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A commutativity theorem for
power-associative rings

D. L. Outcalt and Adil Yaqub

Let R be a power-associative ring with identity and let I be

an ideal of R such that R/I is a finite field and x H y

(mod I) implies x 2 = y2 or both x and y commute with all

elements of I . It is proven that R must then be commutative.

Examples are given to show that R need not be commutative if

various parts of the hypothesis are dropped or if "x2 = t/2" is

k k
replaced by "x = y " for any integer k > 2 .

1. Introduction

Wedderburn's Theorem, asserting that a finite associative division

ring is necessarily commutative, has recently been generalized by the

authors in [/; 2]. Indeed, the following theorem, the case N = (0) of

which yields Wedderburn's Theorem, was proved in [Z]:

THEOREM 1. Let R be an associative ring with identity in which

every element is either nilpotent or a unit in R . Then

(a) the set N of nilpotent elements in R is an ideal and R/N

is a division ring;

(b) if (i) R/N is finite, and (ii) x = y (mod N) implies

x2 = y2 or both x and y commute with all elements of N ,

then R is corrmutative.

Our present object is to extend Theorem 1 to the case where R is a
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power-associative ring and where I is a more general ideal in R than

N . Indeed, we prove the following

THEOREM 2. Let R be a power-associative ring with identity 1 ,

and let I be an ideal in R . If, further,

(i) R/I is a finite field, and

(ii) x = y (mod J) implies x2 = y2 or both x and y commute

with all elements of I ,

then R is commutative.

We also give examples to show that Theorem 2 need not be true if

either hypothesis (i) or (ii) is dropped, or if the hypothesis that ft

has an identity is deleted. Moreover, it turns out, somewhat surprisingly

perhaps, that this theorem is not necessarily true if "x2 = y2" in (ii)

7, T,

is replaced by "x = y " for any k > 2 (see examples below).

2. Main section

Proof of Theorem 2. First, we prove that J is commutative.

Suppose that a.i, a2 *• I and a\a2 t
 aia-\ • W e shall show that this

leads to a contradiction. Since a\ = 0 (mod I) , a2 = 0 (mod J) ,

o-i + #2 = 0 (mod I) , and a\a2 t «2al > w e have by (ii) ,

ax = 0 , a\ = 0 , (ai+a2)
2 = 0 .

Hence, a\a2 + a2CL\ = 0 . Moreover, since a\ + 1 = 1 (mod J) and

, we have using (ii) again, (ai+l)2 = 1 . Hence,

2
since a\ = 0 , 2a! = 0 . Therefore

and thus I is indeed commutative.

Now, suppose a £ I and b (. R . We shall show that ab = ba .

Suppose not. Since a + b = b (mod J) and ab t ba , we have by (ii) ,

(a+b)2 = b2 and hence a2 + ab + ba = 0 . Since, moreover, -a + b = b

(mod J) , a similar argument shows that a 2 - •ab - ba - 0 . Hence, upon

subtracting, we get 2{ab+ba) = 0 . Moreover, since ab ^ ba ,

a(b+l) t (b+l)a , and hence we may repeat the above argument using b + 1
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instead of b to get 2(a{b+l)+{b+l)a) = 0 . Combining this equation

with 2{ab+ba) = 0 , we get ha = 0 and hence -2a = 2a . Thus

2ab = -2ba = 2ba , and hence

(1) 2{ab-ba) = 0 .

Now, let p be the characteristic of the finite field R/I (see

(i)) •. Then pb (. I , and hence a{pb) = {pb)a . Therefore

(2) p{ab-ba) = 0 .

We now distinguish two cases.

Case 1. p t2 . Then p is an odd prime and (l), (2) readily

imply ab - ba = 0 , a contradiction.

Case 2. p = 2 . In this case the finite field R/I has exactly

2 elements for some integer k . Hence (5)2 = B , and thus

blk-b (. I . Therefore,

(3)

Moreover, since (a+b)2 = b2 and R is power-associative, we obtain

{(a+b)2}2*'1 = (b2)2*'1 , hence (a+&)2& = blk . Now, by the

power-associativity of R , {a+b){a+b)2 = {a+b)2 {a+b) , therefore

{a+b)b2 = b2 {a+b) . Thus, using power-associativity again, we get

(It) abzk = bzka .

Combining (3) and {h), we get ab = ba , a contradiction. We have thus

obtained a contradiction whether p ? 2 or p = 2 . This contradiction

proves that

(5) ab = ba for all ail and all b € R .

To complete the proof of the theorem, suppose x, y i R . In view of

(5), we may assume that x $ I and y \ I . Let £ = 5 + I be a

generator for the multiplicative cyclic group of non-zero elements of the

finite field R/I . Then for some integers i, j , and some elements

a, a' (. I , we have,

x = e + a , y = & + a1 .
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Hence, by (5), the power-associativity of R , and the fact (proved above)

that I is commutative, we readily obtain that xy = yx . This proves

the theorem.

•a

0

•0

b
a
0

d

cr

3. Examples and remarks

In this section, we give some examples to show that Theorem 2 need

not be true if either hypothesis (i), (ii) is deleted, or if the

hypothesis that R has an identity is dropped.

EXAMPLE 1. Let R be the ring of quaternions, and let J = (0) .

Here R satisfies (ii) , but (i) fails to hold. Another example is

furnished by taking R to be the complete matrix ring, M {F) , over a

field F , and J = (0) . Clearly both of these rings are not

commutative.

EXAMPLE 2. Let

R = \ 0 a d a, b, a, d € GF(2)

b, a, d € GF{2)

It is readily verified that R satisfies (i) , but (ii) fails to hold.

Moreover, R is not commutative.

EXAMPLE 3. Let

R = GF(q) ®L ,

I = L ,

where L is a Lie ring of characteristic not 2 . Then R satisfies all

the hypotheses of Theorem 2, except that R has no identity 1 .

Moreover, R is not commutative.

in (ii) of Theorem 2

-0

0

•0

b
0

0

a-
d

0-

We now remark that the equation

cannot in general be replaced by "x

consider the ring R defined by

"x2 = y2"

= y " for any k > 2 . For,
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R = • a, b, e, d £ GF(p) , p = prime

where p is chosen, in two stages, as follows: if k is odd, take p

to be any fixed prime divisor of k ; while, if k is even, take p to

be any fixed prime divisor of k/2 . Since k > 2 , such a prime p

always exists. Let

I =

rO b o-\

0 0 d b, a, d € GF{p)

43 0 0J

It is easily seen that R satisfies all the hypotheses of Theorem 2,

except that "xz = y2"

i? is not commutative.

k k
is now replaced by "x = y " in (ii). However,

Now, if in Theorem 2, we specialize R to be an associative ring

with identity such that every element in R is either nilpotent or a unit

in R , then it is easily seen that the set N of nilpotent elements in

R forms an ideal, and that R/N is indeed an associative division ring.

If, in addition, R/N is finite, then R/N is a field (by Wedderburn's

Theorem), and Theorem 1 now follows at once from Theorem 2 upon

specializing the ideal I to be N itself.

Whether or not the assumption of power-associativity in Theorem 2 is

essential remains an open question.
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