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Abstract: We study the phase mixing and dissipation of a packet of standing shear Alfvén waves localized in
aregion with non-uniform Alfvén background velocity. We investigate the validity of the exponential damping
law in time, exp(—A#3), presented by Heyvaerts & Priest (1983) for different ranges of Lundquist, S, and
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Reynolds, R, numbers. Our numerical results shows that it is valid for (R, S) > 107.
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1 Introduction

Since the discovery of the hot solar corona by Edlén
(1943), different theories of coronal heating have been put
forward and debated. Heyvaerts & Priest (1983), hereafter
HP83, were first to suggest that the phase-mixing of Alfvén
waves in coronal plasmas could be a primary mechanism
in coronal heating. They showed that the phase-mixing
occurs due to inhomogeneity of the local Alfvén phase
speed across the background magnetic field. HP83 analyt-
ically showed that in both the strong phase-mixing limit
and the weak damping approximation, the amplitude of
standing Alfvén waves decays with time as exp(—A#>)
where A is a function of the coordinate corresponding to
the inhomogeneous direction (x, in this paper).

Since then, much analytical and numerical work has
been done on the subject. Nocera, Leroy & Priest (1984)
studied the phase mixing of propagating Alfvén waves in
aninhomogeneous medium. They pointed out if transverse
gradients are smeared out as soon as they are formed,
this yields to weak phase mixing where damping laws
differ from solutions of HP83. Parker (1991) investigated
the effect of a density and/or temperature gradient in the
direction of vibration of a transverse Alfvén wave. The
result was a strong coupling of the waves on different
lines of force, producing a coordinated mode that was not
subject to simple phase mixing.

Hood, Ireland & Priest (1997) derived a self similar
solution of the Alfvén wave phase-mixing equations for
heating of coronal holes. They showed that the damping
of the waves with height follows the scaling predicted
by HP83 at low heights, before switching to an alge-
braic decay at large heights. Hood, Gonzélez-Delgado &
Ireland (1997) obtained a simple, self similar solution
for the heating of coronal loops by phase mixing. They
showed the HP83 model still does work well in a certain

© Astronomical Society of Australia 2009

https://doi.org/10.1071/AS09019 Published online by Cambridge University Press

class of coronal loops and the phase mixing can supply
heating at large Lundquist number at timescales shorter
than or comparable with the radiative cooling timescale.
Nakariakov, Roberts & Murawski (1997) considered the
nonlinear excitation of fast magnetosonic waves by phase
mixing Alfvén waves in a cold plasma with a smooth
inhomogeneity of density across a uniform magnetic field.
They suggested this nonlinear process as a possible mech-
anism of indirect plasma heating by phase mixing through
the excitation of fast waves. However, Botha et al. (2000)
showed that the nonlinear generation of fast modes by
Alfvén waves has little effect on classical phase mixing.

De Moortel et al. (1999) elaborated the effect of den-
sity stratification on phase-mixing. They remarked that
when the inhomogeneity in the horizontal direction in the
plasma is sufficiently large, so the phase mixing is strong,
stratification is unimportant. In the other words due to
the rapid phase mixing, energy can be dissipated before
the effects of stratification build up. De Moortel, Hood &
Arber (2000) studied the combined effect of a gravitation-
ally stratified density and a radially diverging background
magnetic field on phase mixing of Alfvén waves. They
found: 1) the efficiency of phase mixing depends strongly
on the particular geometry of the configuration; and
ii) depending on the value of the scale height the wave
amplitudes can damp either slower or faster than in the
uniform non-diverging model.

Hood, Brooks & Wright (2002) showed that the ampli-
tude of single pulse and bipolar pulse traveling in the z
direction, contrary to infinite wavetrain, have slower alge-
braic damping of the form #~3/2 and 3, respectively,
rather than exponential in time. Tsiklauri, Nakariakov &
Rowlands (2003) cleared that the decay rate of the
Alfvénic part of acompressible 3-D MHD pulse is affected
linearly by the degree of localization of the pulse in the
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homogeneous transverse direction, but the dynamic of
Alfvén waves can still be obtained from the previous
2.5-D models, e.g. Hood et al. (2002). Smith et al. (2007)
found that in presence of the both density stratification
and magnetic field divergence, the enhanced phase mix-
ing mechanism can dissipate Alfvén waves at heights less
than half that was predicted by the previous analytical
solutions. They stated that if phase-mixing takes place in
strongly divergent magnetic fields, it is not necessary to
invoke anomalous viscosity in corona.

In the present work, we study the phase mixing of
a packet of standing shear Alfvén waves in presence of
the both viscous and resistive dissipations. To do this,
we numerically solve the linearized MHD equations and
obtain the damping time of the oscillations. Our aim is
to test the validity of HP83’s damping law for different
ranges of the Reynolds and Lundquist numbers. This paper
is organized as follows. In Section 2, we introduce the
basic equations of motion and introduce the model. In
Section 3, the numerical results are reported, while the
conclusions are given in Section 4.

2 Equations of Motion

The linearized MHD equations for a zero-f plasma are:

v
PV . [(V x 8B) x By + (V x Bg) x B]
ot 4mpg
+ L2y, (1)
00
3B _,
P2 _ ¥V x (6v x By) + — V2B, )
ot dno

where dv and éB are the Eulerian perturbations in the
velocity and magnetic fields; pg, o,  and ¢ are the mass
density, the electrical conductivity, the viscosity and the
speed of light, respectively.

The simplifying assumptions are:

e under coronal conditions gas pressure is negligible
(zero-p);

o the equilibrium density profile is pg = pg(x);

e there is a constant magnetic field along the z axis,
B() = Boi;

e there is no initial steady flow inside or outside of the
tube;

e the viscous and resistive coefficients, n and o respec-
tively, are constants.

To solve Equations (1) and (2), following HP83, we
neglect the variations in y direction, d/dy =0, and will
further assume that the velocity perturbs in the y direction.
So we choose a solution for the velocity perturbation:

8v(x, z, 1) = dvy(x, D) sin(kz)y, k =nn/L, 3)
where L is the length of the loop and n=(1,2, 3, ...) is
the wave number in the z direction, respectively. Here the

waves are standing because of the boundary conditions
ov(x,0,t)=6év(x, L,1)=0.
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Note that HP83 also supposed that the loop is bounded
from above an below by boundaries at altitude z=0
and z=L. It is convenient to work with dimensionless
variables X =x/a, z=z/a, t=t/ta, Po(x) = po(x)/ 000
8v=248v/va, and 8B =8B/ By. Here a is a typical length
scale of density inhomogeneity across the field (i.e. loop
radius) and ta =a/va, is a time scale for an Alfvén wave
to propagate along the inhomogeneity direction. pgy and
va, are the plasma density and Alfvén speed at x =0,
respectively.

Finally, Equations (1) and (2) in dimensionless form,
dropping the ‘bars’ for convenience, become

8?% = vi(x)%fy + %vzauy, 4)
and
% = %)y + %v%By, (5)
where
1
oAt = VPo®)/poo’ ©

is the dimensionless form of the Alfvén speed. Also the
Reynolds number,

() /()

is the ratio of the viscous time-scale to the Alfvén crossing
time, and the Lundquist number,

-(75) /()

is the ratio of the resistive time-scale to the Alfvén cross-
ing time. Removing 6By from Equations (4) to (5), and
keeping only the first order-terms in 1 /R and 1/S gives

P 8vy
or?

11 v
vk (0)dvy = | — + = | V2—2 + T(x, 1),
+ k7 vy (x)dvy (R+S) o + T(x, 1)
(N

where
1 v\ vy
T(x, 1) = — |:6 (-A) -2 <—A>
S VA VA
W\ 0 | ddv
—a() 222, ®)
va /) ox | ot
where prime indicates a derivative with respect to x. It
is obvious that the term 7(x, r) in Equation (7) becomes
important for high magnetic diffusion plasmas (low §) and
in the regions where the Alfvén speed has a large gradient.
For more accuracy, in contrast with HP83, we keep this
term in our numerical simulations.

Since the dissipation rate is a function of x, for calculat-
ing the overall damping time, it is suitable to calculate the


https://doi.org/10.1071/AS09019

450

(a) (b)

Alfvén phase speed
----- Initial perturbation

257
2 -
S
[
157 N
X
>>-
«

0.5} / \
l- \
’ \
0 . .
0 0.5 1 1.5 2
X
Figure 1

K. Karami and Z. Ebrahimi

(a) The profile of background Alfvén speed (solid curve) and the initial amplitude of velocity perturbations (dash-dotted curve) at

z =50 as functions of x. (b) 3-D view of the packet of standing Alfvénic pulses in fundamental mode (n = 1). Auxiliary parameters are: o =2,

d=0.1 and L =100a.

dimensionless total energy (kinetic energy plus magnetic
energy) of the packet per unit of length in the y direction as

2
E (0 = /0 [p0(x)8v5 (x, 1) + 8Bj (x, Hldx,  (9)
where

Bl = 167
tot - B(Z)aL

Eioi (1), (10)
and 6 By(x, 1) is calculated from Equation (5).

We suppose a functional form of dimensionless Alfvén
speed and a Gaussian form of a localized packet of
standing Alfvén waves around x =1 as

va(x) = 2 + tanh[a(x — 1)], (11)

2
dv(x, z,t = 0) = exp |:—l (x _ 1) :| sin(kz), (12)
2 d

where parameter « controls the size of inhomogeneity
and d is width of the packet. For « =2 and d =0.1, the
Alfvén speed profile and shape of the initial wave packet
given by Equations (11) and (12) are plotted in Figure 1,
respectively.

Substituting Equation (11) in w(x) = kva (x) gives the
dimensionless average period of oscillation as

o 1 [2 7 (2 dx
Pavg == P(x)dx = — .
2 Jo k Jo 2+ tanh[a(x — 1)]

(13)

3 Numerical Results

As typical parameters for a coronal loop, we assume
L=10km, a=10°km, By=100G, and pp=2 X
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107" gem™. For such a loop, one finds va, =

2000 kms~!. Here the loop parameters coincide with
the TRACE observations (see Aschwanden et al. 2002;
Verwichte et al. 2004). We use a finite difference method to
solve Equation (7), numerically. The evolution of a packet
of fundamental standing Alfvén modes is calculated in
the range of 0 < x <2. To include the dynamical effect of
the exterior region, we let the wave packet to evolve up
to x =2. We suppose that the wave packet never reach at
the x boundaries. Hence to avoid any contamination of
the solution by the change of boundary values, we fix the
boundary conditions. This restricts the time of simulation,
but it is still possible to reach the strong phase mixing
limit. We choose the boundary and initial conditions as

Svy(x = 0, 1) = duy(x = 2,1) =0, (14)
Suy(x, t = 0) = e 00D (15)
vy (x, f
By _ (16)
ot =0

There is an upper limit for the time of simulation
because we can simulate the evolution until any excite-
ment near the x boundaries could be occurred. The trunca-
tion error of numerical results is A = O(A#3) + O(Ax™Y).
We should be aware of choosing suitable spatial step size
Ax, because in the limit of strong phase mixing, large
gradients in the x direction are made, so the smaller Ax is
needed.

Figure 2 shows contour plots of dvy(x, ) in the x—¢
plane for two different cases with R=S5= 10* (a) and
R =S =103 (b). The white and black colors represent pos-
itive and negative values of vy (x, #), respectively. Figure 2
clears that the defocusing of the packet in the case (a) is
large but not in the case (b). This is because of coupling
of oscillations in neighboring field lines due to presence
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Figure 3 Cross section cuts of dvy along (a) center of the packet (x = 1); (b) x =0.6 (in the lower Alfvén speed region); (c) x = 1.4 (in the

higher Alfvén speed region) for R=S5=10*, =2 and d =0.1.
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Figure 4 The shape of the packet at (a) t =25s; (b) t=100s; (c) t=175sfor R=S = 10*, « =2 and d = 0.1. The dash-dotted curve is the

initial gaussian packet.

of damping terms in the right hand side of Equation (7).
Figure 3 presents the cross-section cuts along x=1,
x=0.6and x = 1.4 for the case (a) witha =2 and d =0.1.
It illustrates that as central regions of the packet decay
with time, the neighboring oscillations in the regions with
smaller amplitudes, are excited and finally are damped by
phase mixing. This means that the packet defocuses along
the x direction which is illustrated in Figure 4. Figure 5
shows the time evolution of the kinetic energy, magnetic
energy and total energy of the packet. Figure 5 reveals
that both the kinetic and magnetic energies of the packet
oscillate with time sharply at initial stage of the evolution
and then smoothly damped.
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Figures 6—8 show evolution of the packet for the case
(b) with @ =2 and d = 0.1. Figures 6-8 in comparing with
Figures 3-5 present that in high Reynolds and Lundquist
numbers, i.e. weak damping, the wave packet is damped
in developed stage of phase mixing and its defocusing is
negligible.

From Equation (9) for R=§ = 10, a=2andd =0.1,
we obtain Tgym = 79.1s. From Equation (13) for =2,
the average period of the fundamental mode, k = /100,

is obtained as PZ‘:‘V§2=57.9 s. Therefore the ratio of

the damping time to the average period, Tgam/ ng?

for the fundamental mode is 1.4. From Equation (9)
for R=S=10%, =2 and d =0.1, Tgay = 1702.6 s and
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Table 1. Numerical and analytical values of A and B

R N Anumeric Aanalytic Brumeric
10* 10* 2.53x 1073 2.63 x 1077 1.277
10° 10° 1.73 x 107 2.63x 1078 2.001
10° 10° 2.69 x 1078 2.63x107° 2.692
107 107 1.89 x 1079 2.63 x 10710 2.914
108 108 1.23 x 10710 2.63 x 10711 2.980
10° 10° 1.08 x 10711 2.63 x 10712 2.992
1010 1010 1.05 x 10712 2.63x 10713 2.995
10’ 102 7.70x 10710 1.32x 10710 2.946
108 102 584x107!" 1.32x 107! 2.987
10° 102 536x10712 1.32x 10712 2.993

Note that Banaiytic = 3 in HP83.

Reynolds and Lundquist numbers are tabulated in Table 1.
It shows that for R = S = 10*-10!°, the numerical values
of B converge to its analytical value but there is one to four
order of magnitude difference between the numerical and
analytical values of A. This returns to keeping the term
T(x, t) in Equation (7) which has been missed in HP§3.
Table 1 also shows that for S = 102 and R = 107-10°, the
contribution of T(x, f) becomes negligible in Equation (7)
and the numerical values of A and B converge to their
corresponding analytical values in HP83’s damping law.
Finally one can conclude that the exponential damping law
in time of HP83, exp(—A#>), is valid for (R, S) > 10”.

4 Conclusions

Phase mixing of a packet of standing Alfvénic pulses in
fundamental mode is studied. Using a finite difference
method, the linearized MHD equations for a zero- § plasma
are solved, numerically. The damping times of oscillations
in presence of the both viscous and resistive dissipations
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are calculated, numerically. They are in good agreement
with the TRACE observations. The exponential damp-
ing law in time of HP83, exp(—Ar?), for the different
ranges of the Reynolds and the Lundquist numbers are
examined. Our numerical results shows that it is valid for
(R, S)>107.
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