Maximal absolutely continuous invariant measures for piecewise linear Markov transformations

W BYERS ${ }^{\dagger 1}$ P GÓRA ${ }^{2}$ AND A BOYARSKY ${ }^{\dagger 1}$
${ }^{1}$ Department of Mathematics, Concordia University, 7141 Sherbrooke Street West, Montreal H4B 1 R6, Canada
${ }^{2}$ Department of Mathematics, Warsaw University, Warszawa, Poland

(Received 12 December 1988 and revised May 1989)

Abstract

Let \mathbb{A} be an irreducible $0-1$ matrix such that the non-zero entries in each row are consecutive Let $\mathbb{S}_{\text {max }}$ be the class of piecewise linear Markov transformations τ on $[0,1]$ into $[0,1]$ induced by \mathbb{A} for which the absolutely continuous invariant measure has maximal entropy The main result presents necessary and sufficient slope conditions on τ which guarantee that $\tau \in \mathfrak{C}_{\text {max }}$

1 Introduction

There are two measures which appear prominently in the dynamical systems theory literature measures which are absolutely contınuous with respect to Lebesgue measure $[10,11]$ and the maxımal measures [6-9], 1 e those which maxımize the measure theoretic entropy The maximal measure reflects the maxımum randomness that can be generated by a dynamical system while the absolutely continuous invariant measure (ac 1 m) is the one which arises naturally in physical situations, as for example in computer simulations When an acim is also maximal it says that the most chaotic situation possible can be realized by the physical system Transformations, which have this property are, therefore, of interest

In [8] the maximal measures for a restrictive class of piecewise monotonic transformations is characterized and under a muld restriction uniqueness of the maximal measure is established In this paper we shall be concerned with plecewise linear Markov transformations associated with an irreducible $0-1$ matrix A Using the structure of A, we shall derive a system of equations which provide necessary and sufficient conditions for the unique maximal measure to be absolutely continuous In [9] it is stated that the 'absolutely continuous invariant measure in general is not the measure with maximal entropy' For the class of piecewise linear Markov transformations associated with A, we will be able to make this statement more precise For example, we shall be able to specify the dimension of the family

[^0]of piecewise linear Markov transformations with the property that the acim is maxımal

We shall also study the case when \mathbb{A} is not irreducible Then it is possible that there is no acim which is maximal The study of transformations compatible with such a matrix clarifies the distinction between acim and maximal measures

Let $\mathbb{A}=\left(a_{i j}\right)$ be a fixed $n \times n 0-1$ irreducible matrix such that the non-zero entries in each row are consecutive Let \mathscr{A} denote this class of matrices Let $\mathbf{I}=[0,1]$ and let $0=a_{0}<a_{1}<\quad<a_{n}=1$ be a partition of I denoted by We say that a transformation $\tau \mathbf{I} \rightarrow \mathbf{I}$ is Markov if $\tau\left(\left\{a_{0}, a_{1}, \quad, a_{n}\right\}\right) \subset\left\{a_{0}, a_{1}, \quad, a_{n}\right\}$ The Markov transformation τ is compatible with the matrix \mathbb{A} when $\tau\left(\mathbf{I}_{t}\right) \supseteq \mathbf{I}_{\mathbf{I}}$ if and only if $a_{i j}=1$ for all $\mathbf{I}_{i}, \mathbf{I}, \in \mathscr{F}$ Let \mathbb{C}_{A} be the class of precewise linear Markov transformations compatible with $\mathbb{A} \in \mathscr{A}$ It is easy to show that $\tau \in \mathscr{V}_{A}$ admits a unıque absolutely continuous invariant measure $\mu=f m$, where m is Lebesgue measure on I The function f is a τ-invariant density and is constant on elements of the defining partition of τ, \mathfrak{W}

The measure-theoretic entropy $h_{\mu}(\tau)$ can be computed by means of the formula [2]

$$
h_{\mu}(\tau)=\int_{\mathbf{I}} \ln \left|\tau^{\prime}\right| d \mu
$$

The topological entropy of τ is denoted by $h_{\text {op }}(\tau)$ If τ is not continuous, we define $h_{\text {top }}(\tau)=\ln \lambda$, where λ is the maximal eıgenvalue of \mathbb{A} (We note that $\tau \in \mathscr{C}_{A}$ is isomorphic to the subshift of finite type associated with $A \operatorname{in}$ the sense of Definition 24 in [13])

In this paper we completely characterize the piecewise linear Markov transformations whose acim is maximal That is, we find necessary and sufficient conditions for $\tau \in \mathscr{C}_{A}$ to belong to the subclass

$$
\mathfrak{C}_{\max }=\left\{\tau \in \mathfrak{C}_{\mathrm{A}} \quad h_{\mu}(\tau)=h_{\mathrm{top}}(\tau)=\ln \lambda\right\}
$$

It is obvious that of τ has constant slope, then it is equal to λ and $\tau \in \mathfrak{C}_{\text {max }}$ Moreover, if some iterate of τ, say τ^{h}, has constant slope, then $\tau \in \mathscr{C}_{\text {max }}$, since

$$
h_{\mu}(\tau)=(1 / k) h_{\mu}\left(\tau^{k}\right)=(1 / k) h_{\mathrm{top}}\left(\tau^{k}\right)=h_{\mathrm{top}}(\tau)
$$

In the sequel we shall show that $\mathfrak{G}_{\text {max }}$ is much richer than those examples might suggest In particular, we will give an example of a $\tau \in \mathfrak{C}_{\text {max }}$ such that no iterate τ^{k} of τ has constant slope

In [4] we treated the foregoing problem for a very restricted class of matrices \mathscr{A}_{0}, where $\mathbb{A} \in \mathscr{A}_{0} \subset \mathscr{A}$ if there are integers p and $q, 1 \leq p \leqq q \leqq n$ such that every row of A either consists of a block of 1 's $a_{y}=1$ if and only if $j=p, \quad, q$, or else the row contains a unique nonzero element The main result of [4] is
Theorem 0 Let $\mathbb{A} \in \mathscr{A}_{0}$ and $1 \leq p, p+1, \quad, q \leq n$ denote the indices of the block of 1's Let τ be a plecewise linear Markov transformation on 1 compatible with \mathbb{A} and having the defining partition $\mathfrak{P}=\left\{\mathbf{I}_{1}, \quad, \mathbf{I}_{n}\right\}$ Let μ be the ac 1 m associated with τ If μ is maximal, then for those i's, $p \leq i \leq q$, for which $\tau\left(\mathbf{I}_{1}\right) \supseteq \mathbf{I}_{f}$, with $p \leq J \leq q$, we have $\left|\tau_{\mid L_{1}}\right|=\lambda$, where λ is the maximal eigenvalue of A

In Theorem 3 of [4] this result was stated incorrectly to apply to all i's, $p \leq i \leq q$ The mathematical method of the proof of Theorem 3 was correct, but too general a conclusion was drawn

2 Background

Let A be an irreducible $0-1$ matrix, and let $\left(\Sigma_{A}^{+}, \sigma\right)$ be the one-sided subshift of finte type associated with $A \Sigma_{\mathrm{A}}^{+}$is a metric space with metric $d(\underline{x}, y)=2^{-N}$, where $N=\inf \left\{n x_{n} \neq y_{n}\right\}$ for $\underline{x}=\left(x_{0}, x_{1}, \quad\right), \underline{y}=\left(y_{0}, y_{1}, \quad\right)$ in $\Sigma_{A}^{+} \quad$ Let \mathscr{F} be a set of Holder continuous functions on Σ_{A}^{+}For any $\varphi \in \mathscr{F}$, we define the operator

$$
\mathscr{L}_{\varphi} \mathscr{C}\left(\Sigma_{A}^{+}\right) \rightarrow \mathscr{C}\left(\Sigma_{A}^{+}\right)
$$

by the formula

$$
\mathscr{L}_{\varphi}(f)(\underline{x})=\sum_{\underline{v} \sigma \underline{v}=\underline{x}} \exp (\varphi(\underline{y})) f(\underline{y})
$$

Theorem 1

(1) There exist a unique $\lambda_{\varphi} \in \mathbb{R}$, a function h_{φ} (untque up to constant multiples), such that $\mathscr{L}_{\varphi} h_{\varphi}=\lambda_{\varphi} h_{\varphi}$, and a unique probabilty measure ν_{φ} such that $\mathscr{L}_{\varphi}^{*} \nu_{\varphi}=\lambda_{\varphi} \nu_{\varphi}$
(2) The measure $\mu_{\varphi}=h_{\varphi} \nu_{\varphi}$ is σ-invariant, ergodic, positive on non-empty open sets, and it is the unique measure which maximizes the expression $h_{\mu}(\sigma)+\mu(\varphi)$ The measure μ_{φ} is called the equilibrium state for φ
(3) For $\varphi, \psi \in \mathscr{F}$, we have $\mu_{\varphi}=\mu_{\psi}$ if and only if there exists a function $t \in \mathscr{C}\left(\Sigma_{A}^{+}\right)$and a number $c \in \mathbb{R}$ such that

$$
\varphi-\psi=c+t-t \circ \sigma
$$

(4) If $\varphi=\ln g$ where

$$
\sum_{\underline{\underline{x}} \boldsymbol{\Sigma \underline { v }}=\underline{x}} g(\underline{y})=1
$$

for any $\underline{x} \in \Sigma_{\mathcal{A}}^{+}$, then $\lambda_{\varphi}=1, h_{\varphi}=1$, and $h_{\mu_{\varphi}}(\sigma)+\mu_{\varphi}(\varphi)=0$
(5) If $\varphi, \psi \in \mathscr{F}, \varphi=\ln g_{1}, \psi=\ln g_{2}$ with

$$
\sum_{\underline{y} \underline{y}=\underline{x}} g_{i}(\underline{y})=1 \quad t=1,2,
$$

then $\mu_{\varphi}=\mu_{\psi}$ implies $g_{1}=g_{2}$
Proof The proof of this theorem is an extension of the proof of an analogous theorem for primitive matrices \mathbb{A} [1]

Proposition 1 Let τ I \rightarrow I be a piecewise linear Markov map with irreducible transition matrix A Let $\mu=$ fm be the unique absolutely continuous measure invariant under τ Then the dynamical system (\mathbf{I}, τ, μ) is isomorphic to $\left(\Sigma_{\mathrm{A}}^{+}, \sigma, \mu_{\varphi}\right)$, and
(1) the isomorphism $\pi \Sigma_{\mathbf{A}}^{+} \rightarrow \mathbf{I}$ is Holder continuous and 1-1 on the set of full μ_{φ} measure where $\varphi=-\ln \left|\tau^{\prime} \circ \pi\right|$,
(2) for $\varphi=-\ln \left|\tau^{\prime} \circ \pi\right|$, the measure $\nu_{\varphi}=m \circ \pi^{-1}, h_{\varphi}=f \circ \pi$, and $\lambda_{\varphi}=1$

Proof Let $\mathfrak{B}=\left\{\mathbf{I}_{1}, \mathbf{I}_{2}, \quad, \mathbf{I}_{n}\right\}$ be the defining partition of τ The standard isomorph1sm π is defined by

$$
\pi\left(\left(x_{0}, x_{1}, x_{2}, \quad\right)\right)=\mathbf{I}_{x_{0}} \cap \tau^{-1}\left(\mathbf{I}_{x_{1}}\right) \cap \quad \cap \tau^{-n}\left(\mathbf{I}_{x_{n}}\right) \cap
$$

It can be proved that π is Holder contınuous It follows that $\varphi=-\ln \left|\tau^{\prime} \circ \pi\right|$ belongs to \mathscr{F}, and by Theorem 1, there exısts the unıque measure μ_{φ} (the equilıbrium state for φ) The fact that π is $1-1$ on the set of full μ_{φ}-measure is well known

We now prove that $h_{\varphi}=f \circ \pi$ It is enough to show that

$$
\mathscr{L}_{\varphi}(f \circ \pi)=f \circ \pi
$$

We have

$$
\mathscr{L}_{\varphi}(f \circ \pi)(\underline{x})=\sum_{\underline{y}}^{\underline{\sigma} \underline{y}=\underline{x}}\left|\tau^{\prime}(y)\right|^{-1} f(y)=\sum_{y} \sum_{\tau y=x}\left|\tau^{\prime}(y)\right|^{-1} f(y)=f(x)=(f \circ \pi)(\underline{x}),
$$

where $x=\pi(\underline{x})$ and $y=\pi(\underline{y})$
Analogously, we can prove that $\mathscr{L}_{\varphi}^{*}\left(m \circ \pi^{-1}\right)=m \circ \pi^{-1}$ From the above it follows that $\mu_{\varphi}=\mu \circ \pi^{-1}$
Proposition 2 In the notation of Proposition 1, the function

$$
g=\frac{f \circ \pi}{\left|\tau^{\prime} \circ \pi\right|(f \circ \pi \circ \sigma)}
$$

satusfies

$$
\sum_{\underline{v} \underline{y}=x} g(\underline{y})=1
$$

for any $\underline{x} \in \mathbf{\Sigma}_{\mathbf{A}}^{+}$
Proof Follows by the τ-invanance of f

3 Blocks and paths

Let A be an $n \times n$ irreducible $0-1$ matrix with consecutive non-zero entries in each row A digraph having n vertices can be associated with such a matrix We now partition the n vertices into blocks
Definttion 1 Vertices J and J^{*} belong to the same block B if and only if there exist integers t_{1}, \quad, t_{k} and j_{1}, \quad, J_{k} such that

$$
a_{r d_{p}}=1 \quad 1 \leq p \leq k,
$$

where $j_{1}=J, t_{2}=t_{1}, J_{3}=J_{2}, t_{4}=t_{3}, \quad, t_{k}=t_{k-1}, J_{k}=J^{*}$
Example 1

$$
A=\left[\begin{array}{llll}
0 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1
\end{array}\right]
$$

There are two blocks $B_{1}=\{1\}$ and $B_{2}=\{2,3,4\}$
A convenient equivalent way of determining the blocks can be described as follows let C, denote the positions of the non-zero entries in the j th row and let c_{j}, d_{j} denote the two extreme integers in C_{j} We say C_{J} and $C_{,}^{*}$ combine if either
$\left\{c_{j}, d_{j}\right\} \cap C_{j}^{*} \neq \varnothing$ or $\left\{c_{j}^{*}, d_{j}^{*}\right\} \cap C_{j} \neq \varnothing$ Then we define $C_{j}^{*}=C_{j} \cup C_{j}^{*}$ We continue this process until we obtain a maximal set This set is a block

In this way we can find the blocks by examıning the matrix A In example 1, we have $C_{1}=\{3,4\}$ and $C_{2}=\{2,3\}$ Since C_{1} and C_{2} combine, $\{2,3,4\}$ is a block

Let us assume that we have $m \leq n$ blocks' B_{1}, \quad, B_{m}
Defintton 2 We say there is a path P of length p from B_{l} to B_{k} if and only if for some vertex $\quad i \in B_{I}$ and for some vertex $J \in B_{k}$ there exist integers $l_{1}, l_{2}, \quad, l_{p-1}, J_{1}, \quad, J_{p-1}$, where t_{s} and J_{s} are in the same block $(1 \leq s \leq p-1)$, such that

$$
\begin{aligned}
a_{y_{1}} & =1, \\
a_{1, v_{2}} & =1, \\
a_{t_{p-L}} & =1
\end{aligned}
$$

This path will be denoted by ($\boldsymbol{P}, \boldsymbol{p}$)
Let us now associate with any vertex t a number $s_{t}>0, t=1,2, \quad n$ We associate with a path ($\boldsymbol{P}, \boldsymbol{p}$) a number

$$
\gamma(P)=s_{l} s_{l_{1}} s_{t_{2}} \quad s_{t_{p-1}},
$$

which we shall refer to as a path product associated with a path (\boldsymbol{P}, p) With a path of length 0 , we associate the path product 1

We shall now present a system of equations associated with the matrix \mathbb{A} We consider all paths between blocks B_{1}, \quad, B_{m} of A, including paths of length 0 Whenever there are two paths $\left(\boldsymbol{P}_{1}, \boldsymbol{p}_{1}\right),\left(\boldsymbol{P}_{2}, \boldsymbol{p}_{2}\right)$ with the same starting and ending blocks, we write the equation

$$
\begin{equation*}
\gamma\left(\boldsymbol{P}_{1}\right) / \lambda^{p_{1}}=\gamma\left(\boldsymbol{P}_{2}\right) / \lambda^{p_{2}} \tag{1}
\end{equation*}
$$

The system of all such equations will be referred to as the system of structural equations of A

4 Main theorem

Let us consider $\tau \in \mathfrak{C}_{\mathrm{A}}$ Let s_{1} be the slope of τ on the interval $I_{i} \in \mathfrak{B}$ The main result of this note is

Theorem $2 \tau \in \mathfrak{C}_{\text {max }}$ if and only if the slopes $\left(s_{1}, s_{2}, \quad, s_{n}\right)$ of τ satisfy the system of structural equattons of \mathbb{A}
Proof First we shall prove that this is a necessary condition Let $\tau \in \mathscr{C}_{\text {max }}$, and let τ_{λ} denote the transformation with constant slope λ Clearly, $\tau_{\lambda} \in \mathscr{C}_{\text {max }}$

As in Proposition 1, we construct isomorphisms

$$
\begin{aligned}
& \pi_{1}\left(\Sigma_{\mathbf{A}}^{+}, \sigma, \mu_{1}\right) \rightarrow(\mathbf{I}, \tau, \mu) \\
& \pi_{2}\left(\Sigma_{\mathbf{A}}^{+}, \sigma, \mu_{2}\right) \rightarrow\left(\mathbf{I}, \tau_{\lambda}, \mu_{\lambda}\right)
\end{aligned}
$$

Since the measures μ and μ_{λ} maximize measure theoretic entropy, the measures μ_{1}, μ_{2} also maximize entropy and by uniqueness of the equilibrium state, $\mu_{1}=\mu_{2}$

By Propositions 1, 2 and property (5) of Theorem 1, we obtain

$$
\frac{f_{\lambda} \circ \pi_{2}}{\lambda\left(f_{\lambda} \circ \pi_{2} \circ \sigma\right)}=\frac{f \circ \pi_{1}}{\left|\tau^{\prime} \circ \pi_{1}\right|\left(f \circ \pi_{1} \circ \sigma\right)},
$$

which can be written more conveniently in the form

$$
\begin{equation*}
\frac{\left|\tau^{\prime} \circ \pi_{1}\right|}{\lambda}=\left(\frac{f \circ \pi_{1}}{f_{\lambda} \circ \pi_{2}}\right)\left(\frac{f_{\lambda} \circ \pi_{2} \circ \sigma}{f \circ \pi_{1} \circ \sigma}\right) \tag{2}
\end{equation*}
$$

Equation (2) will be used extensively in the sequel
Let w_{i} be the value of $\left(f \circ \pi_{1} / f_{\lambda} \circ \pi_{2}\right)$ on the cylinder sets $\left(x_{0}=i\right), i=1, \quad, n$ We recall that s_{l} is the value of $\left|\tau^{\prime} \circ \pi_{1}\right|$ on $\left(x_{0}=t\right), \imath=1, \quad, n$ First we shall prove that w_{i} is the same for all i 's in the same block

Let J and J^{*} belong to the same block By definition, there exist integers t_{1}, \quad, l_{k} and J_{1}, \quad, J_{k} such that

$$
a_{i n p_{p}}=1, \quad 1 \leq p \leq k
$$

and $J_{1}=\jmath, t_{2}=t_{1}, J_{3}=J_{2}, t_{4}=t_{3}, \quad, t_{k}=t_{k-1}, J_{k}=J^{*}$ Using (2), $t_{2}=t_{1}, a_{t J_{1}}=1$ and $a_{t_{2} J_{2}}=1$, we get

$$
\begin{aligned}
& s_{t_{1}} / \lambda=w_{t_{1}} / w_{J_{1}} \\
& s_{t_{1}} / \lambda=w_{t_{1}} / w_{j_{2}}
\end{aligned}
$$

Therefore, $w_{J_{1}}=w_{J_{2}}$ Since $j_{3}=J_{2}$, we get $w_{J_{1}}=w_{J_{2}}=w_{J_{3}}$ We now proceed by this argument

Let $\left(\boldsymbol{P}_{1}, p_{1}\right)$ and $\left(\boldsymbol{P}_{2}, \boldsymbol{p}_{2}\right)$ be two paths from B_{I} to B_{k} The existence of $\left(\boldsymbol{P}_{1}, p_{1}\right)$ and (2) imply

$$
\begin{gathered}
s_{t} / \lambda=w_{t} / w_{f_{1}} \\
s_{t_{1} /} / \lambda=w_{t_{1}} / w_{j_{2}} \\
s_{t_{r_{1}-1}} / \lambda=w_{t_{r_{1}-1}} / w_{j}
\end{gathered}
$$

The existence of $\left(P_{2}, p_{2}\right)$ and (2) imply

$$
\begin{aligned}
s_{1} / \lambda & =w_{1} / w_{j_{1}^{*}} \\
s_{1, *}^{*} / \lambda & =w_{r_{1}^{*}} / w_{J_{2}^{*}} \\
s_{i_{r_{1}-1}^{*}} / \lambda & =w_{r_{p_{1}-1}^{*}} / w_{j}
\end{aligned}
$$

Since the pairs $t_{1}, J_{1}, \quad, t_{p_{1}-1}, J_{p_{1}-1}, t_{1}^{*}, J_{1}^{*}, \quad, t_{p_{2}-1}^{*}, J_{p_{2}-1}^{*}$ belong to the same blocks,
and the above set of equations yields

$$
\gamma\left(\boldsymbol{P}_{1}\right) / \lambda^{p_{1}}=\gamma\left(\boldsymbol{P}_{2}\right) / \lambda^{p_{2}}
$$

This completes the necessity part of the proof
We shall now prove that the system of structural equations of \mathbb{A} provides a sufficient condition for τ to belong to $\mathfrak{C}_{\text {max }}$ By property (3) of Theorem 1, it is
enough to construct a continuous function $t \Sigma_{\mathbf{A}}^{+} \rightarrow \mathbb{R}$ such that

$$
\left|\tau^{\prime} \circ \pi_{1}\right| / \lambda=t / t \circ \sigma
$$

We will construct this function using the structural equations of A This will be done by defining t as constants t_{t} on the cylınder sets $\left(x_{0}=t\right), t=1,2, \quad, n$ The function t will be made constant on blocks of A

Let $B_{1}=\left\{t_{1}, \quad, t_{k}\right\}$ be a block We put $t_{1}=a$ for all $t \in B_{1}$, where a is a fixed real number Now we consider those J 's, $1 \leq J \leq n$, such that $a_{\imath_{r}, j}=1, t_{r} \in B_{1}$ For any such J, we define

$$
t_{j}=t_{t_{r},} \lambda / s_{t_{r}}
$$

Moreover, we define $t_{j}^{*}=t_{j}$ for all J^{*} for which J^{*} and J are in the same block We now prove that this assignment of values is consistent The only situation in which a contradiction can occur is if there are two different ways of reaching the same block $a_{r_{r} J_{1}}=1$ and $a_{t_{r_{2}} J_{2}}=1$, where J_{1} and J_{2} are in the same block But then from (2) we obtain

$$
s_{r_{r_{1}}} / \lambda=s_{r_{r_{2}}} / \lambda
$$

and there is no contradiction
Proceeding in this way, we can define values for t on all cylinder sets At every step we check that there is no contradiction in defining the t_{t} 's Such a contradiction can occur only if we use two different paths between the same startıng and ending blocks,

$$
\begin{aligned}
B_{l_{1}} \rightarrow B_{l_{2}} \rightarrow & \rightarrow B_{l_{2}}, \\
B_{k_{1}} \rightarrow B_{k_{2}} \rightarrow & \rightarrow B_{k_{k_{n}}},
\end{aligned}
$$

$\left(l_{1}=k_{1}, l_{v}=k_{n}\right)$ to define $t_{j\left(l_{v}\right)}$, where $J\left(l_{v}\right) \in B_{l_{v}}$, and $t_{j^{*}\left(k_{n}\right)}$, where $J^{*}\left(k_{n}\right) \in B_{k_{n}}=B_{l_{2}}$ We have

$$
\begin{gathered}
t\left(l_{1}\right) \in B_{l_{1}}, \quad J\left(l_{2}\right), t\left(l_{2}\right) \in B_{l_{2}}, \quad, \quad J\left(l_{v-1}\right), \quad t\left(l_{v-1}\right) \in B_{l_{\imath-1}}, \\
J\left(l_{\imath}\right) \in B_{l_{1}}, \quad \imath^{*}\left(k_{1}\right) \in B_{k_{1}}, \quad J^{*}\left(k_{2}\right), \imath^{*}\left(k_{2}\right) \in B_{k_{2}}, \quad, J^{*}\left(k_{n-1}\right), \\
\imath^{*}\left(k_{n-1}\right) \in B_{k_{n-1}}, \quad J^{*}\left(k_{n}\right) \in B_{k_{n}},
\end{gathered}
$$

and

$$
\begin{aligned}
& t_{j}\left(l_{2}\right)=t_{t\left(l_{1}\right)} \lambda / s_{t\left(t_{1}\right)} \quad t_{\left(t_{3}\right)}=t_{\left(t_{2}\right)} \lambda / s_{t\left(t_{2}\right)}, \quad, \\
& \boldsymbol{t}_{\boldsymbol{\prime}\left(t_{2}\right)}=\boldsymbol{t}_{\left(t_{2-1}\right)} \lambda / s_{t\left(t_{t-1}\right)}, \\
& t_{1_{1}^{*}\left(k_{2}\right)}=t_{t^{*}\left(k_{1}\right)} \lambda / s_{1^{*}\left(k_{1}\right)}, \quad t_{j^{*}\left(k_{3}\right)}=t_{t^{*}\left(k_{2}\right)} \lambda / s_{1^{*}\left(k_{2}\right)}, \quad, \\
& t_{i}{ }^{*}\left(k_{n}\right)=t_{i}{ }^{*}\left(k_{n-1}\right) \lambda / s_{t^{*}\left(k_{n-1}\right)}
\end{aligned}
$$

On the other hand we have the structural equation

Hence $t_{,\left(t_{1}\right)}=t_{t_{1}\left(k_{n}\right)}$ This proves that the function t is well defined and thus proves the suffictency part of the theorem

Corollary 1 If the matrix \mathbb{A} admits exactly one block, then the precewise linear Markov transformations compatible with \mathbb{A} for which the acım is maximal are precisely those of constant slope λ

5 Consequences of the Main Theorem

Let $\tau \in \mathbb{G}_{A}$ be a transitive precewise linear Markov transformation (the transitivity of τ is equivalent to the irreducibility of \mathbb{A}) It is known that τ is conjugate via a homeomorphism Φ to a transformation τ_{λ} of constant slope [12] Using our main theorem we now prove some properties of Φ
Theorem 3 If $\Phi(\mathbf{I}, \tau) \rightarrow\left(\mathbf{I}, \tau_{\lambda}\right)$ is a topological conjugation, then Φ is absolutely continuous if and only if the slopes of τ satisfy the system of structural equations
Proof If the slopes of τ satisfy the system of structural equations, then the absolutely continuous τ-invaniant measure is maximal As a maximal measure, it is equal to $\mu_{\lambda} \circ \Phi^{-1}$, where μ_{λ} is an acim for τ_{λ} Hence Φ is absolutely continuous

If the slopes of τ do not satisfy the structural equations, then μ is not maximal Hence the maximal measure $\mu_{\lambda} \circ \Phi^{-1}$ is different from μ and so it is singular (since μ is ergodic) Hence Φ is singular
Example 2 For the matrix

$$
A=\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]
$$

the structural equations are $s_{1}=\lambda, s_{2}=\lambda, \lambda=2$ Let, for $0<\alpha<1$

$$
\tau^{(\alpha)}(x)= \begin{cases}x / \alpha & 0 \leq x \leq \alpha \\ (1-x) /(1-\alpha) & \alpha<x \leq 1\end{cases}
$$

By Theorem 3 we obtain that for any $\alpha \neq \frac{1}{2}$ the conjugacy Φ_{α} between $\tau^{(\alpha)}$ and $\tau^{(1 / 2)}$ is singular

This result is proved by a completely different method in [3]
Remark The method of $\S 4$ has, in effect, solved an optimization problem which is difficult to handle by the standard method of Lagrange multipliers To write the metric entropy in a manner that would be amenable to Lagrange multıpliers would require defining $3 n$ variables The natural constraints yield $2 n+2$ equations The large number of variables and the nonlinear appearance of these variables renders this approach intractable

6 Examples

In the following examples we shall illustrate a number of points in regard to the foregoing theory
Example 3 There exists a transformation $\tau \mathbf{I} \rightarrow \mathbf{I}$ such that no terate τ^{n} of τ has constant slope, yet $\tau \in \mathfrak{C}_{\text {max }}$ Let

$$
A=\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

and let $\mathscr{P}=\left\{\mathbf{I}_{1}, \mathbf{I}_{2}, \mathbf{I}_{3}\right\}$ be the partition of \mathbf{I} It is easy to see that the sets $D=\mathbf{I}_{3} \cap$ $\left(\bigcap_{k=1}^{n} \tau^{-k}\left(\mathbf{I}_{3}\right)\right)$ and $E=\mathbf{I}_{1} \cap\left(\bigcap_{k=1}^{n} \tau^{-k}\left(\mathbf{I}_{3}\right)\right)$ are non-empty and $\mid\left(\tau^{n}\right)_{\mid D}^{\prime}=s_{3}^{n}$, while $\left|\left(\tau^{n}\right)^{\prime}\right|_{\mid E}=s_{1} s_{3}^{n-1}$, where $s_{1}=\left|\tau^{\prime}\right|_{\mid 1_{1}}, t=1,2,3$

Now the system of structural equations for \mathbb{A} is

$$
s_{3}=\lambda \quad \text { and } \quad s_{1} s_{2}=\lambda^{2}
$$

If we choose $s_{1} \neq s_{2}$, then

$$
\left|\left(\tau^{n}\right)^{\prime}\right|_{\mid D} \neq\left|\left(\tau^{n}\right)^{\prime}\right|_{I E}
$$

Hence τ^{n} does not have constant slope, yet $\tau \in \mathfrak{C}_{\max }$
By Corollary 1 we see that if \mathbb{A} has one block only, the system of structural equations of A only yields the constant slope solutions In general, the number of degrees of freedom among the vanables $\left\{s_{1}, s_{2}, \quad, s_{n}\right\}$ can vary from 0 (as in the case of a single block) to $n-1$ We shall show this by means of the following three examples
Example 4 One degree of freedom Let

$$
A=\left[\begin{array}{llll}
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 \\
1 & 1 & 0 & 0
\end{array}\right]
$$

There are two blocks $B_{1}=\{1,2\}$ and $B_{2}=\{3,4\}$, and the structural equations are

$$
s_{1} / \lambda=s_{2} / \lambda \quad s_{3} / \lambda=1 \quad s_{1} s_{4} / \lambda^{2}=1
$$

which yield $s_{1}=s_{2}, s_{3}=\lambda, s_{1} s_{4}=\lambda^{2}$ There are 4 unknowns and three independent equations Hence there is one degree of freedom
Example 5 Three degrees of freedom Let

$$
A=\left[\begin{array}{lllll}
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 0
\end{array}\right]
$$

There are two independent structural equations

$$
s_{1} s_{5}=\lambda^{2} \quad \text { and } \quad s_{2} s_{3} s_{4}=\lambda^{3}
$$

Hence there are 3 degrees of freedom
Example $6 n-1$ degrees of freedom Let A be an $n \times n$ irreducible matrix with only one non-zero entry in each row Then there is only one structural equation Since there are n unknown slopes, there are $n-1$ degrees of freedom

Remarks

(1) The matrices in the foregoing examples are all primitive, indicating that primitivity and the degree of freedom are not dependent on each other
(2) If \mathbb{A} has one block only, we obtain a unique solution Conversely, if $\tau \in \mathbb{C}_{\text {max }}$ only when τ has constant slope λ, it is easy to see that \mathbb{A} must consist of a unique block
(3) In order to determine $\mathfrak{C}_{\max }$, we need to find the lengths of the intervals of the partition \mathfrak{B} associated with a given set of slopes This is accomplished by means of the Frobenius-Perron operator Consider Example 4 The Frobenıus-Perron operator is given by the matrix

$$
\mathbb{M}=\left[\begin{array}{cccc}
0 & 0 & 1 / s_{1} & 1 / s_{1} \\
0 & 0 & 0 & 1 / s_{1} \\
0 & 0 & 0 & 1 / s_{3} \\
1 / s_{4} & 1 / s_{4} & 0 & 0
\end{array}\right]
$$

The lengths of the partition of $\tau \in \mathfrak{C}_{\text {max }}$ are given by the normalized right eigenvector \hat{l} of $\mathbb{M}, 1$ e $\mathbb{M} \hat{l}=\hat{l}$, where $\hat{l}=\left(l_{1}, l_{2}, l_{3}, l_{4}\right)$ Thus,

$$
\begin{aligned}
\left(l_{3}+l_{4}\right) / s_{1} & =l_{1} \\
l_{4} / s_{1} & =l_{2} \\
l_{4} / s_{3} & =l_{3} \\
\left(l_{1}+l_{2}\right) / s_{4} & =l_{4}
\end{aligned}
$$

subject to $l_{1}+l_{2}+l_{3}+l_{4}=1$ Solving this system, we obtain

$$
l_{1}=\left(s_{4}-1 / s_{1}\right) l_{4} \quad l_{2}=l_{4} / s_{1} \quad l_{3}=l_{4} / s_{3}
$$

On normalizıng, we get

$$
l_{4}=\left(1+1 / \lambda+s_{4}\right)^{-1}
$$

Thus, there is also one degree of freedom in the partition

7 Reducible matrices

To motivate the material of this section, consider the 4×4 reducible matrix

$$
A=\left[\begin{array}{c|c}
A_{11} & 0 \\
\hline 1 & 1 \\
0 & 0
\end{array}\right]
$$

where

$$
A_{11}=\left[\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right] \quad \text { and } \quad A_{22}=\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]
$$

The maximal eigenvalue of \mathbb{A} is the same as the maximal eigenvalue of \mathbb{A}_{22} which is equal to 2 Therefore, $h_{\text {top }}(\tau)=\ln 2$ On the other hand, the support of any τ-invariant absolutely continuous measure is on the intervals corresponding to the block A_{11} [5] Hence, for any τ-invariant absolutely contınuous measure μ, we have

$$
h_{\mu}(\tau) \leq \ln \lambda_{1}<h_{\mathrm{top}}(\tau),
$$

where $\lambda_{1}<2$ is the maximal eigenvalue of \mathbb{A}_{11}

The above example illustrates the difference between topological and metric entropy Whereas $h_{\text {top }}(\tau)$ is determined by the submatrix A_{22}, the metric entropy $h_{\mu}(\tau)$ for any acim μ is determined by A_{11}

Let A be an $n \times n$ reductible $0-1$ matrix such that all the non-zero entries in each row are consecutive By relabelling, A can be written in the form

$$
A^{\prime}=\left[\begin{array}{lllll}
\mathbb{A}_{11} & & & & \\
& A_{22} & & 0 & \\
A_{11} & \mathbb{A}_{12} & & A_{11} & \\
\\
\mathbb{A}_{k 1} & A_{k 2} & & & \\
A_{k k}
\end{array}\right]
$$

where A_{u} are irreducible submatrices Let λ be the maxımal eigenvalue of A Since A^{\prime} is derived from A by a similarity transformation, λ is also the maximal eigenvalue of \mathbb{A}^{\prime} From this it follows that at least one of the $\mathbb{A}_{\mu \prime}$'s has λ as its maximal eigenvalue
Definition 3 We say the irreducible submatrix \mathbb{A}_{11} is final if $\mathbb{A}_{1 j} \equiv 0$ for $j \neq 1$
Theorem 4 Suppose \mathbb{A} is reducible Then one of the following must occur
(1) there exists no final trreducible submatrix \mathbb{A}_{n} having maximal eigenvalue λ In this case, $\mathfrak{S}_{\text {max }}=\varnothing$
(2) There exist final irreducible submatrices $\mathbb{A}_{1_{1} 1_{1}}, \quad, \mathbb{A}_{t_{m_{1} I_{m}}}$ such of which has maximal eigenvalue λ Then $\tau \in \mathbb{C}_{\text {max }}$ if and only if there extsts some $t, l_{1} \leq t \leq \imath_{m}$, such that τ satisfies the structural equations associated with $\mathbb{A}_{1 \prime}$ on the intervals corresponding to A_{n}
Proof The topological entropy of τ is equal to $\ln \lambda$ By graph theoretic methods [6], it can be shown that any ergodic acim must have support on intervals corresponding to a final irreducible submatrix Then the proof of (1) is obvious since $h_{\mu}(\tau)<\ln \lambda$ for all acim μ To prove (2) we choose any final irreducible submatrix, say \mathbb{A}_{u}, which has maximal eigenvalue λ On the intervals corresponding to A_{1} we proceed as in section 4 to construct τ using the structural equations derived from $\mathbb{A}_{\|}$

REFERENCES

[1] P Walters Ruelle s operator theorem and g-measures Trans Amer Math Soc 214 (1975), 375-387
[2] F Ledrappier Some properties of absolutely continuous invariant measures on the interval Ergod Th \& Dinam Sys 1 (1981), 77-93
[3] H Proppe, W Byers \& A Boyarsky Singularity of topological conjugacies between certan unımodal maps of the interval Israel J Math 44 (1983), 277-288
[4] W Byers \& A Boyarsky Absolutely contınuous invarıant measures that are maxımal Trans Amer Math Soc 290 (1985), 303-314
[5] W Byers \& A Boyarsky A graph theoretic bound on the number of independent absolutely contınuous invariant measures J Math Anal Appl 139 (1989), 139-151
[6] F Hofbauer β-shifts have unique maximal measure Monatsh Math 85 (1978), 189-198
[7] F Hofbauer Maximal measures for piecewise monotonically increasing functions on [0,1] In Lecture Notes in Math 729, Sprınger, Berlın and New York (1979), 66-77
[8] F Hofbauer On intrinsic ergodicity of piecewise monotonic transformations with positive entropy Israel J Math 34 (1979), 213-237
[9] M Misiurewicz Absolutely continuous measures for certain maps of an interval Publ Math IHES 53 (1981), 17-52
[10] A Lasota \& J A Yorke On the existence of invariant measures for piecewise monotonic transformations Trans Amer Math Soc 186 (1974), 481-488
[11] R Bowen Invanant measures for Markov maps of the interval Comm Math Phys 69 (1979), 1-17
[12] W Parry Intrinsic Markov chains Trans Amer Math Soc 112 (1964), 55-65
[13] P Walters An Introduction to Ergodic Theory Springer-Verlag, New York (1982)

[^0]: \dagger The research of these authors was supported by NSERC grants and an FCAR grant

