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Abstract. The concept of strong shift equivalence of square non-negative integral
matrices has been used by R. F. Williams to characterize topological isomorphism
of the associated topological Markov chains. However, not much has been known
about sufficient conditions for strong shift equivalence even for 2 x 2 matrices (other
than those of unit determinant). The main theorem of this paper is: If A and B are
positive 2X2 integral matrices of non-negative determinant and are similar over
the integers, then A and B are strongly shift equivalent.

1. Introduction
For non-negative square integral matrices A, B possibly of different sizes, write
A =! B if there exist non-negative integral matrices R, S with A-RS, B = SR.
The transitive closure of the relation ~i is called strong shift equivalence, here
denoted by =; thus A = B if and only if there exist fc > 0 and non-negative square
integral matrices Co, Cu...,Ck with

A = Co =*= i Cx = i • • • = ! Cfc = B.

The importance of this relation lies in its use by R. F. Williams [27], [28] in topological
dynamics to characterize isomorphisms of topological Markov chains. A topological
dynamical system (X, a-) is a compact metric space X together with a homeo-
morphism o- of X onto X [8]. With each non-negative n x n integral matrix A is
associated a topological Markov chain (XA,aA), a particular kind of topological
dynamical system with XA 0-dimensional: A can be regarded as the adjacency
matrix of a directed graph G with a set V of n vertices ('symbols' or 'states'), a
set E of edges, and Ao edges from the ith vertex to the y'th vertex [1]. (Thus multiple
edges and loops are permitted.) By an 'infinite walk' in G let us mean a doubly
infinite sequence of edges ( . . . , ek,...) = e, where for each fc the terminal vertex
of ek is the initial vertex of e^+^cf. [1]). Then XA is defined to be the set of infinite
walks as a subspace of the compact metrizable sequence space Ez; crA is the left
shift, o-A{e)k = ek+1 (cf. [7]). (If A is a 0-1 matrix, i.e. G has no multiple edges,
then a walk is determined by a sequence of vertices, so that XA can be realized
more economically inside Vz, again with aA the left shift [5], [8], [28]. A then
represents allowed transitions between states.) Williams' theorem ([28]; see also
[21]) is that (XA, aA) and (XB, crB) are isomorphic as topological dynamical systems
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if and only if A and B are strongly shift equivalent. (Here an isomorphism is a
homeomorphism <p of XA with XB such that <p<rA = o-B<p.)

The importance of topological Markov chains, in turn, lies in their fundamental
role in the Smale-Bowen study of Axiom A diffeomorphisms / of a compact manifold
M by means of the action of / on the non-wandering set Q.f (the set of points of
M lacking a neighbourhood whose iterates under / are disjoint) [25], [3], [4], [8]:
ilf is partitioned into finitely many invariant clopen 'basic' sets, each of which, as
a dynamical system, is the quotient of a topological Markov chain, or is even
isomorphic to a topological Markov chain if flf is 0-dimensional [3].

The nature of strong shift equivalence, however, has not been well understood
even for 2x2 matrices. For the particular case A, Be GL (2, Z), Cuntz and Krieger
[7], [17] used Effros' and Shen's theory of dimension groups [11], [9] to show A = B
if A and B are similar over Z; in this case, 2x2 intermediate matrices Q suffice.
For more general 2x2 matrices, however, there have been many examples of
positive 2x2 integral A, B similar over Z (enough to satisfy all known necessary
conditions) for which strong shift equivalence has not been proved. The main result
of this paper resolves all such examples with non-negative determinant in the
affirmative, helps to clarify the nature of the 2x2 case, and provides a perspective
for study of the n x n case:

1.1. THEOREM. / / A and B are positive 2x2 integral matrices of non-negative
determinant and are similar over Z, then A = B.

The proof is in two steps. In § 2, it is shown that a similarity of A and B (via a
unimodular matrix, later seen to be no restriction) can be replaced by a sequence
of similarities via 'unit shears'; in § 3, it is shown that similarity via a unit shear
gives strong shift equivalence using 3x3 intermediate matrices. The method is
algorithmic.

Let fA(x) denote the characteristic polynomial of A. If A and B are of the same
size, an easy necessary condition for A = B is that fA(x)=fB{x). The theorem of
Latimer, MacDuffee & Taussky [18], [26], [20] for monic irreducible polynomials
f(x) with integer coefficients states that the similarity classes over Z of square
matrices A with fA(x)=f(x) correspond one-to-one to ideal classes in the ring
Z[A], where A is a root of f(x). An immediate consequence of this fact and theorem

1.1. is:

1.2. COROLLARY. Let M be a set of positive 2 x 2 integral matrices of positive
determinant all having a common irrational eigenvalue A. Then the number of
strong-shift-equivalence classes of members of M is bounded by the number of ideal
classes of Z[A].

For example, let p be any prime with p < 223, p # 79. If p = 1 (mod 4), choose any
odd integer t > Jp and let d = (t2—p)/4; if p # 1 (mod 4), choose any even integer
t>2-Jp and let d = (t/2)2-p. Then all 2x2 integral matrices A > 0 with trace t
and determinant d are strongly shift equivalent. Indeed Z[A] equals Z[(l+Jp)/2]
or Z[vp] in respective cases; then Z[A] is known to be a maximal order of class
number 1, [2, tables 1, 2].

L*_
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A sharper necessary condition for strong shift equivalence was observed by
Williams [27], [28]: non-negative square integral matrices A, B are said to be shift
equivalent, here written A ~ B, if there exist / s 0 and integral matrices R, S > 0
with RS = A1, SR = B1, AR = RB, SA = BS. Then A *= B implies A ~ R 'Williams'
problem' [28, errata] [10] is to determine whether, conversely, A~ B implies A « B.
A positive resolution of Williams' problem would be important, as shift equivalence
is more readily computed than strong shift equivalence [28], [16]. Moreover, shift
equivalence is less closely tied to order. In fact, in its definition, the condition R,
Ss=0 can be omitted if A, B>0 [23], [22]. In particular, if B = Q'lAQ for
QeGL(2,Z), then A = RS and B = SR for R = AQ, S = Q~\ so that A~B.
Theorem 1.1 can therefore be interpreted as a positive answer to Williams' problem
in the somewhat restricted case of positive 2x2 integral matrices in a fixed similarity
class over Z of non-negative determinant. Strongly shift equivalent matrices,
however, can be in different similarity classes. For example,

and
L4 4J

factor as RS and SR for

:]

but are not similar mod 2 and hence are not similar over Z.
In the remainder of this paper, we shall work with matrices A = [Aiy-] variously

over U and Z. Mn(S) is the set of all n x n matrices with entries in S. The notation
A > 0 means that A has non-negative entries; A > 0 means that all entries of A are
strictly positive. A" is the transpose of A. Matrices are at times regarded as linear
transformations on column vectors: A(x) = Ax. Elements of R2 may nevertheless
be written in row form. A and B are said to be similar via O if B = Q'^AQ. C+
denotes the standard positive cone of R2 (the closed first quadrant). A 'cone' C in
general is a closed convex cone in U2. int0 C is the interior of C together with the
origin.

General references are [12] and [20] for matrices, [15] and [24] for number
theory, [1] for graph theory, [8] for topological dynamical systems, and [8], [19],
[21], [22], [23], [28] for perspective on the use of symbol spaces (symbolic dynamics).
Topological Markov chains are also known as 'two-sided subshifts of finite type.'
Krieger [17] presents an alternate realization of XA. Handelman [13], [14] has
developed further deep properties of shift equivalence.

The author is indebted to E. Effros for calling attention to this problem and for
valuable discussions.

2. Farey approximations, shears, and positivity
Let us call each of the matrices

i;] - [1
a unit shear. The purpose of this section is to reduce the proof of theorem 1.1. to
the case where A and B are similar via a unit shear, by proving this fact:
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2.1 LEMMA. Let A and BeM2(U) be positive, of positive determinant, and similar
via SL (2,Z). Then there exists a sequence A = Ao, Au ..., Ak = BinM2(R) such that

(a) A, > 0 for each i, and
(b) for each i — 1 , . . . , k, A,r = //]"'A-iW,> where Ht is a unit shear or the inverse

of a unit shear.

The proof, given as 2.6 below, depends on the relationship between positivity,
similarity, and rational approximation of Perron eigenvectors, as expressed in the
lemmas to follow.

2.2 Definitions. Let us say that the cone C in U2 straddles the basis v, w of R2 if
v e int C but w & C, —w i. C. In other words, in the coordinate system determined by
v, w, C contains the 'positive x-axis' in its interior and lies in the 'open right half
plane'. By a Perron basis for the 2x2 matrix A > 0 let us mean a basis v, w of R2

in which v is a Perron eigenvector of A and w is a non-Perron eigenvector.
Observe that C+ always straddles a Perron basis [12, p. 53 and p. 63, remark 3].

If A has positive determinant, a more general statement is possible:

2.3. LEMMA. Let AeM2(U) with A>0, det A > 0 . Then for any PeGL(2,U),
P~lAP>0 if and only if' P(C+) or -P(C+) straddles a Perron basis for A.

Proof. Let Aj be the Perron eigenvalue of A and A2 the other eigenvalue. Since
det A>0, Aj>A2>0. Let D be the diagonal matrix with diagonal entries A], A2,
Observe that for a cone C, D(C) cint0 C if and only if C or —C straddles the
standard basis (1,0), (0,1) of R2; here the fact \i > A2> 0 is used. By a change of
coordinates, it follows that for a cone C, A(C)cint0 C if and only if C or - C
straddles a Perron basis for A. In particular, P(C+) or —P(C+) straddles a Perron
basis for A if and only if A(P(C+))<=int0P(C+), or equivalently, P~lAP(C+)c
int0 (C+), or equivalently, P~lAP>0. •

Now let us examine the case where P is a matrix Q e SL (2, Z). Of special significance
is the case where QaO. Indeed, if O > 0 , then Q(C+) straddles a Perron basis v,
w if and only if the entries of Q give a (strict) Farey approximation of the slope
v2/vy of v:

Q2l/Qll<t>2/U,<Q22/Ql2 With O,lO22-Ol2O21 = l

[24], [15]. (Most presentations of Farey approximation assume O 2 2 / O i 2 s l , but
the theory works as well without this restriction; indeed even the case where Q22/ Q12

is the formal fraction 1/0 has been used historically [6] and can be justified by a
matrix formulation.)

2.4 LEMMA. Let A, BeM2(R) be positive of positive determinant. Suppose B =
Q~XAQ, where QeSL(2 , Z). Then one of the matrices Q, -Q, Q~\ - Q " 1 is
non-negative.

Proof. By lemma 2.3, either Q(C+) or -Q(C+) straddles a Perron basis v, w for
A. If the latter, we may without loss of generality replace Q by — Q to obtain the
former. Thus O(C+) is contained in the 'right half plane' with respect to the Perron
basis. Since w lies in the interior of the 2nd or 4th standard quadrant of U2 by [12,

https://doi.org/10.1017/S0143385700002091 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700002091


Strong shift equivalence 505

p. 63, remark 3] or by lemma 2.3 with P = /, Q(C+) is contained in the interior of
the union of the 1st, 2nd, and 4th standard quadrants. Now observe that the columns
of a member of SL (2, Z) cannot lie in the interiors of adjacent quadrants. Since
the columns of Q are in Q(C+), they must either both lie in the closed first quadrant,
in which case QaO, or lie in the closed 2nd and 4th quadrants, in which case
O(C+) ^ C+, 0" ' (C + )cC + , so O"1 a 0 . •

2.5 LEMMA. Suppose C+ straddles a basis v, w of R2 and Q(C+) also straddles v,
w, where QeSL (2, Z), Q > 0. Then there is a sequence I = Qo, Ou ... ,Qk = Q of
matrices Q, such that for each i = 1 , . . . , k,

(a) Q,eSL(2,Z),
(b) Q,-=>0,
(c) Oj(C+) straddles v, w,
(d) O, = Qi-iHj for a unit shear Ht.

Proof. This is a matrix formulation of the Farey process [24] for approximating
ti = v2/v1. The process normally starts with 0 / K / i , < l / l , but in matrix terms
works as well if 1/1 is replaced by the formal fraction 1/0: In other words, the Oth
approximation corresponds to /. The ith approximation Q, is Q;-iH, where H, is
one of the two unit shears. The lemma is a statement in matrix terms of the familiar
fact that all Farey approximations of /x actually occur at some point in the process.
A direct proof is easy: observe that if Q e SL (2, Z) and Q > 0, O^I, then one
column of C dominates the other, so that Q = Q'H for a unit shear H and Q' ^ 0
with smaller sum of entries than Q. Inductively, we obtain in reverse a sequence
/ = Qo> Oi, • • •, Qk = O with at least properties (a), (b), (d). Since

for all i, property (c) holds as well. •

2.6 Proof of lemma 2.1. Given A, B, write B = Q~lAQ, QeSL(2,Z). By lemma
2.4, one of O, —Q, Q~\ - Q " 1 is non-negative. Because the conclusion of lemma
2.1 is unaltered if Q is replaced by —Q and/or A and B are interchanged, we may
assume that Q > 0. Moreover, by lemma 2.3, one of Q(C+), —Q{C+), here obviously
Q(C+), straddles a Perron basis for A. Then lemma 2.5 gives a sequence / =
Oo» • • • > Qk = Q- Let A, = Or1AOJ. By lemma 2.3 again and property (c) from
lemma 2.5, A,>0. Finally,

l
l H l ) = HJ1Al-lHi. •

2.7 Remarks. The methods of this section fail for the case of negative determinant.
For example, the matrices

31c - [i a
are similar over Z, but not via a sequence of 2 x 2 shears with positive intermediate
matrices. Thus they are shift equivalent, but it is not known whether they are
strongly shift equivalent. The use of Farey approximations is related to the continued
fractions of [11], [7]. Periodicity, however, is not used.
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3. Conclusion of the proof of theorem 1.1
3.1. LEMMA. Suppose the positive matrices A, Be M2(Z) are similar via a unit shear.
Then A and B are strongly shift equivalent.

Proof. Consider the case B = H~lAH,

(The case of the other unit shear H" is obtained from the present case simply by
interchanging coordinates in Z2.)

Observe that 5 n = A n - A21, so that A n > A21. If also A12 > A22, then H~lA > 0,
yielding immediately

A = H(H~X A)« i (H'1 A)H = B.

Let us therefore assume from now on that A2 2> Ax2. Consider the matrices

r l 0 1-.

, P = 0 1 0 .

0 0 1

~BU

1
0

o-
0
1

Observe that RS = A, since B u = AU — A21. Let n = A22- A12 (^1 by our assump-
tion). We make the following claims:

(a) A 2 2 < B
(b) BU>1;
(c) P-'SR^
(d) p -
(e) H
(f) p - ( k + 1 ) S / ? / j l l > 0 for fc = 0, l , . . . , n - l ;
(g) p-kSRPk~lp-lk+l)SRPk+1 f o r f c = 0 , l , . . . , n - l ;
(h) P~nSRPn = 1 H " 1 A H = B.

If these claims are granted, then

by (g) and (h), and we are done.

Proofs of claims. (The fact that entries of A, B are > 1 is used repeatedly without
comment.) For (a):

For (b): A2 2> Ai2 by assumption; then by (a),

B U + A 1 2 - 1 > A 2 2 > A 1 2 ,

so Bu> 1. For (c): All entries of P~lSR are entries of A and B or products
except that

By (a) and (b),
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For (d):

the other entries are 0 or 1. For (e):

other entries are among 0, 1, A21, A22. For (f):

(f>-(k+1)S)12 = - f c - l and

other entries do not depend on k. Then in P~ik+1)SRPk, all entries are linear in k,
so it suffices to check non-negativity for fc = 0 and k = n. The case k = 0 is (c); in
the case k = n,

P~(n+l)SRP" = (P~(n+1)SH)(H~1i?P'>) > 0

by (d) and (e). For (g):
p~kejppk _ pf p—(k+1) C D p ^ \ s- / p ~ ( ' t + l ) c p p ' c \ p = P~^+'N/?P^+^

by (f). For (h):

P"SH = PP{n+1)SH == 0

by (d); using (e) as well we have

p-"SRPn = (P'"SH)(H-lRPn) =! {H-1RP")(P-"SH) = H'lRSH = HlAH = B.

•
3.2 Proof of theorem 1.1. If A >0 has determinant 0, then A = utru for some integer
vectors u, y > 0. Then A = utrw = trace (A) as a 1 x 1 matrix. If B s 0 is similar to
A over Z, then B = trace (B) = trace (A)« A. Suppose now that A, B > 0 are of
positive determinant and similar over Z via Q e SL (2, Z). Then lemma 2.1 reduces
the proof to the case where Q is a unit shear or its inverse, and this case is verified
by lemma 3.1 (with A and B interchanged in the inverse case). If B-Q~lAQ
where detQ = - l , let

T = '.l
Then B is similar to TAT via TQ € SL (2, Z), so from the earlier case B = TAT;
but TAT ~ ATT = A. •
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