ON SKEW-SUPERCOMMUTING MAPS IN SUPERALGEBRAS

YU WANG

(Received 11 February 2008)

Abstract

Let A be a semiprime superalgebra over a commutative ring F with $\frac{1}{2}$ and $f: A \rightarrow A$ a skewsupercommuting map on A. We show that $f=0$. This gives a version of Brešar's theorem for superalgebras.

2000 Mathematics subject classification: primary 17A70; secondary 16N60.
Keywords and phrases: prime superalgebra, semiprime superalgebra, skew-supercommuting map.

1. Introduction

Let R be an associative ring. For any $x, y \in R$, we shall define $[x, y]=x y-y x$ and $x \circ y=x y+y x$. Let S be a subset of R. A mapping $f: S \rightarrow R$ is said to be skewcommuting on S if $f(x) \circ x=0$ for all $x \in S$. A number of authors have discussed the skew-commuting maps and their generalizations [8, 12-14]. In these papers the authors have showed that nonzero derivations and ring endomorphisms cannot be skew-commuting on certain subsets of prime rings (for example, ideals). In [4] Brešar obtained theorems of this kind for general additive maps. He proved that there are no nonzero additive maps that are skew-commuting on either ideals of prime rings of characteristic not 2 [4, Theorem 1] or semiprime rings of 2-torsion free [4, Theorem 2]. In [5] Brešar obtained a different proof of [4, Theorem 1].

In recent years, some results on maps of associative rings have been extended to superalgebras by several authors (see, for example, [1, 2, 7, 9-11, 17]). In the present paper, we shall give a version of Brešar's theorem mentioned above for superalgebras.

2. Preliminaries

Throughout the article, algebras are over a unital commutative associative ring F. We shall assume without further mention that $\frac{1}{2} \in F$. Although this requirement is not always needed, it is assumed for the sake of simplicity.

[^0]We use standard terminology and refer the reader to [15] for background information on the constructions of graded algebras and superalgebras. A superalgebra A over F is a \mathbb{Z}_{2}-graded associative algebra over F; that is, A is the direct sum of two F-submodules A_{0} and A_{1} such that $A_{0}^{2} \subseteq A_{0}, A_{0} A_{1} \subseteq A_{1}$, $A_{1} A_{0} \subseteq A_{1}$ and $A_{1}^{2} \subseteq A_{0}$. We call A_{0} the even part and A_{1} the odd part of A. Elements in $H=A_{0} \cup A_{1}$ are said to be homogeneous. We define $\sigma: A \rightarrow A$ by $\left(a_{0}+a_{1}\right)^{\sigma}$ $=a_{0}-a_{1}$. Note that σ is an automorphism of A such that $\sigma^{2}=1$. Conversely, given an algebra A and an automorphism σ of A with $\sigma^{2}=1, A$ then becomes a superalgebra by defining $A_{0}=\left\{a \in A \mid a^{\sigma}=a\right\}$ and $A_{1}=\left\{a \in A \mid a^{\sigma}=-a\right\}$. A $\sigma-$ invariant F-submodule B of A is just a graded F-submodule, that is, $B^{\sigma} \subseteq B$ if and only if $B=B_{0} \oplus B_{1}$ where $B_{0}=B \cap A_{0}$ and $B_{1}=B \cap A_{1}$. For instance, the center Z of A is clearly invariant under any automorphism of A and hence $Z=Z_{0} \oplus Z_{1}$ where $Z_{0}=Z \cap A_{0}$ and $Z_{1}=Z \cap A_{1}$.

A superalgebra A is said to be prime if the product of any two nonzero graded ideals is nonzero. A is said to be semiprime if it has no nonzero nilpotent graded ideals. One can see readily that A is a prime superalgebra if and only if every nonzero graded ideal of A has zero annihilator in A. A superalgebra A is called a trivial superalgebra if $A_{1}=0$, or equivalently $\sigma=1$.

For $a, b \in H$, the skew-supercommutator of a and b is defined to be $a \circ_{s} b=a b$ $+(-1)^{|a||b|} b a$. Note that we have $a \circ_{s} b=a b-b a=[a, b]$, the ordinary commutator, if both a and b are odd, and $a \circ_{s} b=a b+b a=a \circ b$, if either a or b is even. The definition can be extended linearly to arbitrary $a, b \in A$, namely,

$$
a \circ_{s} b=a_{0} \circ_{s} b_{0}+a_{0} \circ_{s} b_{1}+a_{1} \circ_{s} b_{0}+a_{1} \circ_{s} b_{1}
$$

for $a=a_{0}+a_{1}$ and $b=b_{0}+b_{1}$ with $a_{i}, b_{i} \in A_{i}, i=0,1$.
Let S be a subset of A. We say that a mapping $f: S \rightarrow A$ is skew-supercommuting on S if $f(x) \circ_{s} x=0$ for all $x \in S$.

Let A be a semiprime superalgebra. It is well known that A and A_{0} are semiprime as algebras [16, Lemma 1.2]. So we can construct the maximal right quotient ring Q and the extended centroid C of A. All these notions are explained in detail in the book [3, Ch. 2].

Since σ can be extended to Q such that $\sigma^{2}=1$ on Q [3, Proposition 2.5.3], thus Q is also a semiprime superalgebra. Since $C^{\sigma}=C$ we see that $C=C_{0} \oplus C_{1}$ is a graded subalgebra of Q. It is well known that for any $a \in Q$ there exists an essential ideal I of A such that $a I \subseteq A$. We may assume that I is graded since otherwise we can replace it by $I \cap I^{\sigma}$. This fact will be used later.

We begin with some basic properties of prime superalgebras.
Lemma 2.1. Let A be a prime superalgebra and I a graded ideal of A. If a $I_{0}=0$ ($I_{0} a=0$), where $a \in A$, then $a=0$ or $I=0$.

Proof. Suppose that $a I_{0}=0$. Since $A_{0} I_{1} A_{1} \subseteq I_{0}$ and $A_{1} I_{1} \in I_{0}$, we get $a A I_{1} A_{1}=0$ and so $a=0$ or $I_{1} A_{1}=0$ since A is a prime superalgebra. If $I_{1} A_{1}=0$, then $I_{1}=0$
by [10, Lemma 2.1(i)] and so $I=I_{0}$. Hence, we get by assumption that $a I=0$, which results in $a=0$ or $I=0$. The case of $I_{0} a=0$ is proved in a similar way.

Lemma 2.2. Let A be a prime superalgebra and I a nonzero graded ideal of A. If $a I_{1}=0\left(I_{1} a=0\right)$, where $a \in A$, then $a=0$ or $A_{1}=0$.
Proof. Suppose that $a I_{1}=0$. Since $I_{0} A_{1} \subseteq I_{1}$ we get $a I_{0} A_{1}=0$ and so $a I_{0}=0$ or $A_{1}=0$ by [10, Lemma 2.1(i)]. If $a I_{0}=0$, then $a=0$ by Lemma 2.1. The case of $I_{1} a=0$ is proved in a similar way.

Lemma 2.3. Let A be a prime superalgebra and I a graded ideal of A. Let a $\in A$ be such that $a x_{0}+x_{0} a=0$ for all $x_{0} \in I_{0}$. Then $a=0$ or $I=0$.

Proof. Suppose that $I \neq 0$. For any $x_{0}, y_{0} \in I_{0}$,

$$
-x_{0} y_{0} a=a x_{0} y_{0}=-x_{0} a y_{0} \quad \text { for all } x_{0}, y_{0} \in I_{0}
$$

Hence $I_{0}\left[a, I_{0}\right]=0$ and so $\left[a, I_{0}\right]=0$ by Lemma 2.1. Thus $a x_{0}=\frac{1}{2}\left(a x_{0}+x_{0} a\right)=0$ for all $x_{0} \in I_{0}$. By Lemma 2.1 again we obtain $a=0$.

Lemma 2.4. Let A be a superalgebra with 1 over F. Let f be an F-linear map of A into itself such that $f(x) \circ_{s} x=0$ for all $x \in A$. Then $f=0$.

Proof. Note that $1 \in A_{0}$. Then we have $2 f(1)=f(1) \circ 1=0$, from our assumption, and so $f(1)=0$. Since

$$
f(1+x) \circ_{s}(1+x)=0 \quad \text { for all } x \in A
$$

we have $f(x) \circ 1+f(x) \circ_{s} x=0$. Since $f(x) \circ_{s} x=0$ for all $x \in A$, we have $2 f(x)=f(x) \circ 1=0$ and so $f(x)=0$ for all $x \in A$.

Lemma 2.5. Let A be a noncommutative prime superalgebra and I a graded ideal of A. Let $g_{1}, g_{2}: A \rightarrow A$ be F-linear maps. Suppose that one of the following conditions are satisfied:
(i) $x_{0} g_{1}(y)+y g_{2}\left(x_{0}\right)=0$ for all $x_{0} \in I_{0}, y \in I$;
(ii) $x_{0} g_{1}(y)+y^{\sigma} g_{2}\left(x_{0}\right)=0$ for all $x_{0} \in I_{0}, y \in I$.

Then $g_{1}(I)=g_{2}\left(I_{0}\right)=0$.
Proof. Suppose first that (i) is fulfilled. If $A_{1}=0$, the result follows from [5, Lemma 4.4]. So we may assume that $A_{1} \neq 0$. By assumption we have $r_{0} x_{0} g_{1}(y)$ $=-r_{0} y g_{2}\left(x_{0}\right)$ for all $r_{0}, x_{0} \in I_{0}, y \in I$. But, on the other hand, since $r_{0} x_{0} \in I_{0}$, we have $r_{0} x_{0} g_{1}(y)=-y g_{2}\left(r_{0} x_{0}\right)$. Thus, $r_{0} y g_{2}\left(x_{0}\right)=y g_{2}\left(r_{0} x_{0}\right)$ for all $r_{0}, x_{0} \in I_{0}, y \in I$. In particular,

$$
r_{0} r y g_{2}\left(x_{0}\right)=r y g_{2}\left(r_{0} x_{0}\right) \quad \text { for all } r_{0}, x_{0} \in I_{0}, y \in I, r \in A
$$

If $y g_{2}\left(x_{0}\right) \neq 0$ for some $x_{0} \in I_{0}, y \in I$, then r_{0} and 1 are C-dependent for any $r_{0} \in$ I_{0} by [10, Theorem 3.3]. This implies that $\left[I_{0}, A_{1}\right]=0$ and so $\left[A_{0}, A_{1}\right]=0$ by [16, Lemma 1.8(i)]. It follows from [10, Lemma 2.1(vii)] that A is commutative or $A_{1}=0$, contradicting our assumption. Thus $I g_{2}\left(I_{0}\right)=0$ and so $g_{2}\left(I_{0}\right)=0$ by Lemma 2.1. According to (i) we have $I_{0} g_{1}(I)=0$ and so $g_{1}(I)=0$ as desired.

Suppose next that (ii) is fulfilled. Thus

$$
x_{0} g_{1}\left(y^{\sigma}\right)+y g_{2}\left(x_{0}\right)=0 \quad \text { for all } x_{0} \in I_{0}, y \in I
$$

since $\sigma^{2}=1$ and $I^{\sigma}=I$. Then the assertion of (ii) follows from the assertion of (i).

Lemma 2.6. Let A be a prime superalgebra and I a graded ideal of A. Then I_{0} is a semiprime subalgebra of A.

Proof. Suppose that $a_{0} I_{0} a_{0}=0$ for some $a_{0} \in I_{0}$. We want to prove $a_{0}=0$. Since $a_{0} I_{0} A_{0} a_{0} I_{0}=0$, we get $a_{0} I_{0}=0$ by the semiprimeness of A_{0}. So $a_{0}=0$ by Lemma 2.1.

Lemma 2.7. Let A be a prime superalgebra with extended centroid C. If $C_{1} \neq 0$, then A_{0} is a prime subalgebra of A.

Proof. Suppose that $a_{0} A_{0} b_{0}=0$, where $a_{0}, b_{0} \in A_{0}$. We want to show that either $a_{0}=0$ or $b_{0}=0$. Pick a nonzero λ_{1} in C_{1} and a nonzero graded ideal J of A such that $\lambda_{1} J \subseteq A$. Write $J=J_{0} \oplus J_{1}$ where $J_{0}=J \cap A_{0}$ and $J_{1}=J \cap A_{1}$. Thus, $a_{0} \lambda_{1} J_{1} b_{0}=0$ and so $a_{0} J_{1} b_{0}=0$. On the other hand, we have by assumption that $a_{0} J_{0} b_{0}=0$. This implies that $a_{0} J b_{0}=0$ and so $a_{0} A J b_{0}=0$. Hence, either $a_{0}=0$ or $J b_{0}=0$; but if $J b_{0}=0$, then $b_{0}=0$. This proves our lemma.

Lemma 2.8. Let A be a prime superalgebra and I a nonzero graded ideal of A. If $\left[a_{1}, I_{0}\right]=0$, where $a_{1} \in A_{1}$, then $a_{1} \in C_{1}$.

Proof. For any $x_{0} \in I_{0}, y_{0} \in A_{0}$, since $x_{0} y_{0} \in I_{0}$, by assumption we have $\left[a_{1}, x_{0} y_{0}\right]=0$ and so $x_{0}\left[a_{1}, y_{0}\right]=0$. It follows from Lemma 2.1 that $\left[a_{1}, A_{0}\right]$ $=0$. Thus $\left[a_{1}, a_{1} A_{0} A_{1}\right]=0$ and so $a_{1} A_{0}\left[a_{1}, A_{1}\right]=0$. Similarly, we can get $\left[a_{1}, A_{1}\right] A_{0} a_{1}=0$. By $[10$, Lemma 2.1 (iii) $]$ we get $\left[a_{1}, A_{1}\right]=0$. Hence $\left[a_{1}, A\right]=0$ as desired.

Lemma 2.9. Let A be a prime superalgebra and I a nonzero graded ideal of A. If $\left[I_{0}, I_{0}\right]=0$, then $\left[A_{0}, A_{0}\right]=0$.

Proof. Since $I_{0}\left[A_{0}, I_{0}\right]=\left[I_{0} A_{0}, I_{0}\right]=0$, we get $\left[A_{0}, I_{0}\right]=0$ by Lemma 2.1. Furthermore, $\left[A_{0}, A_{0}\right] I_{0}=\left[A_{0}, A_{0} I_{0}\right]=0$, which implies that $\left[A_{0}, A_{0}\right]=0$ as desired.

The following result is of crucial important for the proof of our main result.

Lemma 2.10. Let A be a prime superalgebra with extended centroid C and I a graded ideal of A. Suppose that $C_{1}=0$. If $F: I_{0} \rightarrow A_{1}$ is an F-linear map such that

$$
\begin{equation*}
\left[F\left(r_{0}\right), r_{0}\right]=0 \quad \text { for all } r_{0} \in I_{0} \tag{2.1}
\end{equation*}
$$

then $F\left(I_{0}\right)=0$ or $\left[A_{0}, A_{0}\right]=0$.
Proof. We may assume without loss of generality that both $I \neq 0$ and $A_{1} \neq 0$. A linearization of (2.1) yields

$$
\left[F\left(x_{0}\right), y_{0}\right]=\left[x_{0}, F\left(y_{0}\right)\right] \quad \text { for all } x_{0}, y_{0} \in I_{0}
$$

Therefore the map $D: I_{0} \times I_{0} \rightarrow A_{1}$ defined by $D\left(x_{0}, y_{0}\right)=\left[F\left(x_{0}\right), y_{0}\right]$ is a biderivation, so it follows from [6, Lemma 3.1] that

$$
\left[F\left(x_{0}\right), y_{0}\right] w_{0}\left[x_{0}^{\prime}, z_{0}\right]=\left[x_{0}, y_{0}\right] w_{0}\left[F\left(x_{0}^{\prime}\right), z_{0}\right] \quad \text { for all } x_{0}, x_{0}^{\prime}, y_{0}, z_{0}, w_{0} \in I_{0}
$$

Right-multiplying by $t_{1} \in A_{1}$ and substituting w_{0} with $w_{0} u_{0}$ where $u_{0} \in A_{0}$, we get

$$
\left(\left[F\left(x_{0}\right), y_{0}\right] w_{0}\right) u_{0}\left(\left[x_{0}^{\prime}, z_{0}\right] t_{1}\right)=\left(\left[x_{0}, y_{0}\right] w_{0}\right) u_{0}\left(\left[F\left(x_{0}^{\prime}\right), z_{0}\right] t_{1}\right)
$$

Since $C_{1}=0$, it follows from [10, Lemma 3.4] that

$$
\left[F\left(x_{0}\right), y_{0}\right] w_{0} u_{0}\left[x_{0}^{\prime}, z_{0}\right] t_{1}=0=\left[x_{0}, y_{0}\right] w_{0} u_{0}\left[F\left(x_{0}^{\prime}\right), z_{0}\right] t_{1}
$$

and so

$$
\left[F\left(x_{0}\right), y_{0}\right] w_{0} u_{0}\left[x_{0}^{\prime}, z_{0}\right]=0=\left[x_{0}, y_{0}\right] w_{0} u_{0}\left[F\left(x_{0}^{\prime}\right), z_{0}\right]
$$

in view of [10, Lemma 2.1(i)]. This implies that

$$
\left[F_{1}\left(x_{0}\right), y_{0}\right] w_{0} A_{0}\left[x_{0}^{\prime}, z_{0}\right] w_{0}^{\prime}=0=\left[x_{0}^{\prime}, z_{0}\right] w_{0}^{\prime} A_{0}\left[F_{1}\left(x_{0}\right), y_{0}\right] w_{0}=0
$$

for all $x_{0}, x_{0}^{\prime}, y_{0}, z_{0}, w_{0}, w_{0}^{\prime} \in I_{0}$. It follows from [10, Lemma 2.1(iii)] that either $\left[F_{1}\left(x_{0}\right), y_{0}\right] w_{0}=0$ or $\left[x_{0}^{\prime}, z_{0}\right] w_{0}^{\prime}=0$ for all $x_{0}, y_{0}, w_{0}, x_{0}^{\prime}, z_{0}, w_{0}^{\prime} \in I_{0}$. That is, either $\left[F_{1}\left(I_{0}\right), I_{0}\right] I_{0}=0$ or $\left[I_{0}, I_{0}\right] I_{0}=0$. Hence, either $\left[F_{1}\left(I_{0}\right), I_{0}\right]=0$ or $\left[I_{0}, I_{0}\right]=0$ by Lemma 2.1. If $\left[F_{1}\left(I_{0}\right), I_{0}\right]=0$, we get $F_{1}\left(I_{0}\right) \in C_{1}=0$ by Lemma 2.8. Otherwise, if $\left[I_{0}, I_{0}\right]=0$, then $\left[A_{0}, A_{0}\right]=0$ by Lemma 2.9. This completes the proof.

The following lemma is a slight generalization of [4, Theorem 1] and can be verified by the same proof.

Lemma 2.11. Let R be a prime ring of characteristic not 2 and I an ideal of R. If an additive mapping $f: I \rightarrow R$ is skew-commuting on I, then $f(I)=0$.

3. A result for prime superalgebras

Throughout this section $A=A_{0} \oplus A_{1}$ will be a prime superalgebra over F, $I=I_{0} \oplus I_{1}$ a graded ideal of A and $f: A \rightarrow A$ will denote a skew-supercommuting F-linear map on I, that is

$$
\begin{equation*}
f(x) \circ_{s} x=0 \quad \text { for all } x \in I \tag{3.1}
\end{equation*}
$$

A linearization of (3.1) yields

$$
\begin{equation*}
f(x) \circ_{s} y+f(y) \circ_{s} x=0 \quad \text { for all } x, y \in I \tag{3.2}
\end{equation*}
$$

Our goal is to prove $f(I)=0$. Without loss of generality we may assume that both $I \neq 0$ and $\left[A_{0}, A_{1}\right] \neq 0$. Indeed, if $I=0$, there is nothing to prove; if $\left[A_{0}, A_{1}\right]=0$, then either A is commutative or $A_{1}=0$ [10, Lemma 2.1(vii)]. In the former case, any nonzero element of H has zero annihilator in A. It follows from (3.1) that

$$
2 f\left(x_{0}\right) x_{0}=f\left(x_{0}\right) x_{0}+x_{0} f\left(x_{0}\right)=0 \quad \text { for all } x_{0} \in I_{0}
$$

and so $f\left(x_{0}\right)=0$ for all $x_{0} \in I_{0}$. According to (3.2) we have $2 f(y) x_{0}=f(y) x_{0}$ $+x_{0} f(y)=0$. Hence, $f(y)=0$ for all $y \in I$ as desired. In the latter case that $A_{1}=0$, A is a prime algebra and f is skew-commuting on I, so the assertion follows from Brešar's theorem [4, Theorem 1].

We begin with two useful lemmas.
Lemma 3.1. If $f\left(I_{0}\right)=0$, then $f(I)=0$.
Proof. We only need to prove $f\left(I_{1}\right)=0$. By assumption we get from (3.2) that

$$
f\left(y_{1}\right) x_{0}+x_{0} f\left(y_{1}\right)=0 \quad \text { for all } x_{0} \in I_{0}, y_{1} \in I_{1}
$$

It follows from Lemma 2.3 that $f\left(y_{1}\right)=0$ for all $y_{1} \in I_{1}$ as desired.
Lemma 3.2. Suppose that $\left[A_{0}, A_{0}\right]=0$. Then $f(I)=0$.
Proof. According to [16, Lemma 1.9], we get that $Z_{0} \neq 0$ and the central closure $\bar{A}=Z_{0}^{-1} A$ is a field, or the direct sum of two fields, or a quaternion algebra. By assumption we easily see that $\bar{A}=Z_{0}^{-1} I$ is a four-dimensional central-simple algebra.

We define

$$
g\left(z_{0}^{-1} x\right)=z_{0}^{-1} f(x), \quad z_{0} \in Z_{0}, x \in I
$$

We claim that g is well-defined map of \bar{A}. Indeed, if $z_{0}^{-1} x=0$ for some $x \in I$, then $x=0$ and so $z_{0}^{-1} f(x)=0$ as desired. Next, since

$$
g\left(z_{0}^{-1} x\right) \circ_{s} z_{0}^{-1} x=\left(z_{0}^{-1}\right)^{2}\left(f(x) \circ_{s} x\right)=0 \quad \text { for all } x \in I
$$

we see that g is skew-supercommuting on \bar{A}. Then Lemma 2.4 tells us that $g=0$ on \bar{A} and so, in particular, $f(I)=0$ as desired.

We now consider two special cases of the map f.

LEMMA 3.3. If $f\left(A_{0}\right) \subseteq A_{0}$ and $f\left(A_{1}\right) \subseteq A_{1}$, then

$$
\left[r_{0}, f\left(y r_{0}\right)-f(y) r_{0}\right]=0 \quad \text { for all } r_{0} \in I_{0}, y \in I
$$

Proof. Set

$$
\pi\left(x_{0}, y\right)=f\left(x_{0}\right) y+y f\left(x_{0}\right)+f(y) x_{0}+x_{0} f(y) \quad \text { for all } x_{0} \in I_{0}, y \in I
$$

Following the same argument as that of [5, Corollary 2.5], we can check that

$$
\begin{aligned}
& x_{0}\left[r_{0}, f\left(y r_{0}\right)-f(y) r_{0}\right]+y\left[r_{0}, f\left(x_{0} r_{0}\right)-f\left(x_{0}\right) r_{0}\right] \\
& \quad=\pi\left(x_{0}, y\right) r_{0}^{2}-\left(\pi\left(x_{0} r_{0}, y\right)+\pi\left(x_{0}, y r_{0}\right)\right) r_{0}+\pi\left(x_{0} r_{0}, y r_{0}\right)
\end{aligned}
$$

for all $x_{0}, r_{0} \in I_{0}, y \in I$. On the other hand, we see from (3.2) that $\pi\left(x_{0}, y\right)=0$ for all $x_{0} \in I_{0}, y \in I$. Hence,

$$
x_{0}\left[r_{0}, f\left(y r_{0}\right)-f(y) r_{0}\right]+y\left[r_{0}, f\left(x_{0} r_{0}\right)-f\left(x_{0}\right) r_{0}\right]=0
$$

for all $x_{0}, r_{0} \in I_{0}, y \in I$. So the result follows from Lemma 2.5(i).
Lemma 3.4. If $f\left(A_{0}\right) \subseteq A_{0}$ and $f\left(A_{1}\right) \subseteq A_{1}$ and $\left[f\left(x_{0}\right), x_{0}\right]=0$ for all $x_{0} \in I_{0}$, then $f(I)=0$.

Proof. Since $f\left(x_{0}\right) \circ x_{0}=0$ for all $x_{0} \in I_{0}$, we get from our assumption that

$$
\begin{equation*}
f\left(x_{0}\right) x_{0}=x_{0} f\left(x_{0}\right)=\frac{1}{2}\left(f\left(x_{0}\right) x_{0}+x_{0} f\left(x_{0}\right)\right)=0 \quad \text { for all } x_{0} \in I_{0} \tag{3.3}
\end{equation*}
$$

A linearization of (3.3) yields

$$
\begin{equation*}
f\left(x_{0}\right) y_{0}+f\left(y_{0}\right) x_{0}=0 \quad \text { for all } x_{0}, y_{0} \in I_{0} \tag{3.4}
\end{equation*}
$$

Right-multiplying (3.4) by $f\left(y_{0}\right)$, we get $f\left(y_{0}\right) I_{0} f\left(y_{0}\right)=0$ for all $y_{0} \in I_{0}$. Since I_{0} is a semiprime subalgebra of A by Lemma 2.6, we get $f\left(y_{0}\right)=0$ for all $y_{0} \in I_{0}$. But then $f(I)=0$ by Lemma 3.1.

Lemma 3.5. If $f\left(A_{0}\right) \subseteq A_{0}$ and $f\left(A_{1}\right) \subseteq A_{1}$, then $f(I)=0$.
Proof. We first assume that $C_{1} \neq 0$. Then A_{0} is a prime subalgebra of A by Lemma 2.7. It follows from (3.1) that

$$
f\left(x_{0}\right) \circ x_{0}=0 \quad \text { for all } x_{0} \in I_{0}
$$

Since I_{0} is an ideal of A_{0}, we get from [4, Theorem 1] that $f\left(I_{0}\right)=0$ and so $f(I)=0$ by Lemma 3.1.

We now consider the case when $C_{1}=0$. For any $y_{1} \in I_{1}$, we set

$$
F_{1}\left(r_{0}\right)=f\left(y_{1} r_{0}\right)-f\left(y_{1}\right) r_{0} \quad \text { for all } r_{0} \in I_{0}
$$

It follows from Lemma 3.3 that

$$
\begin{equation*}
\left[F_{1}\left(r_{0}\right), r_{0}\right]=0 \quad \text { for all } r_{0} \in I_{0} \tag{3.5}
\end{equation*}
$$

By Lemma 2.10 we get that $F_{1}\left(I_{0}\right)=0$ or $\left[A_{0}, A_{0}\right]=0$.
Suppose that $F_{1}\left(I_{0}\right)=0$, that is

$$
\begin{equation*}
f\left(y_{1} r_{0}\right)=f\left(y_{1}\right) r_{0} \quad \text { for all } y_{1} \in I_{1}, r_{0} \in I_{0} \tag{3.6}
\end{equation*}
$$

It follows from (3.2) that

$$
\begin{equation*}
f\left(x_{0}\right) y_{1}+y_{1} f\left(x_{0}\right)+f\left(y_{1}\right) x_{0}+x_{0} f\left(y_{1}\right)=0 \quad \text { for all } x_{0} \in I_{0}, y_{1} \in I_{1} . \tag{3.7}
\end{equation*}
$$

Substituting y_{1} with $y_{1} x_{0}$ in (3.7) and making use of (3.6) we obtain

$$
\begin{equation*}
f\left(x_{0}\right) y_{1} x_{0}+y_{1} x_{0} f\left(x_{0}\right)+f\left(y_{1}\right) x_{0} x_{0}+x_{0} f\left(y_{1}\right) x_{0}=0 \quad \text { for all } x_{0} \in I_{0}, y_{1} \in I_{1} . \tag{3.8}
\end{equation*}
$$

On the other hand, right-multiplying (3.7) by x_{0} yields

$$
\begin{equation*}
f\left(x_{0}\right) y_{1} x_{0}+y_{1} f\left(x_{0}\right) x_{0}+f\left(y_{1}\right) x_{0} x_{0}+x_{0} f\left(y_{1}\right) x_{0}=0 \quad \text { for all } x_{0} \in I_{0}, y_{1} \in I_{1} . \tag{3.9}
\end{equation*}
$$

Combining (3.8) with (3.9) yields $y_{1}\left[x_{0}, f\left(x_{0}\right)\right]=0$ for all $x_{0} \in I_{0}, y_{1} \in I_{1}$ and so $\left[x_{0}, f\left(x_{0}\right)\right]=0$ for all $x_{0} \in I_{0}$ by Lemma 2.2. But then $f(I)=0$ by Lemma 3.4.

Finally, if $\left[A_{0}, A_{0}\right]=0$, then the result follows from Lemma 3.2. The proof of the lemma is now complete.

Lemma 3.6. If $f\left(A_{0}\right) \subseteq A_{1}$ and $f\left(A_{1}\right) \subseteq A_{0}$, then

$$
\left[r_{0}, f\left(y r_{0}\right)-f(y) r_{0}\right]=0 \quad \text { for all } r_{0} \in I_{0}, y \in I
$$

Proof. According to (3.2),

$$
\begin{aligned}
& f\left(x_{0}\right) y_{0}+y_{0} f\left(x_{0}\right)+f\left(y_{0}\right) x_{0}+x_{0} f\left(y_{0}\right)=0 \\
& f\left(x_{0}\right) y_{1}-y_{1} f\left(x_{0}\right)+f\left(y_{1}\right) x_{0}+x_{0} f\left(y_{1}\right)=0
\end{aligned}
$$

for all $x_{0}, y_{0} \in I_{0}, y_{1} \in I_{1}$. Adding the above two equations yields

$$
f\left(x_{0}\right) y+y^{\sigma} f\left(x_{0}\right)+f(y) x_{0}+x_{0} f(y)=0 \quad \text { for all } x_{0} \in I_{0}, y \in I .
$$

Set

$$
\pi_{2}\left(x_{0}, y\right)=f\left(x_{0}\right) y+y^{\sigma} f\left(x_{0}\right)+f(y) x_{0}+x_{0} f(y) \quad \text { for all } x_{0} \in I_{0}, y \in I
$$

Following the same argument as that of [5, Corollary 2.5], we easily check that

$$
\begin{aligned}
& x_{0}\left[r_{0}, f\left(y r_{0}\right)-f(y) r_{0}\right]+y^{\sigma}\left[r_{0}, f\left(x_{0} r_{0}\right)-f\left(x_{0}\right) r_{0}\right] \\
& \quad=\pi\left(x_{0}, y\right) r_{0}^{2}-\left(\pi\left(x_{0} r_{0}, y\right)+\pi\left(x_{0}, y r_{0}\right)\right) r_{0}+\pi\left(x_{0} r_{0}, y r_{0}\right)
\end{aligned}
$$

for all $x_{0}, r_{0} \in I_{0}, y \in I$. Note that $\pi\left(x_{0}, y\right)=0$ for all $x_{0} \in I_{0}, y \in I$. Hence, $x_{0}\left[r_{0}, f\left(y r_{0}\right)-f(y) r_{0}\right]+y^{\sigma}\left[r_{0}, f\left(x_{0} r_{0}\right)-f\left(x_{0}\right) r_{0}\right]=0 \quad$ for all $x_{0}, r_{0} \in I_{0}, y \in I$. So the result follows from Lemma 2.5(ii).

Lemma 3.7. If $f\left(A_{0}\right) \subseteq A_{1}$ and $f\left(A_{1}\right) \subseteq A_{0}$, then $f(I)=0$.
Proof. We first assume that $C_{1} \neq 0$. In this case, A_{0} is prime as an algebra by Lemma 2.7. For $0 \neq \lambda_{1} \in C_{1}$, there exists a nonzero graded ideal J of A such that $\lambda_{1} J \subseteq A$ and $J \subseteq I$. By assumption, we have

$$
f\left(\lambda_{1} x_{0}\right) \circ \lambda_{1} x_{0}=0 \quad \text { for all } x_{0} \in J_{0}
$$

Note that all nonzero homogeneous elements in C are invertible [10, Lemma 3.1]. So

$$
f\left(\lambda_{1} x_{0}\right) \circ x_{0}=0 \quad \text { for all } x_{0} \in J_{0}
$$

Thus, Lemma 2.11 tells us that $f\left(\lambda_{1} J_{0}\right)=0$. We shall claim that $f\left(I_{0}\right)=0$. Indeed, according to (3.2) we see that

$$
f\left(\lambda_{1} x_{0}\right) y_{0}+y_{0} f\left(\lambda_{1} x_{0}\right)+\left[f\left(y_{0}\right), \lambda_{1} x_{0}\right]=0 \quad \text { for all } x_{0} \in J_{0}, y_{0} \in I_{0} .
$$

Since $f\left(\lambda_{1} J_{0}\right)=0$ we get

$$
\left[f\left(y_{0}\right), \lambda_{1} x_{0}\right]=0 \quad \text { for all } x_{0} \in J_{0}, y_{0} \in I_{0}
$$

and so $\left[f\left(y_{0}\right), J_{0}\right]=0$ for all $y_{0} \in I_{0}$. It follows from Lemma 2.8 that $f\left(I_{0}\right) \subseteq C_{1}$. But then

$$
f\left(x_{0}\right) x_{0}=\frac{1}{2}\left(f\left(x_{0}\right) x_{0}+x_{0} f\left(x_{0}\right)\right)=0 \quad \text { for all } x_{0} \in I_{0}
$$

If $f\left(x_{0}\right) \neq 0$ for some $x_{0} \in I_{0}$, then $x_{0}=0$, which is a contradiction. Thus $f\left(I_{0}\right)=0$ and so $f(I)=0$ by Lemma 3.1.

We next consider the case when $C_{1}=0$. For any $x_{0} \in I_{0}$, we set

$$
F_{2}\left(r_{0}\right)=f\left(x_{0} r_{0}\right)-f\left(x_{0}\right) r_{0} \quad \text { for all } r_{0} \in I_{0} .
$$

According to Lemma 3.6 we see that $\left[F_{2}\left(r_{0}\right), r_{0}\right]=0$ for all $r_{0} \in I_{0}$. Thus, by Lemma 2.10 we infer that either $F_{2}\left(I_{0}\right)=0$ or $\left[A_{0}, A_{0}\right]=0$.

Suppose that $F_{2}\left(I_{0}\right)=0$, that is,

$$
\begin{equation*}
f\left(x_{0} r_{0}\right)=f\left(x_{0}\right) r_{0} \quad \text { for all } x_{0}, r_{0} \in I_{0} \tag{3.10}
\end{equation*}
$$

It follows from (3.2) that

$$
\begin{equation*}
f\left(x_{0}\right) y_{0}+y_{0} f\left(x_{0}\right)+f\left(y_{0}\right) x_{0}+x_{0} f\left(y_{0}\right)=0 \quad \text { for all } x_{0}, y_{0} \in I_{0} \tag{3.11}
\end{equation*}
$$

Substituting y_{0} with $y_{0} r_{0}$ in (3.11) and making use of (3.10) we obtain

$$
\begin{equation*}
f\left(x_{0}\right) y_{0} r_{0}+y_{0} r_{0} f\left(x_{0}\right)+f\left(y_{0}\right) r_{0} x_{0}+x_{0} f\left(y_{0}\right) r_{0}=0 \quad \text { for all } x_{0}, y_{0}, r_{0} \in I_{0} . \tag{3.12}
\end{equation*}
$$

Right-multiplying (3.11) by r_{0} yields

$$
\begin{equation*}
f\left(x_{0}\right) y_{0} r_{0}+y_{0} f\left(x_{0}\right) r_{0}+f\left(y_{0}\right) x_{0} r_{0}+x_{0} f\left(y_{0}\right) r_{0}=0 \quad \text { for all } x_{0}, y_{0}, r_{0} \in I_{0} \tag{3.13}
\end{equation*}
$$

Combining (3.12) with (3.13) we obtain

$$
y_{0}\left[r_{0}, f\left(x_{0}\right)\right]+f\left(y_{0}\right)\left[r_{0}, x_{0}\right]=0 \quad \text { for all } x_{0}, y_{0}, r_{0} \in I_{0}
$$

Substituting r_{0} by $w_{0} r_{0}$ with $w_{0} \in I_{0}$,

$$
y_{0} w_{0}\left[r_{0}, f\left(x_{0}\right)\right]+f\left(y_{0}\right) w_{0}\left[r_{0}, x_{0}\right]=0 \quad \text { for all } x_{0}, y_{0}, r_{0}, w_{0} \in I_{0}
$$

Substituting w_{0} by $w_{0} u_{0}$ with $u_{0} \in A_{0}$ and left-multiplying by $t_{1} \in A_{1}$, we get

$$
\left(t_{1} y_{0} w_{0}\right) u_{0}\left[r_{0}, f\left(x_{0}\right)\right]+\left(t_{1} f\left(y_{0}\right) w_{0}\right) u_{0}\left[r_{0}, x_{0}\right]=0
$$

Since $C_{1}=0$, we get from [10, Lemma 3.4] that
$t_{1} y_{0} w_{0} u_{0}\left[r_{0}, f\left(x_{0}\right)\right]=0=t_{1} f\left(y_{0}\right) w_{0} u_{0}\left[r_{0}, x_{0}\right] \quad$ for all $x_{0}, y_{0}, r_{0}, w_{0} \in I_{0}, u_{0} \in A_{0}$
and so $\left[r_{0}, f\left(x_{0}\right)\right]=0$ for all $x_{0}, r_{0} \in I_{0}$ by Lemmas 2.1 and 2.2. Thus, Lemma 2.8 tells us that $f\left(I_{0}\right) \subseteq C_{1}$, resulting in $f\left(I_{0}\right)=0$ since $C_{1}=0$. Therefore, $f(I)=0$ in view of Lemma 3.1.

The case that $\left[A_{0}, A_{0}\right]=0$ follows from Lemma 3.2. The proof of the lemma is now complete.

Now we are ready to prove the following important result.
THEOREM 3.8. Let A be a prime superalgebra over a commutative ring F with $\frac{1}{2}$ and I a graded ideal of A. Let $f: A \rightarrow A$ be an F-linear map such that $f(x) \circ_{s} x=0$ for all $x \in I$. Then $f(I)=0$.
Proof. For $i=0$ or 1 , let π_{i} be the canonical projection of A onto A_{i} and let $f_{0}=\pi_{0} f \pi_{0}+\pi_{1} f \pi_{1}$ and $f_{1}=\pi_{0} f \pi_{1}+\pi_{1} f \pi_{0}$. Then each f_{i} is an F-linear map of A into itself and $f=f_{0}+f_{1}$. Moreover, $f_{0}\left(A_{0}\right) \subseteq A_{0}, f_{0}\left(A_{1}\right) \subseteq A_{1}, f_{1}\left(A_{0}\right) \subseteq A_{1}$ and $f_{1}\left(A_{1}\right) \subseteq A_{0}$.

We claim that each f_{i} satisfies the condition that $f_{i}(x) \circ_{s} x=0$ for all $x \in I$. For $i=0$ or 1 ,

$$
f\left(x_{i}\right) \circ_{s} x_{i}=f_{0}\left(x_{i}\right) \circ_{s} x_{i}+f_{1}\left(x_{i}\right) \circ_{s} x_{i}=0 \quad \text { for all } x_{i} \in I_{i} .
$$

Since $f_{0}\left(x_{i}\right) \circ_{s} x_{i}$ is even and $f_{1}\left(x_{i}\right) \circ_{s} x_{i}$ is odd, we obtain that

$$
\begin{equation*}
f_{0}\left(x_{i}\right) \circ_{s} x_{i}=0 \quad \text { for all } x_{i} \in I_{i} \tag{3.14}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{1}\left(x_{i}\right) \circ_{s} x_{i}=0 \quad \text { for all } x_{i} \in I_{i} . \tag{3.15}
\end{equation*}
$$

For $x_{0} \in A_{0}, x_{1} \in A_{1}$ we have $f\left(x_{0}\right) \circ_{s} x_{1}+f\left(x_{1}\right) \circ_{s} x_{0}=0$ and so

$$
f_{0}\left(x_{0}\right) \circ_{s} x_{1}+f_{0}\left(x_{0}\right) \circ_{s} x_{1}+f_{1}\left(x_{1}\right) \circ_{s} x_{0}+f_{1}\left(x_{1}\right) \circ_{s} x_{0}=0
$$

for all $x_{0} \in I_{0}, x_{1} \in I_{1}$. Thus the odd part is

$$
\begin{equation*}
f_{0}\left(x_{0}\right) \circ_{s} x_{1}+f_{0}\left(x_{0}\right) \circ_{s} x_{1}=0 \quad \text { for all } x_{0} \in I_{0}, x_{1} \in I_{1} \tag{3.16}
\end{equation*}
$$

and the even part is

$$
\begin{equation*}
f_{1}\left(x_{1}\right) \circ_{s} x_{0}+f_{1}\left(x_{1}\right) \circ_{s} x_{0}=0 \quad \text { for all } x_{0} \in I_{0}, x_{1} \in I_{1} \tag{3.17}
\end{equation*}
$$

Hence we have $f_{0}(x) \circ_{s} x=0$ for all $x \in I$ by (3.14) and (3.16), and $f_{1}(x) \circ_{s} x=0$ for all $x \in I$ by (3.15) and (3.17).

Therefore, by Lemma 3.5, $f_{0}(I)=0$ and by Lemma 3.7, $f_{1}(I)=0$. This proves the theorem.

4. Main result

In this section, we always assume that A is a semiprime superalgebra over F and $f: A \rightarrow A$ is a skew-supercommuting F-linear map on A, that is

$$
\begin{equation*}
f(x) \circ_{s} x=0 \quad \text { for all } x \in A \tag{4.1}
\end{equation*}
$$

A graded ideal P of A is said to be graded-prime ideal of A if A / P is a prime superalgebra. One can see readily that P is a graded-prime ideal of A if and only if for $a A b \subseteq P$, where $a, b \in H$, then $a \in P$ or $b \in P$.

We begin with the following useful result.
Lemma 4.1. Let A be a semiprime superalgebra. The intersection of all gradedprime ideals in A is zero.
Proof. Since A is semiprime as an algebra, it is well known that the intersection of all prime ideals in A is zero. For any prime ideal P of A, we claim that $P \cap P^{\sigma}$ is a graded-prime ideal of A. Indeed, it is obvious that $P \cap P^{\sigma}$ is a graded ideal of A. If $a A b \subseteq P \cap P^{\sigma}$, where $a, b \in H$, then $a A b \subseteq P$, which implies that $a \in P$ or $b \in P$ since P is a prime ideal of A. If $a \in P$, then $a= \pm a^{\sigma} \in P^{\sigma}$, that is, $a \in P \cap P^{\sigma}$. Similarly, if $b \in P$, then $b \in P \cap P^{\sigma}$. This implies that $P \cap P^{\sigma}$ is a graded-prime ideal of A. It is obvious that the intersection of all $P \cap P^{\sigma}$, where P is a prime ideal of A, is zero. This proves the lemma.

We now give our main result as follows.
THEOREM 4.2. Let A be a semiprime superalgebra over a commutative ring F with $\frac{1}{2}$. Let $f: A \rightarrow A$ be a skew-supercommuting F-linear map on A. Then $f=0$.
Proof. Pick any graded-prime ideal P. We want to show that P is invariant under f. A linearization of (4.1) gives

$$
f\left(x_{0}\right) \circ_{s} y+f(y) \circ x_{0}=0 \quad \text { for all } x_{0} \in A_{0}, y \in A
$$

Hence

$$
\begin{equation*}
f(p) \circ x_{0} \in P \quad \text { for all } p \in P, x_{0} \in A_{0} . \tag{4.2}
\end{equation*}
$$

In particular, $f(p) \circ x_{0} y_{0} \in P$ for all $p \in P, x_{0}, y_{0} \in A_{0}$. That is,

$$
\left(f(p) \circ x_{0}\right) y_{0}-x_{0}\left[f(p), y_{0}\right] \in P
$$

According to (4.2) we get that $x_{0}\left[f(p), y_{0}\right] \in P$ for all $x_{0}, y_{0} \in A_{0}, p \in P$. Since A / P is a prime superalgebra, we can get from Lemma 2.1 that $\left[f(p), y_{0}\right] \in P$ for all $p \in P, y_{0} \in A_{0}$. Combining this relation with (4.2) we obtain $f(P) A_{0} \subseteq P$ and so $f(P) \subseteq P$ by Lemma 2.1.

Since $f(P) \subseteq P$ and A / P is a prime superalgebra, we easily see that f induces a skew-supercommuting F-linear map on R / P. Hence, we can get from Theorem 3.8 that $f(A) \subseteq P$ and so $f(A) \subseteq \cap P=0$ by Lemma 4.1. This proves our theorem.

Acknowledgement

The work presented in this paper was partly carried out while the author was visiting National Taiwan University as post-doctor. The author would like to express his gratitude to Professor Pjek-Hwee Lee for help and encouragement.

References

[1] K. I. Beidar, M. Brešar and M. A. Chebotar, 'Jordan superhomomorphism', Comm. Algebra 31 (2003), 633-644.
[2] K. I. Beidar, T.-S. Chen, Y. Fong and W.-F. Ke, 'On graded polynomial identities with an antiautomorphism', J. Algebra 256 (2002), 542-555.
[3] K. I. Beidar, W. S. Martindale 3rd and A. V. Mikhalev, Rings with Generalized Identities (Marcel Dekker, New York, 1996).
[4] M. Brešar, 'On skew-commuting mappings of rings', Bull. Austral. Math. Soc. 47 (1993), 291-296.
[5] - 'On generalized biderivations and related maps', J. Algebra 172 (1995), 764-786.
[6] M. Brešar, W. S. Martindale and C. R. Miers, 'Centralizing maps in prime rings with involution', J. Algebra 161 (1993), 342-357.
[7] T.-S. Chen, 'Supercentralizing superderivations on prime sueralgebras', Comm. Algebra 33 (2005), 4457-4466.
[8] L. O. Chung and J. Luh, 'On semicommuting automorphisms of rings', Canad. Math. Bull. 21 (1987), 13-16.
[9] M. Fošner, 'Jordan superderivation', Comm. Algebra 31 (2003), 4533-4543.
[10] -, 'On the extended centroid of prime associative superalgebras with applications to superderivations', Comm. Algebra 32 (2004), 689-705.
[11] , 'Jordan ε-homomorphisms and Jordan ε-derivations', Taiwanese J. Math. 9 (2005), 595-616.
[12] Y Hirano, A. Kaya and H. Tominaga, 'On a theorem of Mayne', J. Okayama Univ. 25 (1983), 125-132.
[13] A. Kaya, 'A theorem on semi-centralizing derivations of prime rings', J. Okayama Univ. 27 (1985), 11-12.
[14] A. Kaya and C. Koc, 'Semicentralizing automorphisms of prime rings', Acta Math. Acad. Sci. Hunger. 38 (1981), 53-55.
[15] A. V. Kelarev, Ring Constructions and Applications (World Scientific, River Edge, NJ, 2002).
[16] F. Montaner, 'On the Lie structure of associative superalgebras', Comm. Algebra 26 (1998), 2337-2349.
[17] Y. Wang, 'Supercentralizing automorphisms on prime superalgebras', Taiwanese J. Math. to appear.

YU WANG, College of Mathematics, Jilin Normal University, Siping, 136000, People's Republic of China
e-mail: ywang2004@mail.china.com

[^0]: (C) 2009 Australian Mathematical Society 0004-9727/09 \$A2.00 +0.00

