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A commutativity theorem for
power-associative rings

D. L. Outcalt and Adil Yaqub

Let R Ybe a power-associative ring with identity and let I be
an ideal of R such that R/I is a finite field and x Z y

(mod I) implies z2 = y2 or both x and y commute with all
elements of I . It is proven that R must then be commutative.
Examples are given to show that R need not be commutative if
various parts of the hypothesis are dropped or if "z2 = y2" is

replaced by "xk = yk" for any integer k > 2 .

1. Introduction

Wedderburn's Theorem, asserting that a finite associative division
ring is necessarily commutative, has recently been generalized by the
authors in [1; 2]. 1Indeed, the following theorem, the case N = (0) of

which yields Wedderburn's Theorem, was proved in [2]:

THEOREM 1. Let R be an associative ring with identity in which

every element is either nilpotent or a unit in R . Then

(a) the set N of nilpotent elements in R <is an ideal and R/N
i8 a division ring;
(b) if (1) RIN is finite, and (i1) z =y (mod N) <implies

2

22 = y2 or both xz and y commute with all elements of W ,

then R 1is commutative.

Our present object is to extend Theorem 1 to the case where R is a
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power-associative ring and where I 1is a more general ideal in R than

N . Indeed, we prove the following

THEOREM 2. Let R be a power-associative ring with identity 1 ,
and let I be an ideal in R . If, further,

(i) R/I 1is a finite field, and

2 2

(i) x =y (mod I) implies =z
with all elements of I ,

= y* or both x and y commute

then R 1s comnutative.

We also give examples to show that Theorem 2 need not be true if
either hypothesis (7) or (Z¢) is dropped, or if the hypothesis that &
has an identity is deleted. Moreover, it turns out, somewhat surprisingly
perhaps, that this theorem is not necessarily true if "x2 = y2" in (47)

is replaced by "xk = yk" for any k > 2 (see examples below).

2. Main section

Proof of Theorem 2. First, we prove that I is commutative.
Suppose that a;, ap € I and a)a; # aza; . We shall show that this
leads to a contradiction. Since ay =0 {mod I) , a» =0 (mod I) ,
ay +a; 0 (mod I) , and ajap # aza; , we have by (ii),

2
a =0, a%=0,(a1+a2)2=0.

Hence, ajas + apa; = 0 . Moreover, since a; +1 21 (mod I) and

(ay+1)ay # az{ay+1) , we have using (7Z) again, (aq;+1)? =1 . Hence,
since a% =0, 2a; = 0 . Therefore

ajaz = - azay = azaj
and thus I 1is indeed commutative.

Now, suppose a € I and b € R . We shall show that ab = ba .
b (mod I) and ab # ba , we have by (ii),

(a+b)2 = b2 and hence a2 + ab + ba = 0 . Since, moreover, -a +b = b

Suppose not. Since a + b
(mod I) , a similar argument shows that a? - ab - ba = 0 . Hence, upon

subtracting, we get 2(abtba) = 0 . Moreover, since ab # ba ,

a(b+1) # (b+l)a , and hence we may repeat the above argument using b + 1
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instead of b to get 2(a(b+l)+(b+l)a) = 0 . Combining this equation
with 2(ab+ba) = 0 , we get La =0 and hence -2a = 2a . Thus

2ab = -2ba = 2ba , and hence

(1) 2(ab-ba) = 0 .

Now, let p be the characteristic of the finite field R/I (see
(i)} . Then pb € I , and hence a(pb) = (pb)a . Therefore

(2) plab-ba) = 0 .

We now distinguish two cases.

Case 1. p #2 . Then p is an odd prime and (1), (2) readily
imply ab - ba = 0 , a contradiction.

Case 2. p =2 . In this case the finite field R/I has exactly

2k elements for some integer k . Hence (E)Zk =5 , and thus

2k

b%"-b € I . Therefore,

(3) a(p?p) = (p?*-b)a .

Moreover, since (a+b)? = b2 and R is power-associative, we obtain
{(a+b)2}2k—1 = (p2)2k1 , hence (a+b)2k = p2k Now, by the
power-associativity of R , (a+b)(a+b)2k = (a+b)2k(a+b) , therefore
(a+b)b2k = bzk(a+b) . Thus, using power-associativity again, we get

2k _ ook

(L) ab?” = b¥q .
Combining (3) and (4), we get ab = ba , a contradiction. We have thus
obtained a contradiction whether p #2 or p =2 . This contradiction

proves that
(5) ab =ba for all a € I and all b € R .

To complete the proof of the theorem, suppose &, y € R . In view of
(5), we may assume that x ¢ I and y ¢ I . Let E=E+ I bea
generator for the multiplicative cyclic group of non-zero elements of the
‘finite field R/I . 'Then for some integers <, j , and some elements

a, a' € I , ve have,

=€ +a, y=¢ +a'
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Hence, by (5), the power-associativity of R , and the fact (proved above)
that I is commutative, we readily obtain that xy = yx . This proves

the theorem.

3. Examples and remarks

In this section, we give some examples to show that Theorem 2 need
not be true if either hypothesis (4}, (77) is deleted, or if the
hypothesis that R has an identity is dropped.

EXAMPLE 1. Let R be the ring of quaternions, and let I = (0)
Here R satisfies (47}, but (Z) fails to hold. Another example is
furnished by taking R to be the complete matrix ring, Mn(F) , over a
field F , and I = (0) . Clearly both of these rings are not

comutative.

EXAMPLE 2. Let

b e
R={lo q d| | a, b, e, d € GF(2)} ,
‘0 0 o
b e
I={lo o d||b,e,dc¢€cFr(2)
lo 0 o

It is readily verified that R satisfies (Z), but (ZZ) fails to hold.

Moreover, K 1is not commutative.

EXAMPLE 3. Let

R

GFlq) ® L ,
I=9r,
where L[ 1is a Lie ring of characteristic not 2 . Then R satisfies all

the hypotheses of Theorem 2, except that R has no identity 1 .

Moreover, R is not commutative.

We now remerk that the equation "x2 = y2" in (ii) of Theorem 2

cannot in general be replaced by "xk = yk" for any k > 2 . For,

consider the ring R defined by
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b e
R=4]0 a d a, b, e, d € GF(p) , p = prime} ,
0 a

where p 1is chosen, in two stages, as follows: if k 1is odd, take p
to be any fixed prime divisor of k ; while, if k is even, take p to
be any fixed prime divisor of k/2 . Since k > 2 , such a prime p

always exists. Let

0 b
I=4]0 0 d| | b,e,decGF(p)}y .
0 0

It is easily seen that K& satisfies all the hypotheses of Theorem 2,

except that "x? = y2" is now replaced by "z = yk" in (ZZ). However,

R is not commutative.

Now, if in Theorem 2, we specialize R to be an assoeiative ring
with identity such that every element in R 1is either nilpotent or a unit
in R , then it is easily seen that the set N of nilpotent elements in
R forms an ideal, and that R/N is indeed an associative division ring.
If, in addition, R/N is finite, then R/N is a field (by Wedderburn's
Theorem), and Theorem 1 now follows at once from Theorem 2 upon

specializing the ideal I to be N itself.

Whether or not the assumption of power-associativity in Theorem 2 is

essential remains an open question.
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