + |εSGS|) dV
. (3.1)
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Figure 5. Statistics from a priori test at Reτ = 723: (a) mean SGS shear stress 〈τxy〉; (b) mean SGS dissipation
〈εSGS〉; (c) mean SGS transport 〈TSGS〉; (d) mean backscatter 〈ε−

SGS〉. •, fDNS; red solid line, NN1; blue solid
line, NN2; red dashed line, NN3; blue dashed line, NN4; green solid line, NN5; +, DSM; �, SSM. Here,
NN1–NN5 are trained with fDNS at Reτ = 178.

Case Reb (Nx, Nz, Ny) (�x+, �z+) SGS model Reτ (w/o clipping) Reτ (with clipping)

LES178 5600 (16, 16, 49) (69.9, 35.0) NN1 181 175
— — — NN2 177 170
— — — NN3 diverged 183
— — — NN4 diverged 177
— — — NN5 diverged 178
— — — DSM 174 —
— — — SSM diverged 176
— — — no 195 —

LES178c 5600 (12, 12, 49) (93.2, 46.6) NN1 175 175
— — — DSM 171 —
— — — no 190 —

LES178f 5600 (24, 24, 49) (46.6, 23.3) NN1 192 176
— — — DSM 177 —
— — — no 193 —

LES723 27 600 (32, 32, 97) (71.0, 35.5) NN1 729 —
— — — DSM 707 —
— — — no 763 —

Table 4. Computational parameters of LES. Here, the computations are performed at constant mass flow rates
(i.e. Reb = 5600 and 27 600) and Reτ given in this table are the results of LESs. For Reb = 5600 and 27 600, the
domain sizes in x and z directions are 2πδ × πδ and πδ × 0.5πδ, respectively. �y+

min = 0.4 for all simulations,
and �y+

min, �x+ and �z+ in this table are computed with uτ from DNS (table 2).
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Figure 6. Mean velocity profiles from LES178 (a posteriori test): (a) without clipping the backscatter;
(b) with clipping the backscatter. •, fDNS; red solid line, NN1; blue solid line, NN2; red dashed line, NN3;
blue dashed line, NN4; green solid line, NN5; +, DSM; �, SSM; ◦, no SGS model. LESs with NN3–NN5 and
SSM without clipping diverged.

This backscatter clipping and rescaling on τij is similar to that of Akhavan et al. (2000)
in their development of dynamic two-component model. For the cases of LESs with NN1
and NN2, we obtain stable solutions without any special treatment such as the clipping,
wall damping or averaging over homogeneous directions and, thus, we perform LESs with
and without clipping, respectively. In LES with DSM, an averaging procedure is included
to determine the model coefficient, as mostly done in previous studies. As the present
simulations are conducted for a constant mass flow rate in a channel, the wall-shear
velocity or Reτ changes depending on the choice of SGS models. Those Reτ are listed
in table 4. For Reb = 5600, Reτ from LES178 are well predicted by NN1 and NN2 even
without clipping (less than 2 % error) and by NN3–NN5 with clipping (less than 3 %
error). On the other hand, Reτ from no SGS model has about 10 % error.

Figure 6 shows the mean velocity profiles from LES178 for various SGS models without
and with clipping the backscatter, respectively. Without clipping, LESs with NN1 and
NN2 show excellent predictions of the mean velocity, but those with NN3–NN5 and SSM
diverge. On the other hand, with clipping, LESs with all the SGS models considered
provide very good predictions of the mean velocity, which clearly indicates that backscatter
incurs numerical instability in LES. Therefore, in the following, we present the results of
LESs with clipping for NN3–NN5, and without clipping for NN1 and NN2, respectively.

Figure 7 shows the statistics of various turbulence quantities from LES178 with
NN1–NN5, together with those of fDNS and from LESs with DSM and SSM. All NNs
considered show good predictions of the r.m.s. velocity fluctuations (figure 7a). While
LES without the SGS model (i.e. coarse DNS) fortuitously well predicts ūrms owing
to overpredicted friction velocity, LES with DSM overpredicts it (Park et al. 2006).
As DSM determines the model coefficient C2( y) to be uniform in the homogeneous
directions ignoring the locality of C2(x, y, z), its prediction performance of local SGS
dissipation is degraded and may result in the overprediction of ūrms. For the predictions
of the Reynolds shear stress and SGS shear stress, NN1 performs the best among all
the SGS models considered (figures 7b and 7c). On the other hand, NN2 underpredicts
the Reynolds shear stress and significantly overpredicts the SGS shear stress. This result
is consistent with that of a priori test (figure 3a). The overprediction of 〈τxy〉 results
in the underprediction of −〈ū′v̄′〉 from the total shear stress equation, d〈ū+〉/dy+ −
〈ū′v̄′〉/u2

τ − 〈τxy〉/u2
τ = 1 − y/δ. NN3–NN5 slightly overpredict the Reynolds shear stress
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but underpredict the SGS shear stress. These NN models (NN3–NN5) are forced not to
produce the backscatter owing to the clipping as described before. NN1 and NN2 provide
backscatter but underpredict it (figure 7d). Note that DSM and SSM also require an
averaging over the homogeneous directions and clipping the backscatter, respectively, for
stable solution, and thus ε−

SGS = 0. Therefore, NN1 is the most-promising SGS model for
LES of turbulent channel flow among the NN models considered, even though NN3–NN5
show better prediction performance in a priori test. NN1 also shows the best prediction
of the mean SGS transport 〈TSGS〉 (figure 7e), confirming that a good prediction of 〈TSGS〉
is necessary for a successful LES (Völker et al. 2002). On the other hand, LESs with
all SGS models underpredict the mean SGS dissipation 〈εSGS〉 (figure 7f ), unlike the
results of a priori test (figure 3b), indicating that an excellent prediction of 〈εSGS〉 is not
a necessary condition for the accurate prediction of the turbulence statistics in LES of
turbulent channel flow, as also reported by Park et al. (2006).

Figure 8 shows the instantaneous vortical structures identified by the iso-surfaces of
λ2 = −0.005u4

τ /ν
2 (Jeong & Hussain 1995). As compared with the flow field from DNS,

the arches of the hairpin-like vortices disappear in the fDNS flow field, caused by the
larger filter size in the x direction (Δ+

x ≈ 70) than the diameter of the arch (d+ ≈ 20)
(Park et al. 2006). The instantaneous flow fields from LESs with DSM and NN1 are
similar to that of fDNS, whereas more vortical structures are observed from no SGS model
due to insufficient dissipation. As NN1 produces the best results among the NN models
considered, we provide the results from NN1 hereafter. Figure 9 shows one-dimensional
energy spectra of the velocity fluctuations at y+ = 30 from LES with NN1, together with
those of fDNS and from LES with DSM. Overall agreements of the velocity spectra from
NN1 with those of fDNS are very good, such as those from DSM.

Now, we apply NN1 to a turbulent channel flow at a higher Reynolds number of Reb =
27 600 (Reτ = 723 from DNS). LES is conducted at nearly the same resolution in wall
units as that of trained data at Reτ = 178 (see table 4). The predictions of Reτ from NN1
and DSM are excellent, showing about 0.8 % and 2.2 % errors, respectively, whereas the
error from no SGS model is about 6 %. Figures 10 and 11 show the turbulence statistics
and energy spectra from LES723 with NN1, respectively, together with those of fDNS
and from LESs with DSM and no SGS model. As shown, NN1 accurately predicts the
turbulence statistics and energy spectra even at higher Reynolds number, even though the
training is performed at a lower Reynolds number of 178. This result indicates that an
NN-based SGS model trained at a lower-Reynolds-number flow maintains their prediction
performance for a higher-Reynolds-number flow, once the grid resolution in wall units is
kept to be nearly the same (Gamahara & Hattori 2017).

3.3. LES with a grid resolution different from that of trained data
We test the performance of NN1 when the grid resolution in LES is different from that
of trained data. We consider two different grid resolutions (LES178c and LES178f) as
listed in table 4. LESs with NN1 are conducted without and with clipping the backscatter,
respectively, to examine how the clipping affects the turbulence statistics for the cases
with different resolutions. With LES178c, Reτ is well predicted with and without clipping,
whereas Reτ is overpredicted with LES178f by about 8 % without clipping but becomes
closer to that of DNS with clipping. Predictions of Reτ by DSM are not very good with
coarser grids but become very good with denser grids, whereas no SGS model overpredicts
Reτ .

Figure 12 shows the changes in the turbulence statistics from NN1 due to different
grid resolutions (LES178c and LES178f), together with the statistics from fDNS and
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Figure 7. Turbulence statistics from LES178 (a posteriori test): (a) rms velocity fluctuations; (b) Reynolds
shear stress; (c) mean SGS shear stress; (d) mean backscatter; (e) mean SGS transport; ( f ) mean SGS
dissipation. •, fDNS; red solid line, NN1; blue solid line, NN2; red dashed line, NN3; blue dashed line, NN4;
green solid line, NN5; +, DSM; �, SSM; ◦, no SGS model. Note that the results of NN3–NN5 and SSM are
obtained with clipping the backscatter.

LES with DSM. When the grid resolution is coarser (LES178c) than that of trained
data, NN1 predicts the mean velocity quite well, but significantly overpredicts the r.m.s.
velocity fluctuations and Reynolds shear stress, which is similar to the results from DSM.
The backscatter clipping does not improve the results. When the grid resolution is finer
(LES178f) than that of trained data, NN1 without clipping significantly underpredicts the
mean velocity owing to the increased wall-shear velocity (Reτ ), but reasonably predicts
the r.m.s. velocity fluctuations and Reynolds shear stress. As NN1 is trained with S̄ij and
τij at a given grid resolution, it provides a (trained) amount of energy transfer between
the larger and smaller scales than the grid size. Although LES178f is performed at a finer
grid resolution, NN1 still provides an amount of energy transfer trained at a coarser grid
resolution. This may cause the increase in the amount of energy transfer and accordingly
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Figure 8. Instantaneous vortical structures from LES178 (a posteriori test): (a) DNS; (b) fDNS; (c) NN1;
(d) DSM; (e) no SGS model. For the visual clarity, the vortical structures from fDNS and LES are plotted at
the same grid resolutions in x and z directions as those of DNS by padding high wavenumber components of
the velocity with zeros.
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Figure 9. One-dimensional energy spectra of the velocity fluctuations at y+ = 30 from LES178 (a posteriori
test): (a) streamwise wavenumber; (b) spanwise wavenumber. •, fDNS; red solid line, NN1; +, DSM.

in the wall-shear velocity. On the other hand, when the grid resolution is coarser than that
of trained data, the trained amount of energy transfer given to the grid scale is smaller
than the real one. For this reason, with clipping the backscatter, changes in the turbulence
statistics including the mean velocity are notable for LES178f but not for LES178c.

From this result, it is clear that the NN-based LES requires a special treatment when the
grid resolution is different from that of trained data. Thus, we consider an NN1 trained by
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Figure 11. One-dimensional energy spectra of the velocity fluctuations at y+ = 30 from LES723 (a posteriori
test): (a) streamwise wavenumber; (b) spanwise wavenumber. •, fDNS; red solid line, NN1; +, DSM.
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Figure 12. Changes in the turbulence statistics due to different grid resolutions (LES178c and LES178f)
(a posteriori test): (a) mean velocity; (b) r.m.s. velocity fluctuations; (c) Reynolds shear stress. ◦, fDNS; solid
line, NN1 without clipping the backscatter; dashed line, NN1 with clipping the backscatter; +, DSM; black
lines and symbols are from LES178c; and red lines and symbols are from LES178f.

two fDNS datasets from two different filter sizes with the input and output variables of S̄ij
and τij. Here, we do not include the filter size as an additional input variable. Table 5 lists
the details of various NN1s considered in the present study. NN16 was already tested by
LES178c and LES178f. NN12 and NN24 are trained using fDNS datasets having the same
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NN1 model fDNS(s) for trained data LES(s)

NN16 fDNS16 LES178c and LES178f
NN12 fDNS12 LES178c
NN8,16 fDNS8 and fDNS16 LES178c
NN24 fDNS24 LES178f
NN16,32 fDNS16 and fDNS32 LES178f

Table 5. NN1 trained with different fDNS datasets. Here, fDNSN denotes the fDNS data with the number
of grid points N (=Nx = Nz). Note that the numbers of grid points (Nx × Nz) for LES178c and LES178f are
12 × 12 and 24 × 24, respectively, as listed in table 4.
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Figure 13. Turbulence statistics from LES178c (a posteriori test): (a) mean velocity; (b) r.m.s. velocity
fluctuations; (c) Reynolds shear stress. •, fDNS; black solid line, NN16; blue solid line, NN12; red solid line,
NN8,16; +, DSM.

grid resolutions as those of LES178c and LES178f, respectively. On the other hand, NN8,16
is trained by both fDNS datasets with two filters corresponding to larger and smaller sizes
(N = 8 and 16) than the grid resolution in LES178c (N = 12), and NN16,32 is trained by
two fDNS datasets with N = 16 and 32 (N = 24 for LES178f), respectively.

Now, we conduct LES178c with NN12 and NN8,16, and LES178f with NN24 and
NN16,32, respectively, and compare the results with those of fDNS and from LESs with
NN16 and DSM. All LESs with NNs are conducted without clipping the backscatter.
Figure 13 shows the results of LES178c. As shown, LES with NN8,16 provides much
more accurate predictions of the r.m.s. velocity fluctuations and Reynolds shear stress
than those from NN16 and DSM, showing the performance almost similar to that from
NN12. In the case of LES178f (figure 14), NN16,32 shows better prediction performance for
the mean velocity, r.m.s. velocity fluctuations and Reynolds shear stress than those from
NN16, and has similar predictions to those from NN24. We have also tested NN8,16 for
LES178f (N = 24) and NN16,32 for LES178c (N = 12), respectively. In these cases, LESs
with NN8,16 and NN16,32 do not show better performance than that with NN16. Therefore,
when the resolution in LES is not similar to that of trained data, it is suggested that the
datasets having two different resolutions, coarser and finer than that of LES, should be
constructed and used to train an NN for successful LES.

4. Conclusions

We have applied a fully connected NN to the development of a SGS model of predicting the
SGS stresses for a turbulent channel flow, and conducted a priori and a posteriori tests to
estimate its prediction performance. Five different NNs with different input variables have
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Figure 14. Turbulence statistics from LES178f (a posteriori test): (a) mean velocity; (b) r.m.s. velocity
fluctuations; (c) Reynolds shear stress. •, fDNS; black solid line, NN16; blue solid line, NN24; red solid line,
NN16,32; +, DSM.

been trained with fDNS data at Reτ = 178 using a spectral cut-off filter, where the input
variables considered were the strain-rate tensor at single and multiple grid points (NN1
and NN3, respectively), velocity gradient tensor at single and multiple points (NN2 and
NN4, respectively) and the velocity and wall-normal velocity gradient vectors at multiple
points (NN5), respectively.

In a priori tests, the NN-based SGS models with the input variables at multiple grid
points (NN3, NN4 and NN5) had higher correlations between the true and predicted SGS
stresses, and better predicted backscatter than those with the input variables at single grid
point (NN1 and NN2). However, actual LESs (i.e. a posteriori tests) with NN3–NN5 were
unstable unless a special treatment such as the backscatter clipping was taken. On the other
hand, NN1 and NN2 showed excellent prediction performance without any ad hoc clipping
or wall damping function, although the correlations between the true and predicted SGS
stresses were relatively low. Among NN models considered, NN1 (input of the strain-rate
tensor at single grid point) performed best, and thus we applied NN1 (trained at Reτ =
178) to LES at a higher Reynolds number of Reτ = 723 with the same grid resolution in
wall units, providing successful results. Finally, we applied NN1 to LESs at Reτ = 178
with coarser and finer grid resolutions, respectively. Although the results were generally
good as compared with those from LES with the DSM, they clearly showed a limitation in
accurately predicting the turbulence statistics when LES was conducted with a resolution
different from that used for training NN. To overcome this limitation, NN1 was trained
by fDNS datasets with two filter sizes (larger and smaller than the grid size in LES),
providing a successful result. Therefore, once multiple filtered datasets with various filter
sizes are constructed and used to train an NN, one may expect a successful NN-based LES
for turbulent channel flow, even if the grid resolution at hand is different from those used
to construct the NN.

Now, let us discuss current limitations of NN-based LES and future research directions.
Some limitations were also reported in Wollblad & Davidson (2008), Gamahara &
Hattori (2017) and Zhou et al. (2019). First, the performance of NN-based SGS model
depends on the input variables. In the present study, we considered the filtered strain-rate
tensor S̄ij and filtered velocity gradient tensor ᾱij as input variables, and showed that
S̄ij performs better than ᾱij. As the SGS stress tensor τij is a symmetric tensor, one
may also consider other combinations of S̄ij and R̄ij (filtered rotation rate tensor) as
input variables, as described in § 2.1. Thus, a further study in this direction is needed.
Second, the results of a priori and a posteriori tests on NN-based SGS models are
inconsistent with each other. Traditional physics-based SGS models have also the
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same inconsistency. That is, some traditional SGS models having a poor performance
in a priori test perform very well in a posteriori test. However, this poor performance
in a priori test does not mean the failure of such models, but indicates the fundamental
limitation of a priori test itself (Park et al. 2005). The present NN-based SGS model is
constructed using a database containing static (i.e. instantaneous) flow information, thus
lacking dynamic (i.e. temporal) information of filtered flow variables which is important
in actual LES (i.e. a posteriori test). Therefore, the present model is not free from the
inconsistency observed in traditional SGS models, and a database containing more static
information does not necessarily provide better output. In this regard, a different approach
of constructing NN-based SGS models may be searched for. In traditional physics-based
SGS modelling, Meneveau et al. (1996) proposed to accumulate the flow information over
flow pathlines and constructed a Lagrangian dynamic SGS model. Thus, a Lagrangian
approach or reinforcement learning with a target statistics may be a way to overcome this
inconsistency. To the best of the authors’ knowledge, there has been no attempt to construct
such an NN-based SGS model. This approach may provide an improved performance in
NN-based LES. Third, an NN-based SGS model should be trained by databases containing
different flow characteristics such as shear-driven, rotation-driven and separated flow
characteristics. The present SGS model was trained by a database of turbulent channel
flow, and thus may not be applicable to other types of flows. Thus, more databases should
be generated and used for training an NN. Here, we do not mean that almost all the flow
databases should be trained for successful LES, but we suggest that some representative
flow databases such as rotating channel flow, flow over a backward-facing step, flow over
a circular cylinder and jet may be sufficient to build a successful NN for flow inside/over
a complex geometry. However, how to combine different flow databases in an NN-based
SGS model is still a difficult problem. The present NN-based SGS model was trained by
the input and output variables normalized by wall units, but it may not be applicable to
complex flow (e.g. a circular cylinder) because this flow cannot be scaled in wall units.
To overcome this limitation, one should develop a universal non-dimensionalization of
input and output variables for different flow types. This is an important task for the use of
NN-based SGS model to flow inside/over a complex geometry.
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ICT (grant numbers 2019R1A2C2086237 and 2017M2A8A4018482). The computing resources are provided
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Appendix. A priori and a posteriori tests by NNs with different numbers of hidden
layers

Figure 15 shows the effects of the number of hidden layers of NNs (NN1, NN3 and
NN5) on the mean SGS and Reynolds shear stresses from a priori and a posteriori
tests, respectively. The Reynolds shear stress from NN3 and NN5 are obtained from LES
with clipping the backscatter. For all NNs considered, one hidden layer is not sufficient
for accurately predicting the mean SGS shear stress, and at least two hidden layers are
required. In actual LES, one hidden layer seems to be sufficient for NN1 and NN3, and
two hidden layers are required for NN5. Therefore, two hidden layers are taken for the
present study for all NNs considered.
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Figure 15. Effects of the number of hidden layers (Nhl) on the mean SGS shear stress (a priori test) and
Reynolds shear stress (a posteriori test; LES178): (a) NN1; (b) NN3; (c) NN5. •, fDNS; black solid line,
Nhl = 1; blue solid line, Nhl = 2; red solid line, Nhl = 3.
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