AN ALEXSANDROV TYPE THEOREM FOR k-CONVEX FUNCTIONS

NIRMALENDU CHAUDHURI AND NEIL S. TRUDINGER

In this note we show that k-convex functions on \mathbb{R}^n are twice differentiable almost everywhere for every positive integer k > n/2. This generalises Alexsandrov's classical theorem for convex functions.

1. INTRODUCTION

A classical result of Alexsandrov [1] asserts that convex functions in \mathbb{R}^n are twice differentiable almost everywhere, (see also [3, 8] for more modern treatments). It is well known that Sobolev functions $u \in W^{2,p}$, for p > n/2 are twice differentiable almost everywhere. The following weaker notion of convexity known as k-convexity was introduced by Trudinger and Wang [12, 13]. Let $\Omega \subset \mathbb{R}^n$ be an open set and $C^2(\Omega)$ be the class of continuously twice differentiable functions on Ω . For k = 1, 2, ..., n and a function $u \in C^2(\Omega)$, the k-Hessian operator, F_k , is defined by

(1.1)
$$F_k[u] := S_k(\lambda(\nabla^2 u)),$$

where $\nabla^2 u = (\partial_{ij} u)$ denotes the Hessian matrix of the second derivatives of u, $\lambda(A) = (\lambda_1, \lambda_2, \ldots, \lambda_n)$ the vector of eigenvalues of an $n \times n$ matrix $A \in \mathbb{R}^{n \times n}$ and $S_k(\lambda)$ is the k-th elementary symmetric function on \mathbb{R}^n , given by

(1.2)
$$S_k(\lambda) := \sum_{i_1 < \cdots < i_k} \lambda_{i_1} \cdots \lambda_{i_k}.$$

Alternatively we may write

(1.3)
$$F_k[u] = [\nabla^2 u]_k,$$

where $[A]_k$ denotes the sum of the $k \times k$ principal minors of an $n \times n$ matrix A, which may also be called the k-trace of A. The study of k-Hessian operators was initiated by Caffarelli, Nirenberg and Spruck [2] and Ivochkina [6] and further developed by Trudinger and Wang [10, 12, 13, 14, 15].

Received 9th November, 2004

The authors would to thank Xu-Jia Wang for many stimulating discussions during this work.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/05 \$A2.00+0.00.

A function $u \in C^2(\Omega)$ is called *k*-convex in Ω if $F_j[u] \ge 0$ in Ω for j = 1, 2, ..., k; that is, the eigenvalues $\lambda(\nabla^2 u)$ of the Hessian $\nabla^2 u$ of u lie in the closed convex cone given by

(1.4)
$$\Gamma_k := \left\{ \lambda \in \mathbb{R}^n : S_j(\lambda) \ge 0, \ j = 1, 2, \dots, k \right\}.$$

(see [2] and [13] for the basic properties of Γ_k .) We notice that $F_1[u] = \Delta u$, is the Laplacian operator and 1-convex functions are subharmonic. When k = n, $F_n[u] = \det(\nabla^2 u)$, the Monge-Ampère operator and n-convex functions are convex. To extend the definition of k-convexity for non-smooth functions we adopt a viscosity definition as in [13]. An upper semi-continuous function $u: \Omega \to [-\infty, \infty)$ ($u \not\equiv -\infty$ on any connected component of Ω) is called k-convex if $F_j[q] \ge 0$, in Ω for $j = 1, 2, \ldots, k$, for every quadratic polynomial q for which the difference u - q has a finite local maximum in Ω . Henceforth, we shall denote the class of k-convex functions in Ω by $\Phi^k(\Omega)$. When k = 1the above definition is equivalent to the usual definition of subharmonic function, see for example ([5, Section 3.2]) or ([7, Section 2.4]). Thus $\Phi^1(\Omega)$ is the class of subharmonic functions in Ω . We notice that $\Phi^k(\Omega) \subset \Phi^1(\Omega) \subset L^1_{loc}(\Omega)$ for $k = 1, 2, \ldots, n$, and a function $u \in \Phi^n(\Omega)$ if and only if it is convex on each component of Ω . Among other results Trudinger and Wang [13] (Lemma 2.2) proved that $u \in \Phi^k(\Omega)$ if and only if

(1.5)
$$\int_{\Omega} u(x) \left(\sum_{i,j}^{n} a^{ij} \partial_{ij} \phi(x) \right) dx \ge 0$$

for all smooth compactly supported functions $\phi \ge 0$, and for all constant $n \times n$ symmetric matrices $A = (a^{ij})$ with eigenvalues $\lambda(A) \in \Gamma_k^*$, where Γ_k^* is the dual cone defined by

(1.6)
$$\Gamma_k^* := \left\{ \lambda \in \mathbb{R}^n : \langle \lambda, \mu \rangle \ge 0 \text{ for all } \mu \in \Gamma_k \right\}.$$

In this note we prove the following Alexsandrov type theorem for k-convex functions.

THEOREM 1.1. Let k > n/2, $n \ge 2$ and $u : \mathbb{R}^n \to [-\infty, \infty)$ ($u \ne -\infty$ on any connected subsets of \mathbb{R}^n), be a k-convex function. Then u is twice differentiable almost everywhere. More precisely, we have the Taylor's series expansion for $\mathcal{L}^n x$ almost everywhere,

(1.7)
$$\left| u(y) - u(x) - \langle \nabla u(x) y - x \rangle - \frac{1}{2} \langle \nabla^2 u(x)(y-x) y - x \rangle \right| = o(|y-x|^2),$$

as
$$y \to x$$
.

In Section 3 (see Theorem 3.2.), we also prove that the absolutely continuous part of the k-Hessian measure (see [12, 13]) $\mu_k[u]$, associated to a k-convex function for k > n/2 is represented by $F_k[u]$. For the Monge-Ampère measure $\mu[u]$ associated to a convex function u, a similar result is obtained in [16].

To conclude this introduction we note that it is equivalent to assume only $F_k[q] \ge 0$, in the definition of k-convexity [13]. Moreover Γ_k may also be characterised as the closure of the positivity set of S_k containing the positive cone Γ_n , [2].

An Alexandrov type theorem

2. NOTATIONS AND PRELIMINARY RESULTS

Throughout the text we use the following standard notations. $|\cdot|$ and $\langle \cdot, \cdot \rangle$ will stand for the Euclidean norm and inner product in \mathbb{R}^n , and B(x, r) will denote the open ball in \mathbb{R}^n of radius r centred at x. For measurable $E \subset \mathbb{R}^n$, $\mathcal{L}^n(E)$ will denote its Lebesgue measure. For a smooth function u, the gradient and Hessian of u are denoted by $\nabla u = (\partial_1 u, \ldots, \partial_n u)$ and $\nabla^2 u = (\partial_{ij} u)_{1 \leq i,j \leq n}$ respectively. For a locally integrable function f, the distributional gradient and Hessian are denoted by $Df = (D_1 f, \ldots, D_n f)$ and $D^2 u = (D_{ij} u)_{1 \leq i,j \leq n}$ respectively.

For the convenience of the readers, we cite the following Hölder and gradient estimates for k-convex functions, and the weak continuity result for k-Hessian measures, [12, 13].

THEOREM 2.1. ([13, Theorem 2.7].) For k > n/2, $\Phi^k(\Omega) \subset C^{0,\alpha}_{loc}(\Omega)$ with $\alpha := 2 - n/k$ and for any subdomain $\Omega' \subset \subset \Omega$, $u \in \Phi^k(\Omega)$, there exists C > 0, depending only on n and k such that

(2.1)
$$\sup_{\substack{x,y\in\Omega'\\x\neq y}} d_{x,y}^{n+\alpha} \frac{|u(x)-u(y)|}{|x-y|^{\alpha}} \leq C \int_{\Omega'} |u|,$$

where $d_x := \operatorname{dist}(x, \partial \Omega')$ and $d_{x,y} := \min\{d_x, d_y\}$.

THEOREM 2.2. ([13, Theorem 4.1].) For k = 1, ..., n, and 0 < q < nk/(n-k), the space of k-convex functions $\Phi^k(\Omega)$ lies in the local Sobolev space $W^{1,q}_{loc}(\Omega)$. Moreover, for any $\Omega' \subset \subset \Omega'' \subset \subset \Omega$ and $u \in \Phi^k(\Omega)$ there exists C > 0, depending on n, k, q, Ω' and Ω'' , such that

(2.2)
$$\left(\int_{\Omega'} |Du|^q\right)^{1/q} \leqslant C \int_{\Omega''} |u|.$$

THEOREM 2.3. ([13, Theorem 1.1].) For any $u \in \Phi^k(\Omega)$, there exists a Borel measure $\mu_k[u]$ in Ω such that

- (i) $\mu_k[u](V) = \int_V F_k[u](x) dx$ for any Borel set $V \subset \Omega$, if $u \in C^2(\Omega)$ and
- (ii) if $(u_m)_{m\geq 1}$ is a sequence in $\Phi^k(\Omega)$ converging in $L^1_{loc}(\Omega)$ to a function $u \in \Phi^k(\Omega)$, the sequence of Borel measures $(\mu_k[u_m])_{m\geq 1}$ converges weakly to $\mu_k[u]$.

Let us recall the definition of the dual cones, [11]

$$\Gamma_k^* := \left\{ \lambda \in \mathbb{R}^n : \langle \lambda, \mu \rangle \ge 0 \text{ for all } \mu \in \Gamma_k \right\},\$$

which are also closed convex cones in \mathbb{R}^n . We notice that $\Gamma_j^* \subset \Gamma_k^*$ for $j \leq k$ with $\Gamma_n^* = \Gamma_n = \{\lambda \in \mathbb{R}^n : \lambda_i \geq 0, j = 1, 2, ..., n\}, \Gamma_1^*$ is the ray given by

$$\Gamma_1^* = \{t(1, \ldots, 1) : t \ge 0\},\$$

and Γ_2^* has the following interesting characterisation,

(2.3)
$$\Gamma_2^* = \left\{ \lambda \in \Gamma_n : |\lambda|^2 \leq \frac{1}{n-1} \left(\sum_{i=1}^n \lambda_i \right)^2 \right\}.$$

We use this explicit representation of Γ_2^* to establish that the distributional derivatives $D_{ij}u$ of the k-convex function u are signed Borel measures for $k \ge 2$, (see also [13]).

THEOREM 2.4. Let $2 \leq k \leq n$ and $u : \mathbb{R}^n \to [-\infty, \infty)$, be a k-convex function. Then there exist signed Borel measures $\mu^{ij} = \mu^{ji}$ such that

(2.4)
$$\int_{\mathbb{R}^n} u(x) \partial_{ij} \phi(x) \, dx = \int_{\mathbb{R}^n} \phi(x) \, d\mu^{ij}(x), \quad \text{for } i, j = 1, 2, \ldots, n,$$

for all $\phi \in C^{\infty}_{c}(\mathbb{R}^{n})$.

PROOF: Let $k \ge 2$ and $u \in \Phi^k(\mathbb{R}^n)$. Since $\Phi^k(\mathbb{R}^n) \subset \Phi^2(\mathbb{R}^n)$ for $k \ge 2$, it is enough to prove the theorem for k = 2. Let u be a 2-convex function in \mathbb{R}^n . For $A \in \mathbb{S}^{n \times n}$, the space of $n \times n$ symmetric matrices, define the distribution $T_A : C_c^2(\mathbb{R}^n) \to \mathbb{R}$, by

$$T_A(\phi) := \int_{\mathbb{R}^n} u(x) \sum_{i,j}^n a^{ij} \partial_{ij} \phi(x) \, dx$$

By (1.5), $T_A(\phi) \ge 0$ for $A \in \mathbb{S}^{n \times n}$ with eigenvalues $\lambda(A) \in \Gamma_2^*$, and $\phi \ge 0$. Therefore, by Riesz representation (see for example [9, Theorem 2.14] or [3, Theorem 1, Section 1.8]), there exist a Borel measure μ^A in \mathbb{R}^n , such that

(2.5)
$$T_A(\phi) = \int_{\mathbb{R}^n} \phi \sum_{i,j}^n a^{ij} D_{ij} u \, dx = \int_{\mathbb{R}^n} \phi \, d\mu^A \,,$$

for all $\phi \in C_c^2(\mathbb{R}^n)$ and all $n \times n$ symmetric matrices A with $\lambda(A) \in \Gamma_2^*$. In order to prove that the second order distributional derivatives $D_{ij}u$ of u to be signed Borel measures, we need to make special choices for the matrix A. By taking $A = I_n$, the identity matrix, $\lambda(A) \in \Gamma_1^* \subset \Gamma_2^*$, we obtain a Borel measure μ^{I_n} such that

(2.6)
$$\int_{\mathbb{R}^n} \phi \sum_{i=1}^n D_{ii} u \, dx = \int_{\mathbb{R}^n} \phi \, d\mu^{I_n} \, ,$$

for all $\phi \in C_c^2(\mathbb{R}^n)$. Therefore, the trace of the distributional Hessian D^2u , is a Borel measure. For each $i = 1, \ldots, n$, let A_i be the diagonal matrix with all entries 1 but the *i*-th diagonal entry being 0. Then by the characterisation of Γ_2^* in (2.3), it follows that $\lambda(A_i) \in \Gamma_2^*$. Hence there exist a Borel measure μ^i in \mathbb{R}^n such that

(2.7)
$$\int_{\mathbb{R}^n} \phi \sum_{j \neq i}^n D_{jj} u \, dx = \int_{\mathbb{R}^n} \phi \, d\mu^i,$$

An Alexandrov type theorem

for all $\phi \in C_c^2(\mathbb{R}^n)$. From (2.6) and (2.7) it follows that the diagonal entries $D_{ii}u = \mu^{I_n} - \mu^i := \mu^{ii}$ are signed Borel measure and

(2.8)
$$\int_{\mathbb{R}^n} u \partial_{ij} \phi \, dx = \int_{\mathbb{R}^n} \phi \, d\mu^{ii} \, ,$$

for all $\phi \in C_c^2(\mathbb{R}^n)$. Let $\{e_1, \ldots, e_n\}$ be the standard orthonormal basis in \mathbb{R}^n and for $a, b \in \mathbb{R}^n$, $a \otimes b := (a^i b^j)$, denotes the $n \times n$ rank-one matrix. For 0 < t < 1 and $i \neq j$, let us define $A_{ij} := I_n + t[e_i \otimes e_j + e_j \otimes e_i]$. By a straight forward calculation, it is easy to see that the vector of eigenvalues is $\lambda(A_{ij}) = (1 - t, 1 + t, 1, \ldots, 1) \in \Gamma_2^*$, for $0 < t < (n/2(n-1))^{1/2}$. Note that for this choice of A_{ij}

$$\sum_{k,l=1}^{n} a^{kl} \partial_{kl} \phi = \sum_{k=1}^{n} \partial_{kk} \phi + 2t \, \partial_{ij} \phi \, .$$

Thus for $i \neq j$, (2.5) and (2.6) yields

(2.9)

$$\int_{\mathbb{R}^{n}} u \,\partial_{ij}\phi \,dx = \frac{1}{2t} \left[\int_{\mathbb{R}^{n}} u \sum_{k,l=1}^{n} a^{kl} \partial_{kl}\phi \,dx - \int_{\mathbb{R}^{n}} u \sum_{k=1}^{n} \partial_{kk}\phi \,dx \right] \\
= \frac{1}{2t} \left[\int_{\mathbb{R}^{n}} \phi \,d\mu^{A_{ij}} - \int_{\mathbb{R}^{n}} \phi \,d\mu^{I_{n}} \right] \\
= \int_{\mathbb{R}^{n}} \phi \,d\mu^{ij},$$

where

$$\mu^{ij} := \frac{1}{2t} (\mu^{A_{ij}} - \mu^{I_n}) = \frac{1}{2t} \left(\mu^{A_{ij}} - \sum_{k=1}^n \mu^{kk} \right).$$

Therefore $D_{ij}u = \mu^{ij}$ are signed Borel measures and satisfy the identity (2.4).

A function $f \in L^1_{loc}(\mathbb{R}^n)$ is said to have *locally bounded variation* in \mathbb{R}^n if for each bounded open subset Ω' of \mathbb{R}^n ,

$$\sup\left\{\int_{\Omega'} f\operatorname{div}\phi\,dx:\,\phi\in C^1_c(\Omega';\mathbb{R}^n),\,\,\left|\phi(x)\right|\leqslant 1\,\,\text{for all}\,\,x\in\Omega'\right\}<\infty\,.$$

We use the notation $BV_{loc}(\mathbb{R}^n)$ to denote the space of such functions. For the theory of functions of bounded variation readers are referred to [4, 17, 3].

THEOREM 2.5. Let $n \ge 2$, k > n/2 and $u : \mathbb{R}^n \to [-\infty, \infty)$, be a k-convex function. Then u is differentiable almost everywhere \mathcal{L}^n and $\partial_i u \in BV_{\text{loc}}(\mathbb{R}^n)$, for all $i = 1, \ldots, n$.

PROOF: Observe that for k > n/2, we can take n < q < nk/(n-k) and by the gradient estimate (2.2), we conclude that k-convex functions are differentiable \mathcal{L}^n almost

everywhere x. Let $\Omega' \subset \mathbb{R}^n$, $\phi = (\phi^1, \ldots, \phi^n) \in C_c^1(\Omega'; \mathbb{R}^n)$ such that $|\phi(x)| \leq 1$ for $x \in \Omega'$. Then by integration by parts and the identity (2.4), we have for $i = 1, \ldots, n$,

$$\begin{split} \int_{\Omega'} \frac{\partial u}{\partial x_i} \operatorname{div} \phi \, dx &= -\sum_{j=1}^n \int_{\Omega'} u \frac{\partial^2 \phi^j}{\partial x_i \partial x_j} \, dx \\ &= -\sum_{j=1}^n \int_{\Omega'} \phi^j \, d\mu^{ij} \\ &\leqslant \sum_{j=1}^n |\mu^{ij}|(\Omega') < \infty \,, \end{split}$$

where $|\mu^{ij}|$ is the total variation of the Radon measure μ^{ij} . This proves the theorem.

3. TWICE DIFFERENTIABILITY

Let u be a k-convex function, $k \ge 2$. Then by the Theorem 2.4, we have $D^2 u = (\mu^{ij})_{i,j}$, where μ^{ij} are Radon measures. By Lebesgue's Decomposition Theorem, we may write

$$\mu^{ij} = \mu^{ij}_{ac} + \mu^{ij}_{s}$$
 for $i, j = 1, ..., n$,

where μ_{ac}^{ij} is absolutely continuous with respect to \mathcal{L}^n and μ_s^{ij} is supported on a set with Lebesgue measure zero. Let u_{ij} be the density of the absolutely continuous part, that is, $d\mu_{ac}^{ij} = u_{ij} dx$, $u_{ij} \in L^1_{loc}(\mathbb{R}^n)$. Set $u_{ij} := \partial_{ij}u$, $\nabla^2 u := \partial_{ij}u = (u_{ij})_{i,j} \in L^1_{loc}(\mathbb{R}^n; \mathbb{R}^{n \times n})$ and $[D^2 u]_s := (\mu_s^{ij})_{i,j}$. Thus the vector valued Radon measure $D^2 u$ can be decomposed as $D^2 u = [D^2 u]_{ac} + [D^2 u]_s$, where $d[D^2 u]_{ac} = \nabla^2 u dx$. Now we are in a position prove theorem 1.1. To carry out the proof, we use a similar approach to Evans and Gariepy, see [3, Section 6.4].

PROOF OF THEOREM 1.1: Let $n \ge 2$ and u be a k-convex function on \mathbb{R}^n , k > n/2. Then by Theorem 2.4, and Theorem 2.5, we have for \mathcal{L}^n almost everywhere x

(3.1)
$$\lim_{r\to 0} \oint_{B(x,r)} \left| \nabla u(y) - \nabla u(x) \right| dy = 0$$

(3.2)
$$\lim_{r \to 0} \int_{B(x,r)} |\nabla^2 u(y) - \nabla^2 u(x)| \, dy = 0$$

and

(3.3)
$$\lim_{r \to 0} \frac{|[D^2 u]_s|(B(x,r))|}{r^n} = 0.$$

where $\oint_E f dx$ we denote the mean value $(\mathcal{L}^n(E))^{-1} \int_E f dx$. Fix a point x for which (3.2)-(3.3) holds. Without loss generality we may assume x = 0. Then following similar calculations as in the proof of [3, Theorem 1, Section 6.4], we obtain,

(3.4)
$$\int_{B(r)} \left| u(y) - u(0) - \left\langle \nabla u(0), y \right\rangle - \frac{1}{2} \left\langle \nabla^2 u(0)y, y \right\rangle \right| dy = o(r^2),$$

as $r \to 0$. In order to establish

(3.5)
$$\sup_{B(r/2)} \left| u(y) - u(0) - \langle \nabla u(0), y \rangle - \frac{1}{2} \langle \nabla^2 u(0)y, y \rangle \right| = o(r^2) \text{ as } r \to 0,$$

we need the following lemma.

LEMMA 3.1. Let $h(y) := u(y) - u(0) - \langle \nabla u(0), y \rangle - \langle \nabla^2 u(0)y, y \rangle / 2$. Then there exists a constant C > 0 depending only on n, k and $|\nabla^2 u(0)|$, such that for any 0 < r < 1

(3.6)
$$\sup_{\substack{y,z\in B(r)\\y\neq z}}\frac{|h(y)-h(z)|}{|y-z|^{\alpha}} \leq \frac{C}{r^{\alpha}} \int_{B(2r)} |h(y)| \, dy + Cr^{2-\alpha} \, ,$$

where $\alpha := (2 - n/k)$.

(3.7)

PROOF: Let $\Lambda := |\nabla^2 u(0)|$ and define $g(y) := h(y) + \Lambda |y|^2/2$. Since $\Lambda |y|^2/2 - u(0) - \langle \nabla u(0), y \rangle - \langle \nabla^2 u(0)y, y \rangle/2$ is convex and the sum of two k-convex functions are k-convex (follows from (1.4)), we conclude that g is k-convex. Applying the Hölder estimate in (2.1) for g with $\Omega' = B(2r)$, there exists C := C(n, k) > 0, such that

$$\begin{split} r^{n+\alpha} \sup_{\substack{y,z \in B(r) \\ y \neq z}} \frac{|g(y) - g(z)|}{|y - z|^{\alpha}} &= \operatorname{dist} \big(B(r), \partial B(2r) \big)^{n+\alpha} \sup_{\substack{y,z \in B(r) \\ y \neq z}} \frac{|g(y) - g(z)|}{|y - z|^{\alpha}} \\ &\leqslant \sup_{\substack{y,z \in B(2r) \\ y \neq z}} d_{y,z}^{n+\alpha} \frac{|g(y) - g(z)|}{|y - z|^{\alpha}} \\ &\leqslant C \int_{B(2r)} |g(y)| \, dy \\ &\leqslant C \int_{B(2r)} |h(y)| \, dy + Cr^{n+2} \,, \end{split}$$

where $d_{y,z} := \min \left\{ \operatorname{dist}(y, \partial B(2r)), \operatorname{dist}(z, \partial B(2r)) \right\}$. Therefore the estimate (3.6) for h follows from the estimate (3.7) and the definition of g.

PROOF OF THEOREM 1.1. To prove (3.5), take $0 < \varepsilon$, $\delta < 1$, such that $\delta^{1/n} \leq 1/2$. Then there exists r_0 depending on ε and δ , sufficiently small, such that, for $0 < r < r_0$

(3.8)

$$\mathcal{L}^{n}\left\{z \in B(r) : \left|h(z)\right| \ge \varepsilon r^{2}\right\} \leqslant \frac{1}{\varepsilon r^{2}} \int_{B(r)} \left|h(z)\right| dz$$

$$= o(r^{n}) \quad \text{by} \quad (3.4)$$

$$< \delta \mathcal{L}^{n}(B(r))$$

Set $\sigma := \delta^{1/n} r$. Then for each $y \in B(r/2)$ there exists $z \in B(r)$ such that

$$|h(z)| \leq \varepsilon r^2$$
 and $|y-z| \leq \sigma$.

Hence for each $y \in B(r/2)$, we obtain by (3.4) and (3.6),

$$\begin{split} |h(y)| &\leq |h(z)| + |h(y) - h(z)| \\ &\leq \varepsilon r^2 + C|y - z|^{\alpha} \left(\frac{1}{r^{\alpha}} \int_{B(2r)} |h(y)| \, dy + r^{2-\alpha}\right) \\ &\leq \varepsilon r^2 + C \delta^{\alpha/n} r^{\alpha} \left(\frac{1}{r^{\alpha}} \int_{B(2r)} |h(y)| \, dy + r^{2-\alpha}\right) \\ &\leq \varepsilon r^2 + C \delta^{\alpha/n} \left(\int_{B(2r)} |h(y)| \, dy + r^2\right) \\ &= r^2 (\varepsilon + C \delta^{\alpha/n}) + o(r^2) \quad \text{as} \quad r \to 0 \end{split}$$

By choosing δ such that, $C\delta^{\alpha/n} = \varepsilon$, we have for sufficiently small $\varepsilon > 0$ and $0 < r < r_0$,

$$\sup_{B(r/2)} \left| h(y) \right| \leq 2\varepsilon r^2 + o(r^2) \,.$$

Hence

$$\sup_{B(r/2)} \left| u(y) - u(0) - \left\langle \nabla u(0), y \right\rangle - \frac{1}{2} \left\langle \nabla^2 u(0)y, y \right\rangle \right| dy = o(r^2) \text{ as } r \to 0.$$

This proves (1.7) for x = 0 and hence u is twice differentiable at x = 0. Therefore u is twice differentiable at almost every x and satisfies (1.7), for which (3.2)-(3.3) holds. This proves the theorem.

Let u be a k-convex function and $\mu_k[u]$ be the associated k-Hessian measure. Then $\mu_k[u]$ can be decomposed as the sum of a regular part $\mu_k^{ac}[u]$ and a singular part $\mu_k^s[u]$. As an application of the Theorem 1.1, we prove the following theorem.

THEOREM 3.2. Let $\Omega \subset \mathbb{R}^n$ be an open set and $u \in \Phi^k(\Omega)$, k > n/2. Then the absolutely continuous part of $\mu_k[u]$ is represented by the k-Hessian operator $F_k[u]$. That is

$$\mu_k^{\rm ac}[u] = F_k[u] \, dx \, .$$

PROOF: Let u be a k-convex function, k > n/2 and u_{ε} be the mollification of u. Then by (1.5) and the properties of mollification (see for example [3, Theorem 1, Section 4.2]) it follows that $u_{\varepsilon} \in \Phi^k(\Omega) \cap C^{\infty}(\Omega)$. Since u is twice differentiable almost everywhere (by Theorem 1.1) and $u \in W^{2,1}_{loc}(\Omega)$ (by Theorem 2.5), we conclude that $\nabla^2 u_{\varepsilon} \to \nabla^2 u$ in L^1_{loc} . Let $\mu_k[u_{\varepsilon}]$ and $\mu_k[u]$ be the Hessian measures associated to the functions u_{ε} and u respectively. Then by weak continuity Theorem 2.3 ([13, Theorem 1.1]), $\mu_k[u_{\varepsilon}]$ converges to $\mu_k[u]$ in measure and $\mu_k[u_{\varepsilon}] = F_k[u_{\varepsilon}] dx$. It follows that for any compact set $E \subset \Omega$,

(3.10)
$$\mu_k[u](E) \ge \limsup_{\varepsilon \to 0} \mu_k[u_\varepsilon](E) = \limsup_{\varepsilon \to 0} \int_E F_k[u_\varepsilon].$$

[8]

Since $F_k[u_{\varepsilon}] \ge 0$ and $F_k[u_{\varepsilon}](x) \to F_k[u](x)$ almost everywhere, by Fatou's Lemma, for every relatively compact measurable subset E of Ω , we have

(3.11)
$$\int_E F_k[u] \leq \liminf_{\varepsilon \to 0} \int_E F_k[u_\varepsilon].$$

Therefore by Theorem 3.1, [13], it follows that $F_k[u] \in L^1_{loc}(\Omega)$. Let $\mu_k[u] = \mu_k^{ac}[u] + \mu_k^s[u]$, where $\mu_k^{ac}[u] = h \, dx$, $h \in L^1_{loc}(\Omega)$ and $\mu_k^s[u]$ is the singular part supported on a set of Lebesgue measure zero. We would like to prove that $h(x) = F_k[u](x) \mathcal{L}^n$ almost everywhere x. By taking $E := \overline{B}(x, r)$, from (3.10) and (3.11), we obtain

(3.12)
$$\int_{\overline{B}(x,r)} F_k[u] \, dy \leqslant \frac{\mu_k[u](\overline{B}(x,r))}{\mathcal{L}^n(B(x,r))} = \int_{\overline{B}(x,r)} h \, dy + \frac{\mu_k^{\mathrm{s}}[u](\overline{B}(x,r))}{\mathcal{L}^n(B(x,r))} \, dy$$

Hence by letting $\varepsilon \to 0$, we obtain

(3.13) $F_k[u](x) \leq h(x) \quad \mathcal{L}^n \text{ almost everywhere } x.$

To prove the reverse inequality, let us recall that h is the density of the absolutely continuous part of the measure $\mu_k[u]$, that is for \mathcal{L}^n almost everywhere x

(3.14)
$$h(x) = \lim_{r \to 0} \frac{\mu_k^{\mathrm{ac}}[u](\overline{B}(x,r))}{\mathcal{L}^n(B(x,r))} = \lim_{r \to 0} \frac{\mu_k[u](\overline{B}(x,r))}{\mathcal{L}^n(B(x,r))}$$

Since $\mu_k^s[u]$ is supported on a set of Lebesgue measure zero,

 $\mu_k^s[u](\partial B(x,r)) = 0, \quad \mathcal{L}^1 \text{ almost everywhere } r > 0.$

Therefore by the weak continuity of $\mu_k[u_{\varepsilon}]$ (see for example Theorem 1, [3, Theorem 1]), we conclude that

(3.15)
$$\lim_{\epsilon \to 0} \mu_k[u_\epsilon] (B(x,r)) = \mu_k[u] (B(x,r)), \quad \mathcal{L}^1 \text{ almost everywhere } r > 0.$$

Let $\delta > 0$. Then for $\varepsilon < \varepsilon' = \varepsilon(\delta)$ and for \mathcal{L}^1 almost everywhere r > 0, \mathcal{L}^n almost everywhere x

$$h(x) \leq \lim_{r \to 0} \frac{(1+\delta)\mu_k[u_{\varepsilon}](B(x,r))}{\mathcal{L}^n(B(x,r))}$$
$$= (1+\delta)\lim_{r \to 0} \oint_{B(x,r)} F_k[u_{\varepsilon}] dy$$
$$= (1+\delta)F_k[u_{\varepsilon}](x)$$

By letting $\varepsilon \to 0$ and finally $\delta \to 0$, we obtain

$$h(x) \leq F_k[u](x), \mathcal{L}^n$$
 almost everywhere x.

This proves the theorem.

References

- A.D. Alexandrov, 'Almost everywhere existence of the second differential of a convex function and some properties of convex surfaces connected with it.', (in Russian), Leningrad State University Annals [Uchenye Zapiski] Math. Ser. 6 (1939), 3-35.
- [2] L. Caffarelli, L. Nirenberg and J. Spruck, 'Dirichlet problem for nonlinear second order elliptic equations III, Functions of the eigenvalues of the Hessian', Acta Math. 155 (1985), 261-301.
- [3] L.C. Evans and R.F. Gariepy, *Measure theory and fine properties of functions*, Studies in Advanced Mathematics (CRC Press, Boca Raton, Florida, 1992).
- [4] E. Giusti, Minimal surfaces and functions of bounded variation (Birkhäuser Boston Inc., Boston, 1984).
- [5] L. Hörmander, Notions of Convexity (Birkhäuser Boston Inc., Boston, 1994).
- [6] N. Ivochkina, 'Solution of the Dirichlet problems for some equations of Monge-Ampère type', Math Sb. (N.S.) 128 (1985), 403-415.
- [7] M. Klimek; Pluripotential theory (Oxford University Press, New York, 1991).
- [8] N.V. Krylov, Nonlinear elliptic and parabolic equations of second order (Reidel Publishing Co., Dordrecht, 1987).
- [9] W. Rudin, Real and complex analysis (McGraw-Hill Book Co., New York, 1987).
- [10] N.S. Trudinger, 'Weak solutions of Hessian equations', Comm. Partial Differential Equations 22 (1997), 1251-1261.
- [11] N.S. Trudinger, 'New maximum principles for linear elliptic equations', (preprint).
- [12] N.S. Trudinger and X. J. Wang, 'Hessian measures. I', Topol. Methods Nonlinear Anal. 10 (1997), 225-239.
- [13] N.S. Trudinger and X.J. Wang, 'Hessian measures. II', Ann. of Math. 150 (1999), 579-604.
- [14] N.S. Trudinger and X.J. Wang, 'Hessian measures. III', J. Funct. Anal. 193 (2002), 1-23.
- [15] N.S. Trudinger and X.J. Wang, 'On the weak continuity of elliptic operators and applications to potential theory', Amer. J. Math. 124 (2002), 369-410.
- [16] N.S. Trudinger and X.J. Wang, 'The affine plateau problem', J. Amer. Math. Soc. 18 (2005) (to appear).
- [17] W.P. Ziemer, Weakly differentiable functions (Springer-Verlag, New York, 1989).

Centre for Mathematics and its Applications Australian National University Canberra, ACT 0200 Australia e-mail: chaudhur@maths.anu.edu.au neil.trudinger@maths.anu.edu.au