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Abstract

Random (pseudo)graphs GN with the following structure are studied: first, independent
and identically distributed capacities�i are drawn for vertices i = 1, . . . , N ; then, each
pair of vertices (i, j) is connected, independently of the other pairs, with E(i, j) edges,
where E(i, j) has distribution Poisson(�i�j/

∑N
k=1�k). The main result of the paper

is that when P(�1 > x) ≥ x−τ+1, where τ ∈ (2, 3), then, asymptotically almost surely,
GN has a giant component, and the distance between two randomly selected vertices of
the giant component is less than (2 + o(N))(log logN)/(−log (τ − 2)). It is also shown
that the cases τ > 3, τ ∈ (2, 3), and τ ∈ (1, 2) present three qualitatively different
connectivity architectures.

Keywords: Random graph; branching process; giant component; power law

2000 Mathematics Subject Classification: Primary 05C80
Secondary 05C12

1. Introduction

In their classical paper [8], Erdös and Rényi considered a graph process with N vertices
that starts with no edges. Edges are then added one by one between randomly selected pairs
of vertices. The most exciting phenomenon in this process is the sudden appearance of a
giant connected component at a certain critical point. The model of Erdös and Rényi was
the starting point of the theory of random graphs, which has grown in many directions and
found applications in different parts of science. Mainly, however, random graphs are of purely
mathematical interest. They can be applied as models for connection structures that are too
complicated to be studied in full detail, and which require a statistical approach if any general
characterization and understanding of the object is to be obtained.

One feature that is characteristic of most of the older random graph models is a certain
homogeneity, in the sense that the vertices have roughly similar roles in the random network.
The degree of a randomly chosen vertex often has an approximately Poissonian distribution.
However, many real-world networks – social networks in particular – display a strong hetero-
geneity that is reflected in a heavy-tailed distribution of vertex degrees. For reviews in this
field, see [3] and [14]. Since the 1990s, the Internet has both provided new tools for studying
such often huge networks and itself served as a highly interesting object of study.

There are (at least) two types of model that yield highly variable vertex degrees. One class
comprises the preferential growth models, where the graph grows from a single initial vertex and
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each new vertex tends to get connected to others that are already big, rather than to small ones.
A pioneering contribution in this direction was the model proposed by Barabási and Albert [2],
whose idea has then been developed further in many modifications. Rigorous results were
obtained by Bollobás and Riordan (see [5] and references therein).

Another class consists of models in which the vertex degrees are taken directly as the starting
point. Again, there are several variants. Most of them are in fact pseudographs, because multiple
edges between the same pairs of vertices and loops from a vertex to itself are not prevented.
Molloy and Reed [12], [13] defined the notion of a feasible degree sequence and studied the
conditions for a giant component to appear when the graph is randomly chosen among all
graphs with that degree sequence. Aiello et al. [1] continued in this direction, focusing on
power law sequences. Newman et al. [15] assumed there to be independent and identically
distributed (i.i.d.) random degrees and added one vertex with degree 1 if the sum of the
degrees happened to be odd. Their paper focused on the typical distances between vertices
belonging to the giant component and showed it to be at most logarithmic in N . Reittu
and Norros [16], [17] considered the model of [15] and showed that, for a power-tailed
degree distribution with infinite variance, these distances were in fact only of order log logN .
Chung and Lu [7] proved a log logN asymptotics in a model that assumed a power law
sequence of ‘expected degrees’ d1, . . . , dN , and connected vertices i and j with probability
didj /

∑N
k=1 dk (assuming a cut-off di ≤ const.

√
N , guaranteeing that these numbers do not

exceed 1). Recently, van der Hofstad et al. [19], [20] and Hooghiemstra and van Mieghem [9]
have improved the result of [17] considerably by identifying the limit distributions of the distance
between two vertices of the giant component in the following three qualitatively different
cases of degree distribution: finite variance, finite mean plus infinite variance, and infinite
mean.

The present paper introduces a new variant of the latter class of model that is a kind of
hybrid of the models of [15] and [7]. The idea is as follows: since in many of the above-
mentioned models the number of edges joining two disjoint sets of vertices are approxi-
mately Poisson distributed given their degree sums, we propose to define them to be exactly
Poissonian, conditioned on some mean values. It turns out that this approach yields a very
pleasant mathematical structure that, moreover, can be embedded into a simple growth model.

The paper is structured as follows. In Section 2 we present the model, in Section 3 we study a
coupling of neighborhood shells to a branching process, and in Section 4 we present the results
on the asymptotic architectures.

2. Model definition

Let � = (�1,�2, . . . ) be a sequence of independent, strictly positive random variables
with a common distribution function F . As usual, � (without a subscript) denotes a generic
random variable with distribution function F . We assume throughout that E[�1] < ∞ and
P(� ≥ 1) = 1 (the latter assumption is not essential but sometimes convenient). In the graphs
that we shall define below, �i will represent the mean degree of vertex i. Let us call �i the
capacity of vertex i.

In the construction that follows, the sequence (�i) can be thought to be drawn first; proba-
bilities defined thereafter are sometimes understood to be conditioned with respect to �, even
without writing this explicitly (when it is clear from the context). The total capacity of the
vertices in {1, 2, . . . , N} is denoted by LN = ∑N

i=1�i. While conditioning on the sequence
�, let us define a sequence of random (pseudo)graphs GN,N = 1, 2, . . . , as follows (here
‘pseudo’ means that we allow multiple edges between a pair of vertices, and loops from a
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vertex to itself; we suppress the word ‘pseudo’ from now on). The set of vertices of GN is
{1, . . . , N}. Denote by EN(i, j), i, j ∈ {1, . . . , N}, the number of edges joining vertices i
and j in GN . The sequence of graphs is generated inductively through the following growth
process:

Step 1. E1(1, 1) is a random variable with distribution Poisson(�1).
Step N + 1. GN+1 is the same as GN except for the following changes.

(i) Addition of new edges to the new vertex N + 1: for i = 1, . . . , N + 1, the number
EN+1(i, N + 1) is a Poisson random variable with mean

E[EN+1(i, N + 1)] = �i�N+1

LN+1
,

independent of the previously drawn edges.

(ii) Thinning of the old edges: each edge of GN is removed independently with probability

pN+1 := 1 − LN

LN+1
.

We denote by i ↔N j the event that vertices i and j are connected with an edge in GN .
If U and V are subsets of {1, . . . , N}, U ↔N V denotes the event that some vertex in U is
connected to some vertex in V by an edge in GN .

Denote by DN(i) the degree of vertex i in GN :

DN(i) :=
N∑
j=1

EN(i, j).

Thus, in determining the degree of a vertex, we count a loop only once.

Proposition 2.1. Conditionally on �, the following assertions hold for each N .

(i) The distribution of EN(i, j) is Poisson with mean

E[EN(i, j) | �] = �i�j

LN
.

(ii) The distribution of DN(i) is Poisson(�i).

(iii) The numbers of edges joining different pairs of vertices are independent.

Proof. The claims hold with N = 1. Assume that they hold for a general N , and consider
GN+1. Assertion (i) holds by definition when j = N + 1. For i, j ≤ N , note that independent
thinning retains Poissonianity. The induction hypothesis thus implies that

E[EN+1(i, j) | �] = (1 − pN+1)E[EN(i, j) | �]
= LN

LN+1

�i�j

LN
= �i�j

LN+1
, i, j ∈ {1, . . . , N}.

Assertion (iii) also follows from the induction hypothesis, since the thinning probability is
independent of any edges, and the edges to vertexN+1 are drawn independently of previously
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drawn edges and each other. Assertion (ii) follows from assertions (i) and (iii) since a sum of
independent Poisson random variables is Poisson and

E[DN(i) | �] =
N∑
j=1

E[EN(i, j) | �] =
N∑
j=1

�i�j

LN
= �i.

3. Coupling to a branching process

The neighborhood shells around a vertex of a random graph often have a close resemblance
to the subsequent generations of a branching process. This section analyses the neighborhood
shells in our model, and their coupling to a related branching process.

Assume that the sequence � has been generated and that probabilities are conditioned on
it. For each N , we define a marked branching process, i.e. a branching process where each
individual is associated with some element of a mark space, which in this case is {1, . . . , N}, the
set of vertices ofGN . More specifically, let us define a process (Z,J ) = (Zn, (Jn,i)), whereZn
is the size of generation n and Jn,i ∈ {1, . . . , N} is the mark of member i of generation n. We
set Z0 ≡ 1 and take J0,1 from the uniform distribution uniform(1, . . . , N). The process then
proceeds so that, for each j = 1, . . . , N , an individual bearing mark i gives birth independently
to a Poisson(�i�j/LN )-distributed number of members of the next generation, each bearing
mark j .

Now consider the graph GN , and randomly choose (from uniform distribution) a vertex i0.
Recursively define the neighborhood shells, Nk , of i0 as follows:

N0(i0) = {i0},

Nk+1(i0) =
{
j ∈

( k⋃
l=0

Nl (i0)

)c

: j ↔ Nk(i0)

}
.

Proposition 3.1. Let (Z,J ) be the marked branching process defined above. Define a reduced
process by proceeding generation by generation, i.e. in the order J0,1; J1,1, J1,2, . . . , J1,Z1;
J2,1, . . . , and pruning (that is, deleting) from (Z,J ) each individual whose mark has already
appeared, together with all its descendants (which are not individually considered for pruning).
Denote the resulting finite process by (Ẑ, Ĵ ), and let Ĵk be the set of marks in generation k
of the reduced process. Then the sequence of the sets Ĵk has the same distribution as the
sequence Nk .

Proof. We proceed by induction. By definition, i0 and J0,1 have the same (uniform) distribu-
tion and Ĵ0 = {J0,1}. It is clear that the reduced process can also be generated simultaneously
with (Z,J ), by deleting each new individual whose mark has already been seen without letting
it reproduce. Let us do this, and assume that generation n has been fully generated and is
identical in both processes, and that the same holds for the children of the first i members of
generation n. It now suffices to show that we obtain a similarly distributed result for the children
of member i + 1.

First consider the graph neighborhood process. Here we need only consider vertices that
have not yet been reached. With probability 1 − exp(−�

Ĵn,i+1
�j/LN) there is at least one edge

between each such vertex, j , and the present vertex. Moreover, the numbers of edges to different
vertices are independent, by assumption. In the branching process, on the other hand, for each
j = 1, . . . , N the corresponding individual produces a Poisson(�

Ĵn,i+1
�j/LN )-distributed
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number of offspring each bearing mark j . For different js, these numbers are independent.
The pruning then removes all vertices whose marks were generated in previous steps, and also
all newly generated duplicates. Clearly, the set of remaining marks is distributed in the same
way as the above-described set of new neighbors in the neighborhood process.

We now make a very useful observation: the number and the marks of the children of an
individual in (Z,J ) can be generated independently. This follows from the properties of the
Poisson distribution. Denote by qN the distribution

qN(j) := �j

LN
, j = 1, . . . , N,

and introduce another marked branching process, (Z̃n, (J̃n,i)). In this process, Z̃0 and J̃0,1
are defined as before but then we proceed as follows. We define Z1 to have the distribution
Poisson(�J0,1 ). Each individual of a generation greater than or equal to 1 is given a mark J
from the distribution qN , independently of everything that happened before, and then produces
a Poisson(�J )-distributed number of children. Thus, after the first generation, the process (Z̃)
is a standard Galton–Watson process with the mixed Poisson (‘doubly stochastic’) offspring
distribution Poisson(�J ), J ∼ qN .

Proposition 3.2. The processes (Zn, (Jn,i)) and (Z̃n, (J̃n,i)) are stochastically identical. In
particular, conditionally on

σ {Z0, . . . , Zn; Jk,i , k = 0, . . . , n− 1, i = 1, . . . , Zk},
the marks of generation n in (Zn, (Jn,i)) are i.i.d. random variables with distribution qN .

Proof. Fix n, and assume as an induction hypothesis that the nth generation of each process
has been generated and that these generations are identical. For each individual i ∈ {1, . . . , Zn},
denote byNi,j the number of its offspring bearing mark j . Furthermore, let Ñi,j be the number
of offspring bearing mark j when the total number of offspring is first drawn from the above-
mentioned doubly stochastic distribution and each child is then independently given a mark
according to the distribution qN . It is straightforward to check thatNi,j and Ñi,j are identical in
distribution. Since in both processes the reproduction of each individual happens independently
of other individuals, the (n+1)th generation has the same distribution in both processes. Thus,
the assertion follows by induction.

Remark 3.1. In fact, the Poisson distribution allows us to remove the explicit branching
altogether: we would obtain the same process by drawing the size of the (n+ 1)th generation
directly from the distribution

Poisson

( Zn∑
i=1

�Jn,i

)

and then giving each individual an independent qN -distributed mark.

Remark 3.2. Denote by π∗ the mixed Poisson distribution Poisson(�), where � is a random
variable with distribution

P(� ∈ dx) = x P(� ∈ dx)

E[�] .

Obviously, the distribution of Poisson(�J(N)), J
(N) ∼ qN , converges to π∗ in probability.
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For each N , let J (N)1 , J
(N)
2 , . . . be i.i.d. random variables with distribution qN , and let J (N)0

be a random variable with uniform distribution on {1, . . . , N}, independent of the previous ones
(we usually suppress the superscript ‘(N)’, to simplify the notation). Let

ν ≡ ν(N) = inf{n : Jn = Jm for some m < n},
� ≡ �(N) = sup{n ≥ 0 : Jn is used in the construction of (Z̃, J̃ )}. (3.1)

Thus, ν is the first time that a vertex is encountered a second time and � is the time at which
the branching process dies, i.e. the time at which the last survivor is drawn to be childless.
Note that ‘time’ here refers to the index of the sequence Jn, with which we generate the process
(Z̃, J̃ ).

It is crucial in some of the following proofs that the coupling between the neighborhood
shells and the branching process lasts long enough, i.e. that ν is sufficiently large with high
probability. The following lemma provides an appropriate estimate in the case of a power-tailed
distribution of vertex capacities.

Lemma 3.1. Either

(i) assume that E[�2] < ∞ and let η ∈ (0, 1
2 ), or

(ii) assume that
P(� > x) = L(x)x−τ+1,

where τ ∈ (2, 3) and L(x) is a slowly varying function (i.e. limN→∞ L(cN)/L(N) = 1
for every c > 0), and let η ∈ (0, (τ − 2)/(τ − 1)).

Moreover, let γ ≡ γ (N) be a natural number such that γ (N)/Nη → 0 as N → ∞. Then

lim
N→∞ P(ν > γ | �) = 1 almost surely.

Proof. With Vn = ∑n
i=0�Ji , we have

P(ν ≤ γ | �) =
γ∑
n=1

P(ν = n | �)

=
γ∑
n=1

E[P(ν = n | J0, . . . , Jn−1; �) | �]

=
γ∑
n=1

E[P(ν ≥ n | J0, . . . , Jn−1; �)

× P(ν = n | ν ≥ n; J0, . . . , Jn−1; �) | �]

≤
γ∑
n=1

E

[
Vn−1

LN

∣∣∣∣ �

]
≤ γ E

[
Vγ−1

LN

∣∣∣∣ �

]

≤ γ 2

LN
E[�J1 | �]

= γ 2

L2
N

N∑
i=1

�2
i . (3.2)
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The last inequality follows from the fact that E[�J0 | �]2 ≤ E[�2
J0

| �]. Under hypothesis (i),
the last expression converges to 0 simply by the law of large numbers. Under hypothesis (ii),
we choose a number α ∈ (1/(2(1 − η)), (τ − 1)/2); since then,

P(�2α > x) = L(x1/(2α))x−(τ−1)/(2α),

we have E[�2α] < ∞. Now, by (3.2) and the subadditivity of xα, α < 1, we find that

P(ν(N) ≤ γ (N) | �) ≤ γ (N)2

L2
N

N∑
i=1

�2
i

≤ γ (N)2

L2
N

( N∑
i=1

�2α
i

)1/α

= γ (N)2

N2−1/α ·
(
N

LN

)2

·
(

1

N

N∑
i=1

�2α
i

)1/α

.

The first factor goes to 0 and the two others converge almost surely to positive constants by the
law of large numbers.

4. Asymptotic architectures

Let us assume that
P(� > x) = x−τ+1L(x), (4.1)

where τ > 1 and L(x) is a slowly varying function. In this section we show that the three
parameter regions τ ∈ (1, 2), τ ∈ (2, 3), and τ > 3 correspond to three qualitatively different
asymptotic connectivity structures, or architectures, of the graphsGN (we have not considered
the boundary cases τ = 2 and τ = 3; however, Bollobás and Riordan [6] already have a result
in the case τ = 3 in a related model). Each of these cases is considered in its own subsection.
The most intricate case is τ ∈ (2, 3), where we present a modification of the ‘soft hierarchy’
proof of [17]. The other cases are much more easy to treat.

4.1. Preliminaries

We are mostly interested in properties that a large graph has asymptotically almost surely
(a.a.s.). This means the following. Let A(N) be the event that the random graph GN has a
certain property A. We say that A a.a.s. occurs if

lim
N→∞ P(A(N)) = 1.

As an example of the use of this notion, we say that the graph process GN a.a.s. has a giant
component if there exists a number a ∈ (0, 1) such that the cardinality of a connected component
of GN is a.a.s. greater than aN .

As another example, if E[�] is finite then the weak law of large numbers states that the total
number of edges is a.a.s. approximately proportional to N . This is the context of the following
lemma.

Lemma 4.1. Assume that E[�] < ∞. For any η > 0,

N∑
i=1

�i ∈ [(E[�] − η)N, (E[�] + η)N ] a.a.s.
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It is also useful to note the following obvious facts.

Lemma 4.2. If P(A(N) | �) → 1 in probability, then A(N) a.a.s. occurs.

Lemma 4.3. Let φ,ψ : N → R be functions such that φ(N) → ∞ and ψ(N) → ∞, and
assume that the limit

lim
N→∞

ψ(N)

φ(N)
= a ∈ [0,∞]

exists. Then

lim
N→∞

(
1 − 1

φ(N)

)ψ(N)
= e−a ∈ [0, 1].

We can now turn to the graphs GN . The following lemma shows how large the aggregated
capacities of two sets of vertices must be in order a.a.s. to have a connecting edge between
them. By ‘

p−→’ we denote convergence in probability.

Lemma 4.4. For each N , let U(N) and V (N) be two σ {�1, . . . , �N }-measurable, disjoint,
random sets of vertices. Denote their aggregated capacities by

F (N) =
∑
i∈U(N)

�i, G(N) =
∑

j∈V (N)
�j .

(i) If F (N)G(N)/LN
p−→ ∞ then U(N) ↔N V

(N) a.a.s.

(ii) If F (N)G(N)/LN
p−→ 0 then U(N) �↔N V

(N) a.a.s.

(iii) If E[�] < ∞ then in the previous conditions LN can be replaced by N .

Proof. Conditioned on �, the number of edges joining a vertex in U(N) to a vertex in V (N),
say EN(U(N), V (N)), has conditional distribution

L(EN(U
(N), V (N)) | �) = Poisson

(
F (N)G(N)

LN

)
,

which implies the first two assertions. If E[�] < ∞, then LN ∈ [(E[�] − η)N, (E[�] + η)N ]
a.a.s. for any positive η (see Lemma 4.1) and F (N)G(N)/LN converges in probability to ∞ and
0 in the cases (i) and (ii), respectively. It follows that the conditional probability

P(U(N) ↔N V
(N) | �)

converges in probability to 1 and 0 in these respective cases.

4.2. The τ > 3 case: finite variance

Let τ > 3 and assume only that P(� > x) < x−τ+1 for large x. Thus, distributions with
tails lighter than power-tailed are included.

Let X be a random variable with the distribution π∗ (see Remark 3.2). Then E[Xα] is finite
for some α > 1. If additionally c := E[X] > 1, then a Galton–Watson process Z(π

∗)
n with

offspring distribution π∗ has a positive probability of living forever. It is a natural conjecture
that the graphsGN a.a.s. have a giant component if and only if c > 1, and that the relative size
of this component approaches

1 −
∞∑
j=1

P(Poisson(�) = j)P(Z(π
∗)∞ = 0)j .
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Indeed, a corresponding result holds for the rather similar model considered in [19]. However,
we leave this conjecture unproven and just show, by a short argument, that it is not possible to
reach a positive fraction of the vertices by many fewer than logc N steps. Thus, if there is a
giant component, its asymptotic architecture is ‘flat’compared with the ‘hierarchical’ structures
found in the two other cases (see Subsections 4.3 and 4.4).

Proposition 4.1. Let η ∈ (0, 1). The set of vertices reachable from a randomly chosen vertex
J0 of GN in �η logc N
 steps is negligible in the sense that

1

N

�η logc N
∑
n=0

card(Nn(J0))
p−→ 0.

Here �·
 denotes the greatest integer less than or equal to its argument.

Proof. Choose the distribution of a random variable X̃ such that (i) E[X̃α] < ∞ for some
α > 1, (ii) c̃ := E[X̃] satisfies η log c̃ < log c, and (iii) the events

AN = {Poisson(�J(N)) ≤st X̃}, J (N) ∼ qN,

occur a.a.s. This choice is possible because the mixed-Poisson random variable converges to
π∗ in distribution.

FixN , and start the neighborhood process and the coupled marked branching process (Z,J )
as in Section 3. Given that Z1 = DN(J0), we can write Zn = ∑Z1

i=1 Z
(i)
n−1, n ≥ 1, where the

Z(i) are independent branching processes with Z(i)0 = 1. Using a pathwise coupling argument,
the processes Z(i) can be respectively majorized on AN by independent branching processes
Z̃(i) with offspring distribution L(X̃). By standard results on branching processes, the scaled
processes W̃ (i)

n = Z̃
(i)
n /c̃

n are uniformly integrable martingales with integrable limit variables

lim
n→∞

Z̃
(i)
n

c̃n
= W̃ (i)∞ .

By a classical martingale result, the suprema W̃ (i)∗ = supn W̃
(i)
n are almost surely finite as well.

Thus, the Z̃(i)n cannot grow faster than powers of c̃: Z̃(i)n ≤ W̃ (i)∗c̃n.With k = �η logc N
, on
AN we have

k∑
n=0

card(Nn(J0)) ≤
DN(J0)∑
i=1

k∑
n=0

Z(i)n

≤
DN(J0)∑
i=1

k∑
n=0

Z̃(i)n

≤
DN(J0)∑
i=1

W̃ (i)∗ c̃k+1

c̃ − 1

≤ YNη log c̃/ log c,

whereY = ∑DN(J0)
i=1 W̃ (i)∗c̃/(c̃−1) is a finite random variable whose distribution is independent

of N .
The assertion now follows, since the exponent of N in the last expression is less than 1 and

since AN occurs a.a.s.
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4.3. The τ < 2 case: infinite mean

Assume that
P(� > x) = x−τ+1L(x),

where τ ∈ (1, 2). As in [18], the asymptotic architecture is the following: there is a completely
connected ‘core’, to which all vertices of positive degree are directly connected. In particular,
there is a giant component whose relative size is P(Poisson(�) > 0) = E[1− exp(−�)]. Here
is the exact result.

Theorem 4.1. Assume that τ ∈ (1, 2) and fix an arbitrary number δ ∈ ( 1
2 , 1). Then

(i) a.a.s., a randomly chosen vertex either has degree 0 or is directly connected to the set

Cδ := {i ≤ N : �i > Nδ/(τ−1)};
(ii) two randomly chosen vertices of Cδ are a.a.s. connected with an edge.

Proof. Since E[�p] < ∞ for p < τ − 1 and E[�p] = ∞ for p > τ − 1, a generalized law
of large numbers [11, Theorem 3.23, p. 51] implies that LN/N1/p converges almost surely to
0 for p < τ − 1 and to ∞ for p > τ − 1. Thus,

LN ∈ (N(1−η)/(τ−1), N(1+η)/(τ−1)) a.a.s. (4.2)

for any η ∈ (0, 1). Define �(x) := �1{�≤x}, where 1{·} is the indicator function. By
Karamata’s theorem (see, e.g. [4, Proposition 1.5.8]),

E[�(x)] ∼ L(x)

2 − τ
x2−τ , E[�(x)2] ∼ 2L(x)

3 − τ
x3−τ .

Using these estimates, it is straightforward to show that

∑N
i=1�i1{�i≤Nδ/(τ−1)}

N1+δ(2−τ)/(τ−1)L(Nδ/(τ−1))
→ 2 − τ, as N → ∞,

in L2, and thus also in probability. Now, since δ < 1, we have

1 + δ(2 − τ)

τ − 1
<

1

τ − 1
.

Using this together with (4.2), we see that the total capacity of the ‘core’Cδ is asymptotically
arbitrarily much larger than the capacity of its complement, and the first assertion follows.
Since δ > 1

2 , the second assertion follows from Lemma 4.4 and (4.2).

Corollary 4.1. (Cf. [18].) If τ < 2 then the distance between two randomly chosen vertices of
nonzero degree is a.a.s. either 2 or 3.

4.4. The τ ∈ (2, 3) case: finite mean and infinite variance

In the case τ ∈ (2, 3), in which the vertex capacity distribution has a finite mean but an
infinite variance, we find the most interesting asymptotic architecture. As in subsection 4.3, a
‘core network’plays a crucial role in the connectivity. Now, however, it is not totally connected,
but has an internal structure.
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Since our result is only an upper bound for the distance between two randomly selected
vertices, let us assume for simplicity that

P(� > x) ≥ x−τ+1, x ≥ 1. (4.3)

If the distribution of � satisfies (4.1), then a slightly larger value of τ satisfies (4.3) for large
x, and only the asymptotics plays a role in our proof of the following result.

Theorem 4.2. Let τ ∈ (2, 3) and assume that (4.3) holds. Let

k∗ ≡ k∗(N) :=
⌈

log logN

−log (τ − 2)

⌉
,

where �·� denotes the least integer greater than or equal to its argument. Then

• the graph GN a.a.s. has a giant component;

• the distance between two randomly chosen vertices of the giant component is almost
surely less than 2k∗(N)(1 + o(1));

• in probability, the relative size of the giant component approaches the value

1 −
∞∑
j=1

P(D = j)P(Z(π
∗)∞ = 0)j ,

where D has the conditionally Poissonian distribution of Proposition 2.1 and Z(π
∗)

n is a
Galton–Watson branching process with offspring distribution π∗.

The rest of this section is devoted to the proof of Theorem 4.2.
Let us fix an increasing function � : N → R with the following properties:

�(1) = 1,
�(N)

log log logN
→ 0 and

�(N)

log log log logN
→ ∞ as N → ∞.

We will sometimes write log2 x = log log x, for example.
The following N -dependent definition of a ‘small number’ turns out to be very useful:

ε(N) = �(N)

logN
.

In particular, note that, as N → ∞,

ε(N) → 0 but Nε(N) = e�(N) → ∞.

4.4.1. Reachability functions and the core. When τ < 3, vertices with high capacity turn out
to play a central role in connectivity. Whereas in the case τ < 2 almost all vertices of the
giant component had a connection to the vertex with highest capacity with at most two steps,
a less trivial hierarchical structure builds up in the case τ ∈ (2, 3). Loosely speaking, a typical
vertex of some given large capacity u = Nη has edges to vertices with still higher capacities,
up to order Nη/(τ−2)−ε(N), but not to vertices with capacities higher than Nη/(τ−2)+ε(N). We
first derive some bounds and limits describing the reachability of large vertices from a vertex
of given capacity.
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Let

U(x) ≡ U(N)(x) = {i ≤ N : �i > x},

LN(x) =
∑

i∈U(N)(x)
�i =

n∑
i=1

�i1{�i>x},

and

ρ(x) = E[�1{�>x}]
E[�] ,

and define the reachability functions

R(N)(x|u) = P(1 ↔N U
(N)(x) | �1 = u),

R
(N)
2 (x|v|u) = P(U(N)(x) ↔N N (N)

1 (1) ∩ U(N)(v)c | �1 = u).

Assuming that we start at a vertex with capacity u, R(N)(x|u) is the probability of reaching
U(N)(x) in one step, and R(N)2 (x|v|u) is the probability of reaching U(N)(x) in two steps such
that the intermediate vertex has a capacity at most v. We skip the proofs of the following limit
formulae, since they will be used only in the heuristic discussion below.

Proposition 4.2. With u ≤ v < x, the reachability functions have the following limits:

lim
N→∞R

(N)(x|u) = 1 − exp(−uρ(x)), (4.4)

lim
N→∞R

(N)
2 (x|v|u) = 1 − exp

(
− u

E[�] E[�(1 − exp(−ρ(x)�1{�≤v}))]
)
. (4.5)

Before proving Theorem 4.2, we consider some heuristics. With P(� > x) = x−τ+1, we
have ρ(x) = x−τ+2. Using (4.4) as an estimate ofR(N)(x|u), we see that the ‘upward horizon’
of a vertex with capacity u is at the level x ≈ u1/(τ−2). In a graph of sizeN , the highest capacity
present is aboutN1/(τ−1) (see Lemma 4.5, below). Descending from this ‘big boss’, how many
distinct ‘reachability layers’ do we have until we get down to the level of ‘small bosses’ with
capacity Nε(N)? The condition

N(τ−2)k/(τ−1) = Nε(N)

yields

k = log logN

−log (τ − 2)
− log logNε(N) + log(τ − 1)

−log (τ − 2)
,

where the second term is asymptotically negligible in comparison with the first. This suggests
that the height of the hierarchy within U(N)(Nε(N)) is at most k∗. We call this upper part of
the hierarchy the core.

In the case τ < 2, the core network of the asymptotic architecture was just a clique (or
at least a ‘quasiclique’, in the sense that its two randomly chosen vertices were a.a.s. directly
connected) to which all other vertices were directly connected. In the present case, the core
network is not itself a clique, but contains a clique at the top. Indeed, since 1/(τ − 1) > 1

2 ,
the graph a.a.s. has vertices with capacity higher than N1/2, and two random vertices of such
degree are a.a.s. directly connected, according to Lemma 4.4.
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Formula (4.5) yields an argument suggesting that the upper bound k∗ is tight. With
P(� > x) = x−τ+1, we obtain

R
(∞)
2 (x|u|u) = 1 − exp

(
−τ − 2

3 − τ
u4−τ x−τ+2 + r(x, u)

)
,

where r(x, u) satisfies r(x, u) → 0 as u → ∞, and uρ(x) → 0. A simple computation shows
that we reach a higher capacity vertex by going straight to the highest capacity vertices available
in each step, rather than by making the first step among all neighbors with at most the same
capacity. However, we do not have a full proof that the upper bound k∗ could not be improved.
It is plausible that the complicated analysis of [20] is transferable to our model, but simply to
prove the tightness of k∗, it would be nice to have a simpler argument.

Proof of Theorem 4.2. Denote the vertex with largest capacity by

i∗(N) := min
{
i ∈ {1, . . . , N} : �i = max

j∈{1,...,N}�j
}
.

Lemma 4.5. Assume that (4.3) holds. The largest vertex capacity satisfies

P(�i∗(N) ≤ Nα∗(N)) ≤ exp(−e(τ−1)�(N)), where α∗(N) = 1

τ − 1
− ε(N).

In particular, �i∗(N) > Nα∗(N) a.a.s.

Proof. We have

P(max�i ≤ Nα∗(N)) = F(Nα∗(N))N

≤ (1 −N−α∗(N)(τ−1))N

≤ exp(−N1−α∗(N)(τ−1))

= exp(−e(τ−1)�(N)).

Note that 1/(τ − 1) > 1
2 ; thus, �i∗ >

√
N a.a.s.

Lemma 4.6. Assume that (4.3) holds, and let δ(N) satisfy

δ(N) ∈ (0, α∗).

Then

P

( N∑
i=1

�i1{�i>Nδ(N)} ≤ 1

2
N1−(τ−2)δ(N)

)
≤ exp

(
−N

8
P(� > Nδ(N))

)
.

In particular,
∑N
i=1�i1{�i>Nδ(N)} >

1
2N

1−(τ−2)δ(N) a.a.s.

Proof. Apply the bound (see e.g. [10, Equation (2.6), p. 26])

P

(
bin(n, p) ≤ np

2

)
≤ exp

(
−np

8

)

to the binomial random variable
∑N
i=1 1{�i≥Nδ(N)}, and use (4.3).

https://doi.org/10.1239/aap/1143936140 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1143936140


72 • SGSA I. NORROS AND H. REITTU

Recall the number α∗(N) from Lemma 4.5, and recursively define

β0(N) = 1 − α∗(N)
τ − 2

= 1

τ − 1
+ ε(N)

τ − 2
,

βj (N) = (τ − 2)βj−1(N)+ ε(N), j = 1, 2, . . . .

Then

βk(N) = (τ − 2)kβ0(N)+ ε(N)

k−1∑
i=0

(τ − 2)i . (4.6)

For sufficiently large N , we have β0(N) > ε(N)/(3 − τ), and the sequence (βk(N))k=0,1,...
decreases toward the limit value ε(N)/(3 − τ).

Define

U0 := {i∗(N)}, Uj := U(Nβj (N)), j = 1, 2, . . . , C ≡ C(N) := Uk∗ .

We call C(N) the core of the graph GN . Lemma 4.6 tells us that

∑
i∈Uj

�i ≥ 1

2
N1−(τ−2)βj (N) a.a.s. (4.7)

for all j (including j = 0, since 1 − (τ − 2)β0(N) = α∗(N)). From this, we obtain a lower
bound of the capacity of the core.

Lemma 4.7. Assume that (4.3) holds. Then

∑
i∈C(N)

�i ≥ 1

2
N1−θε(N), where θ := (τ − 2)(4 − τ)

3 − τ
.

Proof. From (4.6) with k = k∗(N), and noting that

(τ − 2)k
∗(N)β0(N)

ε(N)
≤ β0(N)

�(N)
→ 0,

for sufficiently large N we find that

βk∗(N)(N) ≤ ε(N)

(
1 +

∞∑
i=0

(τ − 2)i
)

= 4 − τ

3 − τ
ε(N). (4.8)

The claim now follows from Lemma 4.6.

We next show that a randomly chosen vertex belonging to the core can reach the largest
vertex i∗ in at most k∗ steps. It turns out that an extremely simple search strategy works here:
each time, step to the vertex with highest capacity in the neighborhood. For any vertex i ∈ C,
define

M(i) = inf{j ∈ {i} ∪ N1(i) : �j = sup{�k : k ∈ {i} ∪ N1(i)}},
where, recall, N1(·) denotes the one-step neighborhood, and let

K(i) = inf{k : i ∈ Uk}
be the ‘layer’ containing vertex i.
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Proposition 4.3. For each N , let I0 ≡ I0(N) ∈ C(N) be a random vertex of the core such
that, conditioned on �, I0 is independent of the edges within the core. Define the sequence of
vertices

In+1 = M(In), n = 0, 1, 2, . . . .

Then Ik∗ = i∗ a.a.s.

Proof. Let

An = {In = i∗ or K(In+1) < K(In)}, n = 0, 1, 2, . . . ,

B ′ =
{
LN

N
≤ E[�] + 1

}
,

Bk =
{ ∑
j∈Uk

�j >
1

2
N1−(τ−2)βk

}
, k = 0, . . . , k∗ − 1,

B = B ′ ∩ B0 ∩ · · · ∩ Bk∗−1.

It is sufficient to show that P(A0 ∩ · · · ∩ Ak∗−1 | �) converges to 1 in probability. Using
Bonferroni’s inequality, write

P(A0 ∩ · · · ∩ Ak∗−1 | �) ≥ 1B

(
1 −

k∗−1∑
n=0

P(Ac
n | �)

)
,

and note that, by Lemmas 4.1, 4.5, and 4.6, P(B) approaches 1 since

P(Bc
1 ∪ · · · ∪ Bc

k∗−1) ≤ (k∗ − 1)e−N1−(τ−1)β1/8 → 0, N → ∞.

On B, we have

P(Ac
n | �) = E[P(Ac

n | In; �) | �]

= E

[
1{In �=i∗} exp

(
−
�In

∑
j∈UK(In)−1

�j

LN

) ∣∣∣∣ �

]

≤ E

[
1{In �=i∗} exp

(
− 1

(E[�] + 1)N
NβK(In)

1

2
N1−(τ−2)βK(In)−1

) ∣∣∣∣ �

]

≤ exp

(
− e�(N)

2(E[�] + 1)

)
.

The last expression does not depend on n. It remains to note that, for c > 0,

k∗ exp(−ce�(N)) = k∗

log2N
exp(log3N − c(elog4 N)�(N)/ log4 N)

= k∗

log2N
exp(−log3N(c(log3N)�(N)/ log4 N−1 − 1))

→ 0

by the assumption that �(N)/ log4N → ∞.
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4.4.2. Connecting arbitrary vertices to the core. By the definition of ε(N), we can choose a
natural number κ ≡ κ(N), depending on N , such that

κ(N)

Nθε(N)
→ ∞,

κ(N)

k∗(N)
→ 0, as N → ∞.

To finish the proof of Theorem 4.2, it is now sufficient to prove that, a.a.s., a randomly chosen
vertex is connected to the core with the probability given in the theorem, and that the number
of steps needed to reach the core is at most κ . This is done using the coupling to a branching
process, presented in Section 3. Recall the definition of ν and � in (3.1), and let

µ ≡ µ(N) = inf{n ≥ 0 : Jn ∈ C(N)},
i.e. the time at which an element of the core is seen in the mark sequence (Jn) for the first time
(see Section 3 for our notation).

Lemma 4.8. A.a.s., µ(N) ≤ κ(N), i.e. {J0, . . . , Jκ} ∩ C(N) �= ∅.

Proof. We have

P(J1, . . . , Jκ ∈ C(N)c | �) =
(

1 −
∑
i∈C(N) �i
LN

)κ

≤
(

1 − N

2LN
N−θε(N)

)κ
a.a.s.

The last expression converges to 0 by the law of large numbers, because κ(N)N−θε(N) → ∞
by assumption.

Lemma 4.9. A.a.s., µ(N) > �(N) on {�(N) < ∞}.
Proof. Denote by Fn the σ -algebra generated in the development of the branching process

(Z̃, J̃ ) up to draw Jn. Since each new individual generates a new copy of the branching process,
we have

P(�(N) < ∞ | �; Fµ(N))1{µ(N)≤�(N)}

≤ P(�0(N) < ∞ | �)Poisson(N
βk∗(N)(N))1{µ(N)≤�(N)},

where �0 refers to the branching process in which the mark of the first individual has, instead
of the uniform distribution, the same distribution, qN , as the others. The right-hand side
converges to 0 in probability because Nβk∗(N)(N) → ∞, and the conditional probability
P(�0(N) < ∞ | �) converges in probability to the constant P(�0(∞) < ∞), the extinction
probability of the Galton–Watson process with the mixed-Poisson offspring distribution π∗.

Since κ(N) is (possibly much) smaller than the power function Nη appearing in Lemma
3.1, we obtain the following picture:

• on {�(N) < ∞}, we have �(N) < µ(N) ≤ κ(N) < ν(N) a.a.s., i.e. the neighborhood
process a.a.s. does not reach the core;

• on {�(N) = ∞}, we have µ(N) ≤ κ(N) < ν(N) a.a.s., i.e. the neighborhood process
a.a.s. reaches the core in at most κ(N) steps.

Combining this with Proposition 4.3 completes the proof of Theorem 4.2.
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