Nonrigid-Earth Rotation Solution
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Abstract. The accuracy of the rigid-Earth solution SMART97 is 2 uas
over the time interval (1968, 2023). To obtain a nonrigid-Earth solution,
we use the transfer function of Mathews (1999). The perturbations of the
third component of the angular velocity vector are taken into account.

1. The rigid-Earth solution SMART97

The differential equations of the rigid-Earth rotation are
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The torque (L, M, N) has to be computed by using simultaneously the zonal
and the tesseral harmonics because the first and the second derivatives of the
diurnal and the semidiurnal terms are very important with respect to the long-
period terms. Table 1 gives the amplitudes of the semidiurnal term (coming
from Cj 2 and S33), of the 18.6-year term and of the 13.66-day term.

Integrated in this way, the rigid Earth solution SMART97 (Bretagnon et
al., 1998) can reach a high accuracy. It has been compared with a numerical
integration using DE403 (Standish et al., 1995) for the positions of the Moon,
the Sun and the planets. The accuracy is 2 pas over 1968-2023. Figure 1 gives
the differences for v, w and for the Earth rotation angle ¢.
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Figure 1. Theory SMART97 — numerical integration using DE403
over 1968-2023.

2. The influence of the truncation level

Table 2 gives the number of the periodic terms for ¢ = 0.01uas, 0 = 0.1uas, and
o = luas and the number of Poisson terms greater than ¢ over [J2000.0—100 yrs,
J2000.04-100 yrs], for the rigid-Earth solution SMART97. The table also gives
the accuracy of the solution for different levels of truncation. Data are given
for the variable p (A% in the IERS Conventions 1996) of nutation in longitude
reckoned from the equinox of date. The number of terms of the Herring solution
for a nonrigid Earth (McCarthy, 1996) is given by comparison.

Table 1.  Amplitude of the 18.6-year, 18.66-day, 12-hour terms and
of their first and second derivatives.

period Y(in ") (in "/yr) (in " [yr?)
18.6 years  17.280776 5.838 1.96
13.66 days 0.221507 37.212 6251.37
12 hours 0.000036 0.132 762.56

The Poisson terms In SMART97, the Pxt Poisson terms (Poisson terms of
degree 1) represent 13.6% of the periodic terms with a truncation of 1uas, 16.8%
with a truncation of 0.1puas and 20.8% with a truncation of 0.01uas. That must
be compared to the Herring solution in which the P xt Poisson terms represent
29.1% of the periodic terms with a truncation of 1uas.
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The truncation In the construction of the SMART solution for a nonrigid Earth
using the transfer function of Mathews, the amplitudes of some terms in reso-
nance can be increased considerably. So, to obtain all the terms greater than 0.1
pas in the nonrigid-Earth solution it is necessary to keep a level of truncation
of 0.01 pas for the rigid-Earth solution. We give the number of terms of the
SMART solution for a nonrigid Earth in Table 3.

Table 2.  Number of terms of the nutation in longitude p in SMART97
for different truncation levels o.

Solution and ¢ P  Pxt Pxt? Pxt3 Pxt* Total Accuracy
SMART (0.01pas) 3910 815 183 14 2 4924 2.2 pas
SMART (0.10pas) 1586 266 61 4 0 1917 8 pas
SMART (1.00pas) 642 87 17 1 0 747 40 pas
Herring (1.00pas) 375 109 0 0 0 484

Table 3.  Number of terms of the nutation in longitude of the nonrigid
Earth solution at the 0.1 pas truncation level.

Periodic Pxt Pxt? Pxt3 Pxt* Total
1581 264 60 4 0 1909

3. Nonrigid-Earth solution

3.1. The transfer function of Mathews (1999)

To compute the nonrigid-Earth solution, we use the transfer functions in a strict
process. For instance, the transfer function of Mathews (1999) is

with egp = 0.003284507, (1 + o) is the nutation frequency in space. We use the
complex frequencies

or = ( 0.0025940, —0.0001438546),02 = (—1.00231861, 0.00002578),
o3 = (-0.998957, 0.000687), o4 = ( 0.000413499, 0.000000280),

and the complex coefficients

No = ( 1.0000099, —0.37652854 x 107%),

Nz (—0.79952969, 0.043796154),

N, = ( 0.048964919, 0.16332679 x 1072),

N3 = ( 0.29445472 x 1073, —0.82328898 x 107%),
Ny = (-0.15139223 x 10, —0.11248592 x 10~°).
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3.2. Application to the Earth’s angular velocity vector

We apply the new transfer function not to the quantities sin g A1) and Ae but
to the Earth’s angular velocity vector (p, g, r) of the rigid case expressed as a
function of the three Euler angles

PR = YRsinwgsinpgr + wrcos R,
qr = YRsinwpgcosppr — WRsin @R, (1)
TR = YRCOSWR+ ¢R.

For each prograde or retrograde argument, the angular velocity vector of the
nonrigid Earth is obtained by multiplication by the transfer function

(pNrR+igNR) = (PR + iqR) X T(0; €ler).

From the quantities (pnR, VR, TNR), We can compute the derivatives of ¢, w
and ¢ in the nonrigid case by the inverse of (1)

YNr = (PNRSINONR + qNRCOSPNR)/ SinWNR,
WNR = (PNRCOS®YNR — qNRSINQNR), (2)
$YNR = TNR— YNRCOSWNR.

These equations are strict but the right-hand members depend on w and ¢ and
the derivative of ¢, and we have to proceed by iterations to solve this system.
The process converges without difficulties. The precision of the computation of
¥R is better than 3.5x 10~° " |year which yields an accuracy of 0.01 pas for the
18.6-year term and 0.50 pas for the 883 year term. The classical method is to
assume rygp = Tr. The results are illustrated by the following table. We denote
SM97M99 as the solution obtained by SMART97 + Mathews (1999). We can
see the results from Mathews’s function are very close to the series of Herring
(McCarthy, 1996).

Solution Argument p (sin) p (cos) € (sin) € (cos)
SMIT™M99 A3+ D - F 17206664 -3357 —-1488 -9205156
Herring 17206 394 —-3702 -1523 -9205474
SM97M99 2X3 -—1318625 —662 —486 573040
Herring —1318526 -670 —471 573 046
SM97M99 2X3+2D —227663 309 150 97 854
Herring —227720 269 136 97 864
SM9TM99 Az -36674 —123068 16616 684
Herring 36777 —123010 16590 698

The full method is to take into account the tidal variations in the Earth’s
rotation. We introduced the series (w — wg) and (w — wp) (McCarthy, 1996) in
order to obtain ryg from rg,

TNR = TR+(w—w5)+(w—wD).
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Figure 2. Influences of (w —wg) and (w—wp) on p and € over 1968~
2023. Units are pas.

The modifications are very important not only for the third Euler angle ¢ but
also for the first two. For instance, we obtain

Ap = 422421+ 69sin(2\s + 2D — 2F) — 4sin(As+ D — F) +---,
Ae = -—15t+T712cos(A3+ D — F)—19cos(2A3+ 2D —2F) + ---,

Il

where the amplitudes are in pas and the time in thousands of Julian years from
J2000. Therefore, for ¢, the 18.6-year term becomes

€ =-1488sin(A3+ D — F) — 9204444 cos(As + D — F).
By comparison with the previous table we see the necessity to determine again
the transfer function. The modifications of p and ¢ are plotted in Figure 2.
4. Conclusion

We have now to determine a new nonrigid-Earth rotation solution by using the
new model of Mathews et al. (2000) taking into account the tidal variations in
th Earth’s rotation.
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