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Abstract. We show that x = 59 is the largest positive integer for which the fourth-
powerfree part of x2 + 2 is at most 100. This implies the solution of the problem, posed
recently by J.H.E. Cohn, to prove that (x, y) = (1,1) is the only solution in nonnegative
integers to the diophantine equation x2 - 3y4 = —2, as well as a new solution to the problem,
posed a long time ago by the same J.H.E. Cohn and solved before by R. Bumby and N.
Tzanakis, to prove that (x,y) = (1, 1), (11,3) are the only solutions in nonnegative integers
to the diophantine equation 2x2 — 3y4 = — 1.

1. Introduction. Recently, J.H.E. Cohn [4] asked to prove that the only solution in
nonnegative integers to the diophantine equation x2 — 3y4 = —2 is given by (x, y) — (1, 1).
As Cohn showed, this statement implies that the diophantine equation x2 — kxy2 + y4 — — 2
(equation 4 in [4]) has only two solutions in nonnegative integers, namely (x, y, k) =
( M , 4), (3, 1,4).

The present note was originally set up to provide the proof Cohn asked for, but evolved
naturally into the proof of a more general result. This was also inspired by the remarkable
fact that almost 30 years earlier, the same J.H.E. Cohn [3] asked to prove that the only
solutions in nonnegative integers to the diophantine equation 2x2 — 3y4 = — 1 are (x, y) =
(1, 1), (11,3). This was done already in 1967, by R. Bumby [2], and again in 1995 by N.
Tzanakis [7]. On multiplying the equation 2x2 — 3y4 = — 1 by 2 and then replacing 2x by x
we obtain the equation x2 — 6y4 — —2, which is remarkably similar to x2 — 3y4 — —2.

We decided to solve the equations

x2 + 2 = Dy4 (1)

for a reasonable range for the parameter D, including D = 3 and D = 6 referred to above.
Indeed, it turned out to be possible to solve (1) in a routine way for all D < 100. It is the
purpose of this note to show that such an equation for a not too large value for D can be
solved in practice with a little effort, and that the method is uniform to some extent, but not
entirely.

Unfortunately our proof is far from elementary, as Cohn expected, since it is based on
the theory of linear forms in logarithms of algebraic numbers, and computer calculations.
We note that the methods of Tzanakis [7] and of Mignotte and Petho' [6] should also work
routinely for solving equation (1) for any reasonable value of D, and it would not surprise us
at all when Bumby's more elementary but rather complicated method [2] would also work
for equation (1) for at least some more values of D,
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Here is our main result, giving the complete set of solutions to equation (1) for all
D < 100. As noted above, for D = 3 this answers Cohn's question in [C2], and for D = 6 the
result was already known, cf. Bumby [2] and Tzanakis [7].

THEOREM 1. The only nonnegative integers x such that the fourth-powerfree part of x2 + 2
is at most 100, are x = 0, 1, 2, 3,4, 5, 6, 7, 8, 9, 22, 59.

2. Thue equations. Modulo 5 the only squares are 0, 1 and 4, and the only fourth
powers are 0 and 1. Modulo 8 the only squares are 0, 1 and 4, and the only fourth powers are
0 and 1. It follows that equation (1) is solvable only if D = 1, 2 or 3 (mod 5), and D = 2, 3 or
6 (mod 8). Further, if/? is an odd prime divisor of D, then equation (1) having a solution
implies that —2 is a quadratic residue modulo p, hence that p = 1 or 3 (mod 8). These obser-
vations imply that for D < 100 we only have to consider D e {2, 3, 6, 11, 18, 22, 27, 38, 43,
51,66,67,82,83,86}.

The case of D = 2 is easy. It is clear that then x is even and y odd, hence /* = 1 (mod 8),
and it follows that x is divisible by 4. Put x = 4z, then we find z2 = ^-j^-*-^-, in which the two
factors in the right hand side are coprime, hence squares themselves. Put ^-^- = u2, then
y2 — (2M)2 = 1, and this obviously is possible only for y = ±1 and u = 0, implying x = 0.

We consider equation (1) over the field Q(v^2) . We put

7T17 = 3 + 2 - / ^ 2 , 7T19 = 1 + 3 V ^ 2 , 7T41 =

Thus for each prime dividing one of the remaining values for D we have a prime
np € Z[V^2] of norm p. We write

x + V^2 = a/34 (2)

for a, fi e Z[\/^2 ], with a fourth-powerfree. Our first aim is to determine all possible values
for a. Equations (1) and (2) imply x2 + 2 = N(x + V^2) = N(a)N(P)4 = Dy4, hence D is the
fourth-powerfree part of N(a).

If x is even then ord^2(x + V--2) = 1, hence ord^2(a) = 1, hence ord2(./v"(a)) = 1, hence
D is even. If x is odd then ord^2(x + V^2) = 0, hence ord^(a) = 0, hence ord2(A

r(a)) = 0,
hence D is odd. So nj divides a (and exactly once) if and only if D is even.

If p is an odd prime that splits in Zf-s/^2] say p = nn, then we put k — ordw(a) and
I = ord^(a) = ord^(a). Then k,l e (0,1,2, 3}. If min{M} > 1 then p\u and p\a, hence
p\x + */-2 andp\x - V^2, hencep\(x + */^2) - (x+f^2) = 2\/^2, which is impossible for
an odd prime/). Hence mm{k, t) — 0. By switching to the complex conjugate and noting that
the sign of x is irrelevant, we may assume without loss of generality that I = 0. Hence
k = ordp(N(a)), so by k < 3 also k — ordp(D), and we find ord^(a) = ordp(D).

If p is an odd prime that does not split in Z[V^2 ] then it is inert. Hence p\a implies p\a,
and as above this implies p\2*/^2, which is impossible.

From the above considerations it follows that a is a product of np's and 7rp's for the
primes p dividing D. Of each pair of complex conjugate values for a we have to consider only
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one. We thus have the following possibilities, where we put ±a = a + b^/l and we can take
both a and b positive. Note that always D = a2 + 2b2.

D ±a

3
6

11
18
22
27
38
43

7r3 =

7T27T3 =

7T\\ =

—7T27I3 =

7r27rn =

-A =
7t27T\9 =

7T43 = 3/^2

D ±a
1
2
3
4
2 :
5
6
5 :

51

I 66

J 67
I 82

83
) 86

-7T3JT17 -

7T37T17 =

7T2n2Jtn =

7*67 =

7T27T41 =

7Tg3 =

7T27T43 =

l+5>/=2
7 + \/—2
8 + x/=2
4-1- 5^/32
7 + 3\/=2
8 + 3\/^2.
9 + \T-2
6 + 5 / = 2

1
7
8
4
7
8
9
6

5
1
1
5
3
3
1
5

In equation (2) we put /3 = E + F\l—2 with E, F e Z. Then comparing imaginary parts
we find the Thue equation

bE4 + AaE^F - 12Z>£2F2 - SaEF3 + AbF* = ± 1. (3)

Looking at this equation modulo 4 we find that the right hand side is 1 if b = 1 (mod 4), and
— 1 if b = — 1 (mod 4). Looking modulo 8 we see that there are no solutions when a is even
and b == 3, 5 (mod 8). Looking modulo 3 we see that there are no solutions when a = 1 (mod 3)
and b = 5 (mod 12). Thus only eleven cases remain: b = 1 with a e {1, 2, 3, 4, 5, 6, 7, 8,9} and
b = 3 with a e {5,7}, corresponding to D e {3,6,11,18,27,38,51,66,83} and D e {43,67}.
It will now be clear that Theorem 1 follows from the following result.

THEOREM 2. Equation (3) with b = 1 and a e {1, 3,4, 5, 6, 7, 8, 9} has only the solutions
(E,F) = ±(\,0).

Equation (3) with b = 1 and a = 2 has only the solutions (E, F) = ±(1, 0), ±(1, —1).
Equation (3) with b = 3 and a = 5 has only the solutions (E, F) = ±(1, -1).
Equation (3) with b = 3 and a = l has no solutions.

Notice that with b = 1 the solutions (E, F) = ±(l,0) lead to (x,y) = (±a, ±1) for equa-
tion (1), that with b = 1, a = 2 the solutions (E, F) = ±(1, -1) lead to (x,y) = (±22, ±3) for
equation (1), and that with b = 3, a = 5 the solutions (E, F) — ±(1, -1) lead to (x, y) =
(±59, ±3) for equation (1).

At this point we note that for each D equation (1) defines an elliptic curve. The rank of
this curve is 1 if D <= (3, 6, 11, 18, 27, 38,43, 51, 67, 83}, and the rank is 2 if D = 66. We
checked this because by the theory of elliptic curves equation (1) is trivial if the rank is 0.

In solving the equations (3) we could make it easy for ourselves, and use the software
package KANT, which contains a program that solves Thue equations in an automated way.
This program works essentially in the same way as our arguments below, and on referring to
the program we could at this point end the paper in a few lines. We chose not to do so for two
reasons. The first reason is didactical: we want to give the reader insight in what is going on
in our proof, and hence what goes on inside a program like KANT. The second reason is
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more mathematical: we will see below that in our specific situation we can make improve-
ments on the general method, so that we obtain smaller upper bounds and a faster reduction
procedure. However, we encourage those readers who are only interested in the truth of
results and not in their proofs to stop reading here and invoke the KANT program to prove
our Theorem 2. Note that KANT is available by anonymous ftp from ftp.math.tu-berlin.de.

3. Quartic fields. We need some information on the quartic fields associated to the
binary forms in equation (3). We computed the data below by Pari-1.39.03 on a personal
computer. We let (a,b) be one of the pairs treated in Theorem 2, and let D = a2 + 2b2.

Let 9 be a root of t4 - Wt1 + 2b2D, and let IK = <Q(0). Note that this field is totally real,
and of degree 4. Put

Then £ is a root of bx4 + 4ax3 — \2bx2 — Sax + 4b, so that equation (3) can be written as
bN(E — Ft-) = ±1 , when N denotes the norm function of K over Q. It will be clear why £ is of
interest to us. Pari helped us to find 9, defining the same field IK over Q as f does, but more
convenient to work with. We denote conjugates by lower indices, and number them as
follows:

We also write IK, = Q(0,-). Let a be the notrivial Q-automorphism of IK sending 9 to —9, thus
sending 0, to 0,-+2, indices taken modulo 4. Thus note that IK, = IK,+2-

We have computed the discriminant A, a basis {1,0, co\, 0)2} for the ring of integers of IK,
a set of fundamental units ei, Q, 63, the regulator R, the class number h, and the galois group of
the field IK. In the cases where b > 1 we also need information on the prime ideals dividing b.

If D e {3,6, 11,38,51,66,83} we have ei = 1 + 0 , e3 = a (e , )= 1 -9, and the galois
group is the dihedral group of order 8. Further we have data as given below.

D

3
6

11

38

51

66

83

A

2 9 3 3
21033

2 9 1 1 3

210 1 93

79 -13 173

2 6 3 3 1 1 3

2 9 83 3

e>\

G2

J02

I + l02

I-I02

2 1 t\l
7 7 v

i

3

O
M

—

2

I _

2

w2

03

9 + \9l

3

e-^e3

, 3
TCe + 3l(

9 ifl3

e2

5 + 29 - 292

2-9-\92

21-69- 186>2+403

8 i 8 - 9 3 0 - ^ ^ + 93e3

763055 75932 a 755492 n2 , 75178^3

577232987550887 '3«> 5072558468 0

57'?7'Mi17f:iS1filM#2 133997981316014 ni

R

10.1286...
17.6308...

84.7640...

287.6381...

466 041 fl

201.8533...

1318.1875...

h

1
1

1

1

A

2

1
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If D= 18 then we have A = 28 32 , a>, =\ + {e + ±62, oo2=\6 + ±0\ e, =\-\B-

j-40
2+±6\ €2=l-le--}-28

2+rL0\ €i={-±e2, with a f e ) = e3, /? = 2 .6608. . . . A = l ,

and the galois group is the Klein group of order 4, so the field is galois in this case. Further
we note that 1 +9 = —€J2€J]€2 and 1 - 6 — e2^], and that e^i = -612 = —ei~3

 = €~\\>

If D = 21 then IK is the same field as the one for D = 3. Note that 6D=21 =

If D e {43, 67} then we have A = 29D3, e3 = o(e\), h = 1, and the galois group is the
dihedral group of order 8. We have 3 = pa(p)r for primes p,x of norm - 3 and 9 respectively.
Here p is the denominator of £. Further we have data as given below.

D

43

67

2 .

3 .

h±02

0)2 €\

7 a 1 o3 i 151 a | 2fl3

C2

56669 + 17732 0

748 cjl 234 /D3
5 5

9655 3237 Q

R

895.5544...

3205.2540...

P
29 i
5 1

3fl2 ,

- 5 6 » +
79 i:

T 1

7

5l5<93

93

4. Linear forms in logarithms. Equation (3) leads to

4^ ' (4)

for some a\, 02,03 e Z, with /z = 1 if b = 1, and \JL — p~x in the cases with 6 = 3. As the sign
of (E,F) is irrelevant, we may disregard the ± sign in front of the fi. Since the differences of
the four numbers E — F^j are of the size of |F | , these four numbers are far apart when |F | is
large. But their product equals N(£ — F%) = | , so it must be the case that three of them are
also of the size of |F | , and one of them is extremely small, of the size of |F|~3. Let
/ e {1,2,3,4}, depending on E, F (thus not known in advance), be such that
\E — F%j\ = min \E — F|,-|. Then this is the extremely small one.

7=1,2.3.4

We consider three conjugates of equation (4), with indices i,j, k, where j , k are taken as
follows:

j = 2, k = 4 if / = 1 or / = 3.
j=\, k = 3 if / = 2 o r / = 4.

Although we could have made other choices, we will see below that this particular choice
turns out to be convenient.

The following identity is sometimes called Siegel's identity, and follows by eliminating
E,F from the three conjugates of E — F%. It reads.

= 0, (5)

https://doi.org/10.1017/S0017089500032651 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500032651


304 BENJAMIN M. M. DE WEGER

and together with (4) this leads to

e3J)

In this formula the right-hand side is in absolute value very small, in fact of the size of
\F\~4, by the definition of i. Put

A, = log §i - ?; M*

%i ~ %k flj
+ a\ log + a2 log

€2J
+ a-i log

g3,/t

so that the left hand side of (6) equals e±Al — 1. Then also |A,| is extremly small, of the size of

Put

Equation (4) suggests that \F\ is of the size of eA, so that in fact |A,| is exponentially small in
terms of A. Indeed, following the details of [TW], one finds

if \F\ > Fo then |A,| < (7)

with Fo, Ci, C2 as below.

D

3
6

11
18
27
38

3
3
3
3
3
3

c,
2.86921
1.01488
2.98502
7.24331
1.20295
2.85210

X

X

X

X

X

X

104

105

105

105

105

106

c2

3.01818
4.12666
5.01267
2.63391
3.01818
6.87134

D

43
51
66
67
83

Fo

12
3
3

1100
3

c,
8.78250
4.93434
8.00597
1.37917
1.23426

X

X

X

X

X

10"
106

106

1013

107

c2

12.9731
7.26100
7.59225

21.1564
7.93874

Heuristically speaking, this is extraordinary for a linear form with coefficients of the size
of A, which generically will be only polynomially small in terms of A. We will exploit this
heuristic argument below.

5. Simplification Following the general theory as outlined in [8] would mean that one
now has to proceed with four-term linear forms A,-. The number of terms in the linear forms
is very important for the efficiency of the method. The upper bounds to be derived for A
grow more than exponentially in terms of this number, and also the complexity of the
reduction procedure to be performed depends very much on it. Although with the present
state of the art a four-term linear form is very well doable in general, it's to the author's taste
a matter of elegance to use a method as efficient as possible, by using properties special to the
particular case, taking the shortcuts this suggests, rather than to follow blindly the longer
route set out by the general theory.
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We note that in our specific situations the linear forms A, can be simplified considerably.
Namely, due to our special choice of j,k, we have in the cases with D ^ 18 that 63 = a{e\), so
€3j = a(e\j) = ei.t and e3,fc = a{eXtk) - eXJ, so that

A, = log Hi ~ Hj - a 3 ) l o g

and if D = 18 then we have a{t

A, = log

7 - Hk /

(e3) = e3, so €3,k = ey, so that

+ a2 log

Hi ~ Hk
log + a2 log

This already is an important simplification.
Moreover, we can get rid of the first term. Namely, we note that

{H\ -

It follows that

~^\ = 77^$- (Hi + HdHj +- He) 4V2D '

where i is taken such that [i,j, k, £} = {1, 2, 3,4}. If D = 18 then everything is in IK,-, since this
field is galois. If D / 18 then everything is in the splitting field of t4 - 2Dt2 + 2b2D, which is
a quadratic extension of IK,. Indeed, since *J2D £IKy, this splitting field is IK,(V2D). However,
notice that Hi + He==r~ Hj ~ °(Hj) e IK,- and |,-^ = */(Hp(Hj)) e IK,-. Indeed, we find

which is also true if D = 18. It follows that ( f t f ) ^ IK,-, in fact,

= ~b2 ' b1 J~'b^J~'blj'

This shows that in the cases with b = 1 indeed ( | r | ) is integral, and since its norm equals 1,

it even is a unit. Furthermore, in these cases where i = l w e also have \x = 1, so that we have

Hi ~ Hk l - i

- l
if De {3, 6,11,38,51,66,83},

- f e ) ( e ) ' if D=21-
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In the cases with ft = 3we have /x = p~x, and then we happen to find that

_(£Lt) if £> = 43,

Now we put

t>2=

-(?•*) if £> = 67.

2 a , - 2 a 3 - l if De {3,6,11,27, 38, 51,66, 83},
2a ,+2 if £>=18,
2a , -2a 3 + l if De{27,43},
2ax - 2a3 if D = 67;

2fl2 if 0 e {3,6, 11, 38,43, 51, 66, 83},
2a2 + \ if Z)=18,
2a2 - 1 if De {27, 67}.

Then we can write

2A,- = b\ log + b2 log (8)

and this is a linear form in only two logarithms with integer coefficients, which is very con-
venient to work with. Moreover, the number of linear forms itself has been halved, as we
observe that 2Ai = 2A3 and 2A2 = 2A4.

We put

then we have (unless a\ = ai = a3 = 0 in the case D — 67)

4A + \ if De {3,6, 11,27, 38,43, 51,66, 83},
B< \ 2A + 2 if D= 18,

4A if D = 61.
(9)

6. Large upper bonds. We now apply a result from the theory of linear forms in loga-
rithms of algebraic numbers, stating that such a linear form cannot be too small. The nice
fact that now every linear form in logarithms 2A, has only two terms (see (8)) means that we
can use the very good result of Laurent, Mignotte and Nesterenko [5]. Note that for a linear
form with three terms the best result today probably is that of Voutier [9], and for linear
forms with more than three terms one can use the result of Baker and Wustholz [1].

We apply Corollaire 2 of [5] to the linear form 2A,, as given in (8). Note that the alge-
braic numbers inside the logarithms are multiplicatively independent elements of the quartic
field Kj. So, noting that h{f) < h(a) + h{fi) for any a, 0, we define Aj for j = 1, 2 by

logAj = max hh(€j),- log
€JA log
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We put

y U 1*1 I , \bl\

so that

And we put

+ -, T\B.
4 \Iogv4i log A2

Z, = max<log6' + 0.14,^-[, C3 = 6231. \ogA2.

Then Corollaire 2 of [5] tells us that

If

|2A,-| <

< ( ]

V 4

(11)

\ogA

then (10) implies L = 4 , and we find from (7) (assuming that |F| < Fo) that A < B\, where

>i = 16 C2

Otherwise, we have L — log JB + 0.14 + log
(assuming that |F| > Fo) and (11) that

, a n d then we find from (7)

With (9) this gives an upper bound A < B2 since A is less than a quadratic function of log A.
Hence we obtain

if |F | > Fo then ,4 <max{Bl,B2}.

We computed the following numerical values for C3, B\, B2

D B2 D B2

3 1.20264 x 104 109830 796051
6 1.32480 x 104 88487 609302
11 4.57474 x 104 251547 1880541
18 4.70294 x 103 49219 337082
27 1.20264x10" 109830 796052
38 9.92799 x 104 398236 3028667

43 1.77433 x 105 376992 2665865
51 1.41947 x 105 538826 4218038
66 6.92735 x 104 251488 1800899
67 4.67517 x 105 609078 4299201
83 3.80034 x 105 1319441 11438210

In all cases we have B\ < B2, so \F\ <FQ- \ or A < B2.
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7. Reduction of the upper bound. Although the upper bounds B2 are so small that enu-
meration of all possibilities for d and e is practically possible, a much more efficient search
can be done as follows. The basic idea is to use the heuristic argument mentioned above, that
the linear forms A, should behave generically, i.e. should be not essentially smaller than
diophantine approximation theory suggests, namely linear in A~l. As we now have an upper
bound A < B2 « 107, we have a good idea how small the linear forms can be, namely of the
size of A~\ which is at worst « 10~7. If we can check that indeed for all coefficients below
these bounds the linear forms are larger than « 10~7, we can use (8) to obtain a reduced
upper bound for A.

In practice it works as follows. Fix a linear form A,, and let (d,e) be a solution of (7).
Note that Ai = A3 and A2 = A4, so that we only have to look at / = 1 and i = 2, and if
D = 18 then the relations ei,i = -ei,2 = - e ^ 3 = e^4, and e2,i = €22 = -€2\ = -e2 , 4 imply
that Ai and A2 are the same, when the sign of b2 is changed. So if D — 18 we only have to
consider i — 1.

Pick a convenient large enough constant C4, somewhat larger than the square of the
upper bound B2 for A. Define X € Z, by

[C4l0g \elk/€ij\] [C,\0g\€U/€2j\))\b

where [•] denotes rounding to an integer. This formula says that the point (d, X)T is in the
lattice spanned by the columns of the above matrix, and because at least one of b\ and b2 is
odd, this point is not zero. This lattice point is of interest to us, because X is approximately
equal to 2C4A, (compare (8)), hence relatively small by (7).

By a variant of the euclidean algorithm (in fact we compute the simple continued frac-
tion expansion of —1°8 thk/u^X we can find the nonzero lattice point closest to zero, and this

gives us a lower bound I for the length of the vector (b\, X)T. We expect that t is of the size of
the square root of the volume of a fundamental domain of the lattice, which is approximately
C4. So I will be at least of the size of the upper bound B2. Increasing C4 will in general cause
an increasing I. On the other hand, the first component of the vector (b\, X)r is bu which is at
most of the size of B2. Hence the second component, X, will be large, which is contradictory,
as we've just seen that it's small.

To make this reasoning precise, let us put

De {3,6,11,27,38,43,51,66,83},
D= 18,

so that (9) implies B < i?3. Then we have

I1 < b] + X2 < B\ + X2,

and X is defined such that
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Hence

which is possible only if we have taken C4 large enough so that t > -/5BT, (if this is not the
case, take a somewhat larger C4). Then (7) implies (under the assumption \F\ > Fo)

A<\~ flog(2Ci) + log C4 - \og(je2-B2
3 - 2B3

Thus we have found a new upper bound for A, and we can repeat the procedure with B2

replaced with this new upper bound, and a new C4, to see if we can get further improvement.
Here are some details of the computations. For C4 we took the power of 10 for which

I > \/5C4 turned out to be true, and the new upper bound turned out to be the best reachable.
In all cases we did two successive reduction steps, and in the case D = 38 a third step also yielded
a further improvement. The data for the first and second reduction steps are as follows.

D

3
6

11
18
27
38
43
51
66
67
83

c4

10'"
10'"
10'5

10'3

10'"
10'5

1014

10"
1014

1016

10"

= 1

l>

1.10660
1.35144
3.24838
3.32629
1.10660
4.13470
4.25311
1.46002
1.61715
9.47743
4.64362

Finally, when

X

X

X

X

X

X

X

X

X

X

X

10'
10'
10'
106

10'
10'
10'
108

10'
10'
108

D = .

D

38

c4

10'"
10'"
10'"

10'"
10'"
10'5

10'"
10'"
1014

1015

= 2
t>

1.80099 x
1.76093 x
3.22646 x

1.80099 x

4.24690 x
5.96382 x
4.97647 x
3.03380 x
4.09314 x

2.59490 x

38 we did a third

C4

: io3

/ = 1
t>

10'
10'
10'

10'
10'
10'
10'
10'
10'
108

step

36.0555

A <

9
6
6

11
9
4
3
5
4
2
4

, with

i =

c4

103

D

3
6

11
18
27
38
43
51
66
67
83

i

c4

10"
10"
10"
106

10"
10"
10"
10"
10"
102

103

= 1
l>

137.974
68.5054
165.027
1342.82
137.974
91.3892
239.002
57.0087
159.477
18.3847
46.0434

data as follows.

= 2

e>
110.571

A <

2

i

c4

10"
10"
103

10"
103

103

103

103

102

103

= 2

e>
220.102
173.611
96.213

220.102
110.571
57.0350
178.986
80.9938
35.4683
156.003

A <

5
4
3
7
5
3
2
3
2
1
2

It is good to realise again what really is going on here, as this reduction of the upper
bound from & 107 to only « 10 is dramatic and seems mysterious. In fact, we have shown
above that the existence of a solution of (7) with A < B2 either has a very small A, or implies
the existence of a nonzero lattice point in the given lattice with a distance to zero less than or
equal to I. By inspection, after having performed the euclidean algorithm, we know that such
lattice points do not exist. We could also have said (in fact, this is equivalent to the above
reasoning) that the existence of a solution with large A implies the existence of a large partial
quotient in the simple continued fraction expansion of - 1 " ! |g)'*/̂ ]> m t n e range where the

denominators of the convergents are at most fi3. As we can actually compute these continued
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fractions, we can simply see that such large partial quotients do not occur. We preferred to
give the argument in terms of lattices, because this can be generalised straightaway to linear
forms with more than two logarithms, see [10].

8. Conclusion. It remains to find the solutions with A < 5, 4, 3, 7, 5, 2, 2, 3, 2, 1, 2,
respectively, in the case D = 3, 6, 11, 18, 27, 38, 43, 51,66, 67, 83, and those with
\F\ < ^o - 1- This can be done easily as follows. For all the remaining possibilities of
(ci\, a2, cii) with A = max{|ai|, |«2U 1̂ 31} below the upper bound we check Siegel's identity (5)
(single precision suffices). This revealed in all the cases with b —\ the solution
(a\, a2, a^) = (0, 0, 0), leading to (E,F) = ±(\,0), in the case Z> = 6 also the solution
Oi, a2, 03) = (0, - 1 , 1), leading to (E, F) — ±(1, -1 ) , and in the case D — 43 the solution
(au a2, 03) = (0,0, 0), leading to (E, F) = ±(1, -1 ) , and no other solutions.

The solutions E, F with 2 < |F | < Fo — 1 correspond to convergents j of the simple
continued fraction expansion of £, (note that | | — £,| is of the size of |F|~4, as argued imme-
diately after equation (4); in fact one can prove easily that if \F\ > 2 then \f — £,| < 577, see
[8]). Thus only in the cases D = 43, and D = 67 the continued fractions of £1, %i, £3, £4 have
to be computed, up to the first convergent with denominator exceeding FQ. This produced no
solutions. Finally, the solutions with \F\ < 1 are trivally found.

This completes the proof of Theorem 2, hence also that of Theorem 1. All the compu-
tations were performed on a 486/75 notebook PC, using Pari-1.39-03, Maple V.4 and Bor-
land Pascal 7.0 The total computation time was only a few minutes.
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