A commutativity theorem for power-associative rings

D. L. Outcalt and Adil Yaqub

Abstract

Let R be a power-associative ring with identity and let I be on ideal of R such that R / I is a finite field and $x \equiv y$ (mod I) implies $x^{2}=y^{2}$ or both x and y commute with all elements of I. It is proven that R must then be commutative. Examples are given to show that R need not be commutative if various parts of the hypothesis are dropped or if " $x^{2}=y^{2 "}$ is replaced by $" x^{k}=y^{k_{"}}$ for any integer $k>2$.

1. Introduction

Wedderburn's Theorem, asserting that a finite associative division ring is necessarily commutative, has recently been generalized by the authors in $[1 ; 2]$. Indeed, the following theorem, the case $N=(0)$ of which yields Wedderburn's Theorem, was proved in [2]:

THEOREM 1. Let R be an associative ring with identity in which every element is either nilpotent or a unit in R. Then
(a) the set N of nilpotent elements in R is an ideal and R / N is a division ring;
(b) if (i) R / N is finite, and (ii) $x \equiv y(\bmod N)$ implies $x^{2}=y^{2}$ or both x and y commute with all elements of N, then R is commutative.

Our present object is to extend Theorem 1 to the case where R is a

Received 12 April 1970. The first author was supported by US Air Force Office of Scientific Research Grant No. 698-67, and the second author by US National Science Foundation Grant GP-5929.
power-associative ring and where I is a more general ideal in R than N. Indeed, we prove the following

THEOREM 2. Let R be a power-associative ring with identity 1 , and let I be an ideal in R. If, further,
(i) R / I is a finite field, and
(ii) $x \equiv y(\bmod I)$ implies $x^{2}=y^{2}$ or both x and y commute with all elements of I,
then R is commutative.
We also give examples to show that Theorem 2 need not be true if either hypothesis (i) or (ii) is dropped, or if the hypothesis that R has an identity is deleted. Moreover, it turns out, somewhat surprisingly perhaps, that this theorem is not necessarily true if " $x^{2}=y^{2 \prime \prime}$ in (ii) is replaced by $" x^{k}=y^{k "}$ for any $k>2$ (see examples below).

2. Main section

Proof of Theorem 2. First, we prove that I is commutative. Suppose that $a_{1}, a_{2} \in I$ and $a_{1} a_{2} \neq a_{2} a_{1}$. We shall show that this leads to a contradiction. Since $a_{1} \equiv 0(\bmod I), a_{2} \equiv 0(\bmod I)$, $a_{1}+a_{2} \equiv 0(\bmod I)$, and $a_{1} a_{2} \neq a_{2} a_{1}$, we have by (ii),

$$
a_{1}^{2}=0, \quad a_{2}^{2}=0, \quad\left(a_{1}+a_{2}\right)^{2}=0
$$

Hence, $a_{1} a_{2}+a_{2} a_{1}=0$. Moreover, since $a_{1}+1 \equiv 1(\bmod I)$ and $\left(a_{1}+1\right) a_{2} \neq a_{2}\left(a_{1}+1\right)$, we have using (ii) again, $\left(a_{1}+1\right)^{2}=1$. Hence, since $a_{1}^{2}=0,2 a_{1}=0$. Therefore

$$
a_{1} a_{2}=-a_{2} a_{1}=a_{2} a_{1}
$$

and thus I is indeed commutative.
Now, suppose $a \in I$ and $b \in R$. We shall show that $a b=b a$. Suppose not. Since $a+b \equiv b(\bmod I)$ and $a b \neq b a$, we have by (ii), $(a+b)^{2}=b^{2}$ and hence $a^{2}+a b+b a=0$. Since, moreover, $-a+b \equiv b$ $(\bmod I), a \operatorname{similar} \operatorname{argument}$ shows that $a^{2}-a b-b a=0$. Hence, upon subtracting, we get $2(a b+b a)=0$. Moreover, since $a b \neq b a$, $a(b+1) \neq(b+1) a$, and hence we may repeat the above argument using $b+1$
instead of b to get $2(a(b+1)+(b+1) a)=0$. Combining this equation with $2(a b+b a)=0$, we get $4 a=0$ and hence $-2 a=2 a$. Thus $2 a b=-2 b a=2 b a$, and hence

$$
\begin{equation*}
2(a b-b a)=0 \tag{1}
\end{equation*}
$$

Now, let p be the characteristic of the finite field R / I (see (i)): Then $p b \in I$, and hence $a(p b)=(p b) a$. Therefore

$$
\begin{equation*}
p(a b-b a)=0 \tag{2}
\end{equation*}
$$

We now distinguish two cases.
Case 1. $p \neq 2$. Then p is an odd prime and (1), (2) readily imply $a b-b a=0$, a contradiction.

Case 2. $p=2$. In this case the finite field R / I has exactly 2^{k} elements for some integer k. Hence $(\bar{b})^{2 k}=\bar{b}$, and thus $b^{2^{k}}-b \in I$. Therefore,

$$
\begin{equation*}
a\left(b^{2^{k}}-b\right)=\left(b^{2^{k}}-b\right) a \tag{3}
\end{equation*}
$$

Moreover, since $(a+b)^{2}=b^{2}$ and R is power-associative, we obtain $\left\{(a+b)^{2}\right\}^{2^{k-1}}=\left(b^{2}\right)^{2^{k-1}}$, hence $(a+b)^{2^{k}}=b^{2^{k}}$. Now, by the power-associativity of $R,(a+b)(a+b)^{2^{k}}=(a+b)^{2^{k}}(a+b)$, therefore $(a+b) b^{2 k}=b^{2^{k}}(a+b)$. Thus, using power-associativity again, we get

$$
\begin{equation*}
a b^{2^{k}}=b^{2^{k}} a \tag{4}
\end{equation*}
$$

Combining (3) and (4), we get $a b=b a$, a contradiction. We have thus obtained a contradiction whether $p \neq 2$ or $p=2$. This contradiction proves that

```
ab = ba for all a\inI and all b\inR.
```

To complete the proof of the theorem, suppose $x, y \in R$. In view of (5), we may assume that $x \notin I$ and $y \notin I$. Let $\xi=\xi+I$ be a generator for the multiplicative cyclic group of non-zero elements of the finite field R / I. Then for some integers i, j, and some elements $a, a^{\prime} \in I$, we have,

$$
x=\xi^{i}+a, y=\xi^{j}+a^{\prime}
$$

Hence, by (5), the power-associativity of R, and the fact (proved above) that I is commutative, we readily obtain that $x y=y x$. This proves the theorem.

3. Examples and remarks

In this section, we give some examples to show that Theorem 2 need not be true if either hypothesis (i), (ii) is deleted, or if the hypothesis that R has an identity is dropped.

EXAMPLE 1. Let R be the ring of quaternions, and let $I=$ (0). Here R satisfies ($i i$, but (i) fails to hold. Another example is furnished by taking R to be the complete matrix ring, $M_{n}(F)$, over a field F, and $I=(0)$. Clearly both of these rings are not commutative.

EXAMPLE 2. Let

$$
\begin{aligned}
& R=\left\{\left.\left[\begin{array}{lll}
a & b & c \\
0 & a & d \\
0 & 0 & a
\end{array}\right] \right\rvert\, a, b, c, d \in G F(2)\right\}, \\
& I=\left\{\left.\left[\begin{array}{lll}
0 & b & c \\
0 & 0 & d \\
0 & 0 & 0
\end{array}\right] \right\rvert\, b, c, d \in G F(2)\right\}
\end{aligned}
$$

It is readily verified that R satisfies (i), but ($i i$) fails to hold. Moreover, R is not commutative.

EXAMPLE 3. Let

$$
\begin{aligned}
& R=G F(q) \oplus L, \\
& I=L
\end{aligned}
$$

where L is a Lie ring of characteristic not 2 . Then R satisfies all the hypotheses of Theorem 2, except that R has no identity 1 . Moreover, R is not commutative.

We now remark that the equation " $x^{2}=y^{2 "}$ in (ii) of Theorem 2 cannot in general be replaced by $" x^{k}=y^{k}$ " for any $k>2$. For, consider the ring R defined by

$$
R=\left\{\left.\left[\begin{array}{lll}
a & b & c \\
0 & a & d \\
0 & 0 & a
\end{array}\right] \right\rvert\, a, b, c, d \in G F(p), p=\text { prime }\right\}
$$

where p is chosen, in two stages, as follows: if k is odd, take p to be any fixed prime divisor of k; while, if k is even, take p to be any fixed prime divisor of $k / 2$. Since $k>2$, such a prime p always exists. Let

$$
I=\left\{\left.\left[\begin{array}{lll}
0 & b & c \\
0 & 0 & d \\
0 & 0 & 0
\end{array}\right] \right\rvert\, b, c, d \in G F(p)\right\}
$$

It is easily seen that R satisfies all the hypotheses of Theorem 2 , except that " $x^{2}=y^{2 "}$ is now replaced by $" x^{k}=y^{k_{"}}$ in (ii). However, R is not commutative.

Now, if in Theorem 2, we specialize R to be an associative ring with identity such that every element in R is either nilpotent or a unit in R, then it is easily seen that the set N of nilpotent elements in R forms an ideal, and that R / N is indeed an associative division ring. If, in addition, R / N is finite, then R / N is a field (by Wedderburn's Theorem), and Theorem 1 now follows at once from Theorem 2 upon specializing the ideal I to be N itself.

Whether or not the assumption of power-associativity in Theorem 2 is essential remains an open question.

References

[1] D.L. Outcalt and Adil Yaqub, "A generalization of Wedderburn's theorem", Proc. Amer. Math. Soc. 18 (1967), 175-177.
[2] D.L. Outcalt and Adil Yaqub, "A commutativity theorem for rings", BuZl. Austral. Math. Soc. 2 (1970), 95-99.

University of California, Santa Barbara, California.

