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On the Error Term in Duke’s Estimate for
the Average Special Value of L-Functions

Jordan S. Ellenberg

Abstract. Let F be an orthonormal basis for weight 2 cusp forms of level N. We show that various

weighted averages of special values L( f ⊗χ, 1) over f ∈ F are equal to 4πc + O(N−1+ǫ), where c is an

explicit nonzero constant. A previous result of Duke gives an error term of O(N−1/2 log N).

Introduction

Let N be a positive integer, and let F be a basis for S2(Γ0(N)) which is orthonormal
for the Petersson inner product. Let χ be a Dirichlet character.

In [2], Duke proves the estimate

(1)
∑

f∈F

a1( f )L( f ⊗ χ, 1) = 4π + O(N−1/2 log N)

in case N is prime and χ is unramified at N , using the Petersson formula and the

Weil bounds on Kloosterman sums.

In this note, we will sharpen the error term in Duke’s estimate to O(N−1+ǫ). At
the same time, we observe that his techniques generalize to arbitrary N and χ, and to

the situation where a1 is replaced by an arbitrary am.

We have in mind an application to the problem of finding all primitive solutions
to the generalized Fermat equation

(2) A4 + B2
= C p

In [3], we show how to associate to a solution of (2) an elliptic curve over Q[i] with

an isogeny to its Galois conjugate and a non-surjective mod p Galois representation.
Such curves are parametrized by rational points on a certain modular curve X; fol-
lowing Mazur’s method, we can place strong constraints on X(Q) by exhibiting a
quotient of the Jacobian of X with Mordell–Weil rank 0. This problem, in turn, re-

duces via the theorem of Kolyvagin and Logachev to proving the existence of a new
form f on level p2 or 2p2 such that the image of f under a certain Hecke operator
has an L-function with non-vanishing special value. We can then derive from Duke’s
estimate that (2) has no solutions for p > 2 · 105. Using the sharper estimate derived

here, we find in [3] that (2) has no solutions for p ≥ 211.

Received by the editors November 5, 2002; revised April 20, 2005.
The author is partially supported by NSF grant DMS-0401616
AMS subject classification: 11F67, 11F11.
c©Canadian Mathematical Society 2005.

535

https://doi.org/10.4153/CMB-2005-049-8 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2005-049-8


536 J. S. Ellenberg

Theorem Statements

In this section we state various versions of our estimate. If f is a modular form, we
always use am( f ) to denote the Fourier coefficients of the q-expansion of f :

f =

∞
∑

m=0

am( f )qm.

As above, we denote by F a Petersson-orthonormal basis for S2(Γ0(N)).
Write (am, Lχ) for the sum

∑

f∈F

am( f )L( f ⊗ χ, 1)

and let q be the conductor of χ.
We obtain a rather complicated bound for (am, Lχ), which we state below.

Theorem 1 Suppose N ≥ 400, N 6 | q and let σ be a real number with q2/2π ≤ σ ≤
Nq/ log N. Then we can write

(am, Lχ) = 4πχ(m)e−2πm/σN log N − E(3) + E3 − E2 − E1 + (am, B(σN log N))

where

• |(am, B(σN log N))| ≤ 30(400/399)3 exp(2π)q2m3/2N−1/2d(N)N−2πσ/q2

;
• |E1| ≤ (16/3)π3m3/2σ log Ne−N/2πmσ log N ;
• |E2| ≤ (8/9)π5ζ2(7/2)m5/2σ2N−3/2 log2 N;
• |E3| ≤ (8/3)ζ2(3/2)π3σm3/2N−1/2 log Nd(N)e−N/2πmσ log N ;
• |E(3)| ≤ 16π3m

∑

c>0,N|c min[ 2
π φ(q)c−1 log c, 1

6
σN log Nm1/2c−3/2d(c)].

Proof Immediate from Propositions 5, 6, 7, 9, 10.

If q, m are considered as constants, the bound above simplifies considerably.

Corollary 2

(am, Lχ) = 4πχ(m)e−2πm/σN log N + O(N−1+ǫ)

where the implied constants depend only on m, q, and ǫ.

Proof The only thing to check is that the bound on |E(3)| is of order at most N−1+ǫ;
one checks this by fixing some cutoff X, say X = N3, and observing that both
∑

0<c<X,N|c c−1 log c and N log N
∑

c>X,N|c c−3/2d(c) are O(N−1+ǫ).

The “true behavior” of (am, Lχ) is less clear. One might for instance ask: what
is the true asymptotic behavior of (am, Lχ) − 4πχ(m) as N grows with m, q held
fixed? More generally, what is the shape of the region in m, q, N-space for which
(am, Lχ) is close to 4πχ(m)? One might, for instance, define fδ(N) to be the smallest
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integer such that |(am, Lχ)− 4πχ(m)| ≤ δ for all m ≤ f (N). Duke’s approach shows
that fδ(N) ≫ N1/2, whereas the present results show that fδ(N) ≫ N3/5. (Remark:

further expansion of the Bessel function in Taylor series will give fδ(N) ≫ N1−ǫ, with
a constant depending on q, ǫ.) Similarly, one could try to optimize the dependence
on q in order to get a result that applied when q is large compared to N .

Proof of the Main Result

We begin by recalling the Petersson trace formula.

Lemma 3 (Petersson trace formula) Let m, n be positive integers, and let F be an or-

thonormal basis for S2(Γ0(N)).

Then

(3)
1

4π
√

mn

∑

f∈F

am( f )an( f ) = δmn − 2π
∑

c>0
c=0 (mod N)

c−1S(m, n; c) J1(4π
√

mn/c)

where S(m, n; c) is the Kloosterman sum for Γ0(N), and J1 is the J-Bessel function.

Proof See [4, Th. 3.6].

We can and do assume that F consists of eigenforms for Tp for all p 6 | N , and

for wN .
The Petersson product on S2(Γ0(N)) induces an inner product on the dual space

S2(Γ0(N))∨. With respect to this product, the left-hand side of (3) is 1
4π

√
mn

(am, an).

Lemma 3 immediately gives a bound on the size of (am, an).

Lemma 4 We have the bound

|(am, an) − 4π
√

mnδmn| ≤ 8ζ2(3/2)π2(m, n)1/2mnN−3/2d(N).

Proof Applying the Weil bound

|S(m, n; c)| ≤ (m, n, c)1/2d(c)c1/2

and the fact that | J1(x)| ≤ x/2 yields

|4π
√

mn
∑

c>0
c=0 (mod N)

c−1S(m, n; c) J1(4π
√

mn/c)|

≤ 4π
√

mn
∑

c>0
c=0 (mod N)

c−1/2d(c)(m, n)1/2(2π
√

mn/c)

= 8π2(m, n)1/2mn
∑

c>0
c=0 (mod N)

c−3/2d(c).
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Now the sum over c is equal to

∑

b>0

(Nb)−3/2d(Nb)

which is bounded above by

N−3/2d(N)
∑

b>0

b−3/2d(b) = ζ2(3/2)N−3/2d(N).

This yields the desired result.

Let Lχ be the element of S2(Γ0(N))∨ which sends each cusp form f to the special

value L( f ⊗ χ, 1). Then the value to be estimated is precisely (Lχ, am). In order to
estimate this product via the Petersson formula, it is necessary to approximate Lχ as
a sum of Fourier coefficients. We accomplish this via the standard approximation to
Lχ( f ) by a rapidly converging series [5].

We define a linear functional A(x) on S2(Γ0(N)) by the rule

A(x)( f ) =

∑

n≥1

χ(n)an( f )n−1e−2πn/x.

Then A is a good approximation to the functional Lχ when x becomes large. Let
B(x) = A(x) − Lχ. Let M be an integer such that f ⊗ χ is a cuspform on Γ1(M) for
all f ∈ F.

By the functional equation for L( f ⊗ χ, s), we have

B(x)( f ) =

∑

n≥1

an(wM( f ⊗ χ))n−1e−2πnx/M.

When x is on the order of N log N , then B(x) is a short sum, and we want to show
it is negligible. The only difficulty is bounding the Fourier coefficients of wM( f ⊗χ).
This is difficult only in case the conductor of χ has common factors with N , in which
case f ⊗ χ is not necessarily an eigenform for any W -operator, even when f is a new

form, see [1].

A crude bound will be enough for us. We define an “average cuspform”

g =

∑

f∈F

am( f )( f ⊗ χ).

Then

an(g) = χ(n)(am, an)

and it follows from Lemma 4 that

|an(g)| ≤ (8ζ2(3/2)π2m3/2N−3/2d(N))n
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for all n 6= m, while

|am(g)| ≤ 4π
√

mn + (8ζ2(3/2)π2m3/2N−3/2d(N))n

when m = n.
We have that

(am, B(x)) =

∑

f∈F

am( f )
∑

n>0

an(wM( f ⊗ χ))n−1e−2πnx/M

=

∑

n>0

an(wMg)n−1e−2πnx/M ,

so it remains to bound the Fourier coefficients of the single form wMg. Write c for
the constant 8ζ2(3/2)π2m3/2N−3/2d(N).

If τ is a point in the upper half plane, we have

|g(τ )| ≤
∑

n>0

|ane2πiτ | =

∑

n>0

|an| exp(−2π Im(nτ ))

≤
∑

n>0

cn exp(−2π Im(nτ )) + 4πm exp(−2π Im(mτ ))

≤ c(2π Im(τ ))−2 + 4πm.

Choose a positive real constant α. The Fourier coefficient an(wMg) can be ex-
pressed as

(4)

∫ 1

0

wMg(αi + t) exp(−2πin(αi + t)) dt

=

∫ 1

0

M−1(αi + t)−2g(−1/M(αi + t)) exp(−2πin(αi + t)) dt.

Now Im((−1/M(αi + t))) = M−1α|αi + t|−2. So it follows from (4) that

|an(wMg)| ≤
∫ 1

0

M−1|αi + t|−2[c(2π)−2M2α−2|αi + t|4 + 4πm] exp(2πnα) dt

= cM(2π)−2 exp(2πinα)α−2

∫ 1

0

|αi + t|2 dt

+ 4πmM−1 exp(2πnα)

∫ 1

0

|αi + t|−2 dt

≤ cM(2π)−2 exp(2πnα)α−2(α2 + 1) + 4πmM−1 exp(2πnα)α−2.

Now setting α = 1/n yields

|an(wMg)| ≤ cM(2π)−2 exp(2π)(1 + n2) + 4π exp(2π)mM−1n2.
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We now use the very rough bound 1 + n2 ≤ n2(n + 1) to obtain

|(am, B(x))| = |
∑

n>0

an(wMg)n−1e−2πnx/M|

≤ [cM(2π)−2 exp(2π) + 4πmM−1 exp(2π)]
∑

n>0

n(n + 1)e−2πnx/M

= exp(2π)(cM(2π)−2 + 4πmM−1)

× (2 exp(−2πx/M))(1 − exp(−2πx/M))−3.

Now M can be taken to be q2N where q is the conductor of χ. Let σ be a constant

to be fixed later, and set x = σN log N . Finally, suppose N > 400 and suppose
σ > q2/2π. First of all, we observe that under the hypothesis on N ,

cM(2π)−2 + 4πmM−1
= 2ζ2(3/2)q2m3/2N−1/2d(N) + 4πmq−2N−1

≤ 15q2m3/2N−1/2d(N).

Also,

1 − exp(−2πx/M) = 1 − exp(−2πσ log N/q2) ≤ 1 − 400−2πσ/q2 ≤ 400/399.

So, in all, we have proved the following.

Proposition 5 Suppose N ≥ 400 and σ > q2/2π. Then

|(am, B(σN log N))| ≤ 30(400/399)3 exp(2π)q2m3/2N−1/2d(N)N−2πσ/q2

.

In other words, we have shown that the error in approximating (am, Lχ) by (am, A(x))

is bounded by a function decreasing quickly in N , if x is chosen on the order of
q2N log N .

We now turn to the analysis of (am, A(σN log N)).
First of all, we have

(am, A(σN log N)) =

∑

f∈F

am( f )
∑

n>0

χ(n)an( f )n−1e−2πn/σN log N

=

∑

n>0

χ(n)(am, an)n−1e−2πn/σN log N

which, by Lemma 3, equals

4πχ(m)e−2πm/σN log N − 8π2
√

m
∑

n>0

χ(n)n−1/2e−2πn/σN log N

∑

c>0
c=0 (mod N)

c−1S(m, n; c) J1(4π
√

mn/c).
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We split the latter sum into two ranges; write

E(1)
= 8π2

√
m

∑

n>0

χ(n)n−1/2e−2πn/σN log N
∑

c>2π
√

mn
c=0 (mod N)

c−1S(m, n; c) J1(4π
√

mn/c)

and

E1 = 8π2
√

m
∑

n>0

χ(n)n−1/2e−2πn/σN log N
∑

0<c≤2π
√

mn
c=0 (mod N)

c−1S(m, n; c) J1(4π
√

mn/c).

We claim E1 decreases quickly with N . First, recall that | J1(a)| ≤ min(1, a/2) for all
real a. So

|E1| ≤ 8π2
√

m
∑

n>0

n−1/2e−2πn/σN log N
∑

0<Nb≤2π
√

mn

(Nb)−1S(m, n; Nb).

Note that the inner sum in |E1| has nonzero terms only when n > (N/2π
√

m)2.

In this range, the exponential decay takes over. We observe that |S(m, n; Nb)| ≤
m1/2(Nb)1/2d(Nb) < 2

√
mNb, so we can bound E1 by

|E1| ≤ 8π2
√

m
∑

n>(N/2π
√

m)2

n−1/2e−2πn/σN log N
∑

0<Nb≤2π
√

mn

2
√

m

≤ 8π2
√

m
∑

n>(N/2π
√

m)2

n−1/2e−2πn/σN log N (2
√

m)(2π
√

mn/N)

= 32π3N−1m3/2
∑

n>(N/2π
√

m)2

e−2πn/σN log N

≤ 32π3N−1m3/2e−N/2πmσ log N(1 − e−2π/σN log N )−1.

We now simplify this bound under assumptions on N and σ.

Proposition 6 Suppose N ≥ 400 and σ > q2/2π. Then

|E1| ≤ (16/3)π3m3/2σ log Ne−N/2πmσ log N .

Proof This amounts to the observation that σN log N ≥ 300, from which it follows
that

(1 − e−2π/σN log N )−1 ≤ (1/6)σN log N.

We now consider the sum E(1) over the range where n is small compared to c. In

this range, we use the Taylor approximation

(5) | J1(a) − a/2| ≤ (1/16)a3.
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So we can write E(1)
= E(2) + E2, where

E(2)
= 8π2

√
m

∑

n>0

χ(n)n−1/2e−2πn/σN log N
∑

c>2π
√

mn
c=0 (mod N)

c−1S(m, n; c)(2π
√

mn/c).

We claim E2 decreases with N . For we have by (5) that

|E2| ≤ 8π2
√

m
∑

n>0

n−1/2e−2πn/σN log N
∑

c>2π
√

mn
c=0 (mod N)

c−1S(m, n; c)(1/16)(4π
√

mn/c)3

= 32π5m2
∑

n>0

∑

c>2π
√

mn
c=0 (mod N)

ne−2πn/σN log N
∑

c>2π
√

mn
c=0 (mod N)

c−4S(m, n; c).

We now use the Weil bound |S(m, n; c)| ≤ m1/2c1/2d(c) to get

|E2| ≤ 32π5m5/2
∑

n>0

∑

c>2π
√

mn
c=0 (mod N)

ne−2πn/σN log N c−7/2d(c)

≤ 32π5m5/2
∑

n>0

∑

b>0

ne−2πn/σN log N N−7/2d(N)b−7/2d(b)

≤ 32π5m5/2N−7/2d(N)ζ2(7/2)
∑

n>0

ne−2πn/σN log N .

So we can write

|E2| ≤ 32π5
√

3ζ(3)m5/2N−7/2e−2π/σN log N(1 − e−2π/σN log N )−2.

Proposition 7 Suppose N > 400 and σ > q2/2π. Then

|E2| ≤ (8/9)π5ζ2(7/2)m5/2σ2N−3/2 log2 N.

Proof Another use of the bound (1 − e−2π/σN log N)−1 ≤ (1/6)σN log N .

We now come to E(2), which is the main term of the error

|(am, Lχ) − 4πχ(m)e−2πm/σN log N |.
Recall from above that

E(2)
= 16π3m

∑

n>0

∑

c>2π
√

mn
c=0 (mod N)

χ(n)e−2πn/σN log Nc−2S(m, n; c).

Applying the Weil bound to S(m, n; c) yields the estimate E(2)
= O(N−1/2 log N)

which appears in [2]. We want to exploit cancellation between the Kloosterman sums
in order to improve Duke’s bound on E(2).

For simplicity, we carry this out under assumptions on the size of N and σ. For
the remainder of this section, assume that
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• N ≥ 400;
• q2/2π ≤ σ ≤ Nq/ log N .

Recall that under these hypotheses

σN log N ≥ (1/2π)400 log 400 > 300.

First of all, we will need a simple bound on the modulus of 1 − ez.

Lemma 8 Let z be a complex number with | Im z| ≤ π and −2π/30 ≤ Re z ≤ 0.

Then

(1/2)|z| ≤ |1 − ez| ≤ |z|.

Proof The extrema of |1 − ez|/|z| lie on the boundary of the rectangular region
under consideration; now a consideration of the derivatives of |1− ez|/|z| on each of
the four edges of the region shows that the extrema are at the corners. Computation

of the values of |1 − ez|/|z| gives the result.

Write

E(3)
= 16π3m

∑

n>0

∑

c>0
c=0 (mod N)

χ(n)e−2πn/σN log Nc−2S(m, n; c)

and

E3 = 16π3m
∑

n>0

∑

c≤2π
√

mn
c=0 (mod N)

χ(n)e−2πn/σN log N c−2S(m, n; c).

So E(2)
= E(3) − E3.

The sum E3, like E1, is supported in the region where exponential decay domi-
nates. To be precise, the inner sum in E3 has nonzero terms only when

n ≥ (c/2π
√

m)2 ≥ N2/4π2m.

It follows that

|E3| ≤ 16π3m
∑

n>N2/4π2m

∑

c>0
c=0 (mod N)

e−2πn/σN log N m1/2c−3/2d(c)

≤ 16ζ2(3/2)π3m3/2(N−3/2d(N))e−N/2πmσ log N (1 − e−2π/σN log N )−1.

Using the lower bounds on N and σ, we obtain

Proposition 9 Suppose N > 400 and σ > q2/2π. Then

|E3| ≤ (8/3)ζ2(3/2)π3σm3/2N−1/2 log Nd(N)e−N/2πmσ log N .
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It now remains only to bound the main term

E(3)
= 16π3m

∑

n>0

∑

c>0
c=0 (mod N)

χ(n)e−2πn/σN log Nc−2S(m, n; c).

We can write

(6) E(3)
= 16π3m

∑

c>0
c=0 (mod N)

c−2S(c)

where

S(c) =

∑

n>0

χ(n)e−2πn/σN log NS(m, n; c)

=

∑

x∈(Z/cZ)∗

∑

n>0

χ(n)e−2πn/σN log N e
(mx + ny

c

)

where e(z) = e2πiz and y ∈ (Z/cZ)∗ is the multiplicative inverse of x.

For ease of notation, write A = σN log N , and for each integer y write ǫy =

2π(−1/A + yi/c). Then

|S(c)| ≤
∑

x∈(Z/cZ)∗

∣

∣

∣

∑

n>0

χ(n)e−2πn/Ae
(ny

c

)∣

∣

∣

=

∑

x∈(Z/cZ)∗

∣

∣

∣

q
∑

α=1

χ(α)e−2πα/Ae
(αy

c

)

∑

ν≥0

e2πqν/Ae
(qν y

c

)∣

∣

∣

=

∑

x∈(Z/cZ)∗

∣

∣

∣

q
∑

α=1

χ(α)e−2πα/Ae
(αy

c

)

(1 − e2πq(−1/A+i y/c))−1
∣

∣

∣

=

∑

y∈(Z/cZ)∗

∣

∣

∣
(1 − eqǫy )−1

q
∑

α=1

χ(α)eαǫy

∣

∣

∣

≤
∑

y∈(Z/cZ)∗

|(1 − eqǫy )|−1
∣

∣

∣

q
∑

α=1

χ(α)eαǫy

∣

∣

∣
.

We have the trivial bound |
∑q

α=1 χ(α)eαǫy | ≤ φ(q). (This bound can be sharpened
to O(

√
q log q) if one wishes to improve the dependence on q.) We now estimate

∑

y |(1− eqǫy )−1|. For each y, let f (y) be the unique integer congruent to qy modulo

c with | f (y)| ≤ c/2. By our assumption that N 6 | q, we have f (y) 6= 0. Then by

Lemma 8 one has

|(1 − eqǫy )−1| <
c

π| f (y)| .
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Now the values of | f (y)| range over the integers a between 1 and c/2 such that
(a, c) = (q, c), each of which arises from at most 2(q, c) values of y. So we have

∑

y∈(Z/cZ)∗

∣

∣ (1 − eqǫy )−1
∣

∣ ≤ 2(q, c)c

π

[ 1

(q, c)
+

1

2(q, c)
+ · · · +

1

r(q, c)

]

= (2c/π)
[

1 +
1

2
+ · · · +

1

r

]

where r is the largest integer such that r(q, c) ≤ c/2. The value of (2c/π)[1+. . .+1/r]
is largest when (q, c) = 1; in that case it is bounded above by

(2c/π)[log(c/2) + γ + 2/c],

where γ is Euler’s constant. Since c > 400, the above expression is bounded by
(2/π)c log c. So, in all, one has

(7) |S(c)| < (2/π)φ(q)c log c.

We observe as well that, from the Weil bound, we have

|S(c)| ≤
∑

n>0

e−2πn/Am1/2c1/2d(c) ≤ m1/2c1/2d(c)(1 − e−2π/A)−1.

Recall from the proof of Proposition 6 that (1 − e−2π/A)−1 ≤ (1/6)A under our
conditions on N and σ. So

(8) |S(c)| ≤ (1/6)Am1/2c1/2d(c).

In particular, we immmediately have the following proposition:

Proposition 10 Suppose N ≥ 400, N 6 | q, and σ > q2/2π. Then

|E(3)| ≤ 16π3m
∑

c>0
c=0 (mod N)

min
[ 2

π
φ(q)c−1 log c,

1

6
σN log Nm1/2c−3/2d(c)

]

.

This completes the proof of Theorem 1.
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