NOTE ON A THEOREM ON SINGULAR MATRICES

D. Ž. Djoković

J. A. Erdös proved recently [1] that every singular matrix over a field \(F \) is a product of idempotent matrices. He gave two proofs, one valid for matrices which are similar to triangular matrices and the other valid in general. We shall give a simple geometric proof of the above result. Instead of matrices we use linear operators. Moreover we get an explicit factorization in terms of projectors (idempotent operators).

Let \(A \) be a singular linear operator in \(n \)-dimensional vector space \(V \) over \(F \). By a well known decomposition theorem ([2], p. 189) \(V \) decomposes into a direct sum

\[
V = V_1 \oplus \ldots \oplus V_k
\]

such that each subspace \(V_i \) is \(A \)-cyclic and the minimal polynomial of the restriction of \(A \) to \(V_i \) is a power of a prime polynomial over \(F \). Since \(V_i \) is \(A \)-cyclic it has a basis \(e_i^j (j = 1, \ldots, m_i) \) such that

\[
e_i^1 A \in V_i \quad \text{and} \quad e_i^j A = e_i^{j-1} \quad \text{for} \quad j = 2, \ldots, m_i.
\]

\(A \) being singular, we can assume that \(e_i^1 A = 0 \). The vectors \(e_i^j (i = 1, \ldots, k; j = 1, \ldots, m_i) \) form a basic set of \(V \). If \(e \) is any of these vectors let \(V(e) \) be the \((n - 1)\)-dimensional subspace of \(V \) spanned by all basic vectors \(e_i^j \) except \(e \). If \(x \in V(e) \), we define \(P(e, x) \) to be the operator which maps \(e \) onto \(x \) and leaves \(V(e) \) pointwise fixed. It is obvious that \(P(e, x) \) is a projector of nullity 1. If

\[
P_0 = P(e_2^1, e_1^1)P(e_3^1, e_2^1)\ldots P(e_{m_1}^1, e_{m_1-1}^1),
\]

(1)

\[
P_i = P(e_i^1, e_{i-1}^1)P(e_{i+1}^1, e_i^1)P(e_{i+2}^1, e_{i+1}^1)\ldots P(e_{m_i}^1, e_{m_i-1}^1)P(e_{i+1}^1, e_{i+1}^1 A)
\]

for \(i = 2, \ldots, k \), then we claim that
(2) \[A = P(e_1^j, 0)P_2P_3\ldots P_kP_0. \]

This is easy to verify since both sides in (2) have the same effect when applied to basic vectors \(e_j^i \).

REFERENCES

University of Waterloo