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SUBOPTIMALITY IN LINEAR CONTROL SYSTEMS
WITH TIME DELAY

W. L. CHAN

(Received 24 August 1980)

Abstract

For the linear quadratic control problem with delay, a lower bound for the performance
index is obtained by elementary methods. Using this bound, two important a posteriori
error estimates are derived. The first one measures the deviation of the performance index
while the second is for the deviation of the state and control variables from the optimal
solution.

1. Introduction

We consider a linear controlled system modelled by the delay-differential equa-
tion

Y{t) = A(t)Y(t) + C(t)Y(t -r)+ B(t)U(t), (1.1)

with Y(t) an n-vector, U(t) an w-vector, A{t), B(t) and C{t) continuous matrices
on [0, T]. Further, U{t) €E L2[0, T], the space of square integrable functions. The
continuous initial data is specified by Y{t) = h(t) for — r < t < 0. The cost
functional of control is

UT )dt (1.2)

where Q(t) = Q'(t) > 0 and R(t) = R'(t) > 0 are positive-definite matrices of
appropriate dimensions; r and T are positive real numbers T> r. This problem
has been extensively studied by Chyung and Lee [7] (see also [1]) who proved that
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the minimization of •/[(£/)> subject to (1), is equivalent to solving the following
two point boundary value problem with both delayed and advanced arguments:

y(t) = A(t)y(t) + C{t)y{t - r) - B(t)R-\t)B'(t)p(t), (1.3)

-p{t) = A'(t)p(t) + C'(t + r)p{t + r) + Q(t)y(t), (1.4)

y(t) - h(t) for-r^t^O and p(t) = 0 for t > T. (1.5)

The optimal controller is then given by

u{t) = -R-\t)B'{t)p{t). (1.6)

Existence and uniqueness of absolutely continuous optimal solutions y{t) and
p{t) were also proved in [7]. For any admissible control U{t) in L2[0, T], by
definition of the optimal control u(t),

Our problem at hand is to establish a lower bound J2{U{t)), where U(t) belongs
to a certain subset of L2[0, T], with the property

J2(U(t))<J2(u(t))=J*,

and more importantly, to deduce from it computable a posteriori estimates for the
following non-negative suboptimality measures defined by

(i) dj = Jx(U)-J*,

(ii) dY = jT\\Y{t)-y{t)fmdt,

T \ \ U ( ) ( ) f(iii) du=(T\\U(t)-u(t)fRwdt,

where ||y(/)llg denotes Y'(t)Q(t)Y(t) and Y(t) is the state generated by the
control U(t) while y(t), u(t) and p(t) are the optimal state and costate, that is,
solutions to (1.3)—(1.6).

A lower bound for the cost functional in variational control problems with time
delay was first discussed by Chan [3], [4]. For the no-delay case, one can consult
[9], [6], [2], [5] and the references therein. The results about dj, dY and du, in the
context of a posteriori suboptimal estimates are new. Notice that d\/2 is an
equivalent L2 norm between Y and y and similarly d\f2 is an equivalent L2 norm
between U and u.

2. Preliminaries

From the form of the optimal controller (1.6), we are interested in considering
the set of admissible controls generated by

U(t) = -R~\t)B'{t)W{t), (2.1)
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where W(t) is an arbitrary w-vector in L2[0, T\. For such a control, U(t), the state
associated with it, is thus

Y(t) = A(t)Y(t) + C{t)Y(t - r) - M{t)W{t), (2.2)

Y(t) = h(t) fo r - r<f<0, (2.3)

where M(t) = B(t)R~lB'(t) and the corresponding costate is given by

-P(t) = A'(t)P(t) + C'(t + r)P(t + r) + Q(t)Y(t), (2.4)

P(t) = 0 iort>T. (2.5)

In what follows, suboptimal bounds on dj, dY and dy will be given in terms of
W{t) and P(t) alone.

Alternatively, we may consider the question of assigning a meaningful 'cost' to
any n-vector Y(t) £ L2[0, T], which may be, say, arrived at by some approximat-
ing scheme to the state equation (1.1). To this end, for such a given Y(t), we
consider the function P(t) satisfying

-P (t) = A'(t)P(t) + C'(t + r)P(t + r) + Q(t)Y(t), (2.6)

P(t) = 0 for t>T, (2.7)

and Z(t) given by

Z{t) = A(t)Z(t) + C{t)Z{t - r ) - M(t)P(t), (2.8)

Z(t)=h(t) foT-r^t<0. (2.9)

Suboptimal bounds on dj^, dy and dp, defined analogously to dj, dY and dv,
will be given in terms of Y(t) and Z(t). We could interpret (2.1)—(2.5) as a kind
of 'forward-backward sweep' while (2.6)-(2.9) form a 'backward-forward sweep'.

LEMMA 1. The optimal cost functional J( u( t)) can be expressed as

j = P'(o)h(o) -\fo
T[\\p(t)\\2

MO) +b(t)t<nn] dt

+ f° p'(t+ r)C(t + r)h(t)dt. (2.10)

PROOF. Multiply (1.3) by p'(t) and the transpose of (1.4) by >>(/)• Integrating
the difference from 0 to T gives

+ f T[p'(t)C(t)y(t - r)] dt - fT~r[p'(L + r)C(t + r)y(t)] dt

(')H2M(,) +lb(OI|2G(o] dt+f[p'(t)C(t)y(t - r)] dt.J •'o
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Hence, using (1.5), and continuity of p,

p'(0)h(0) = 2J- f° [p'it + r)C(t + r)h(t)] dt,
J — r

from which the result follows.

LEMMA 2. / / X, Y, Z are n-vectors and Q is an n X n symmetric matrix, then

2 2 2 -Z). (2.11)

3. Main result

THEOREM 1. Assumptions and notations are as in (2.1)—(2.5). / /

and

J2(W) - P'(Q)k(Q) - ±

+ f°P'(t + r)C(t + r)h(t)dt, (3.2)
— r

then

and (3.3)

PROOF, (a)

J-J2iW)=[pi0)-Pi0)]'hi0)

+ \fo
T[UYit)\\2

Q(l)-\\yit)\\2
Q(l) +\\Pit)\\2

M(l)- IIp(t)\\2
M0)]dt

' f° [Pit + r) - pit + r)]'C(t + r)h(t) dt.

(b)Jt(W)-J2{W)=UT\\W(t)-P(t)fMdt. (3.4)

Using Lemma 2 in the first integral, we find

J-J2(W)=[p{0)-P{0)]'h(0)

+ (T[iYit)-yit))'Qyit) + (P(t) - p(t))'M{t)p(t)] dtJo

- f° [Pit + r)- pit + r)]'Cit + r)h(t) dt. (3.5)
J-r
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Now, by (1.3),

fT(P(t)-p(t))'M(t)p(t)dt
Jo

= fT(P(t) -p(t))'(-y(t)+A(t)y(t) + C(t)y(t - r)) dt

• - P(t))'y(t) + (P(t) - p(t))'{A(t)y{t) + C(t)y(t - r)) dt

-(P(t)-P(t))'y(t)

= fT[-(Y(t)-y(t))'Q(t)y(t)]dt

+ (P'(O) - p'(O))h(O), (3.6)

where the last equality follows from (1.4), (1.5), (2.4) and (2.5). Substituting (3.6)
into (3.5) gives

J-J2(W) = j -y{t)\\2
Q(l) +\\P(<) -

• ( 3 - 7 )

so that J2{W) < J. The other inequality, / < J\(W), follows from the definition
of7.

(b) Equations (2.2)-(2.5) imply

jt[P'(t)Y{t)} =

-[p\t)M{t)W{t)
-P'{t + r)C(t + r)Y(t)

-[p'(t)M(t)W(t)

PV)C(t)Y(t - r)

^ t ^ T - r,

P'{t)C{t)Y(t - r)

fo r T - r<t^

Integrating the above from 0 to T yields,

/"(o)Mo) = fT[P'(t)M(t)w(t) +||y(/)H2
C(0] dt

-f°P'(t + r)C(t + r)h(t)dt. (3.8)

Putting (3.8) into (3.2) results in

\\2
Qll) -\\P(t)\\2

M(l) + 2P'(t)M(t)W(t)] dt, (3.9)
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and therefore with (3.1)

JX{W) - J2(W) = ^fT[\\W(t)\\2
M(o ~ 2P'(t)M(t)W(t)

= UT\\P(t)-W(t)fM{l)dt>0.

COROLLARY 1. With the assumptions and notations in Theorem 1,

and

(ii) dy+ dy* f^\\W(t) - P{t)fMWdt. (3.11)

PROOF. Since J2(W) < J < JX{W) from Theorem l(a), it follows that

dJ{W)=Jl(W)-J*Jx{W)-J2{W) = UT\\W{t)-P(t)\\2
M(l)dt.

Also, from Theorem l(b),

UdY +dv)=J- J2(W) < JX(W) - J2{W) = 1 (T \\W{t) - P(t] '

Now if we take the 'backward-forward sweep' view point, that is considering
(2.6)-(2.9), we have

THEOREM 2. Given an arbitrary n-vector Y(t) in L2[0, T], and if

•/l(F) = i j f N ' N I e o +ll^(r)ll^')] dt, (3-12)

and

+ P(0)h(0) + [° P(t + r)C{t + r)h(t) dt, (3.13)
^ — r

then

(a) y2(F)<y<7,(^) and

T\\Z()Y{)\\2 ( 3 J 4 )(b) A(Y)-J2(Y) = fT\\Z(t)-Y{t)\\2
Qil)dt.

•'o

This theorem leads to bounds for dj(Y) and dy + dp in Corollary 2.
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COROLLARY 2. With the assumptions and notations in Theorem 2,

2 .

and

(i)dAY)=Jl(Y)-J<yT\\Z(t)-Y(t)fQl0dt, (3.15)

(ii) dy + dF = fQ
T[\\Y(t) -y(t)\\2

Q(l) +\\P(t) -p(t)fM(t)] dt

^fQ
T\\Z(t)-Y(t)\\2

Q(Odt.

The proofs of Theorem 2 and Corollary 2 are similar to those of Theorem 1 and
Corollary 1, and hence are omitted. Instead, we give an example in the following
section for illustration.

4. An example

Consider the example given in [8]:

/ ( 4 1 )

subject to

y =y(t) +y(t- 1) + u(t) for 0 < t =s 2,

y{t) = 1 for -1 =£f=£0. (4.2)

Our aim here is to demonstrate the implications of Theorem 2. The costate
equation of (4.2) is

1
p(t) + y(t) + p(t + \) f o r O < r < l , J (4.3)

p(2) = 0,

and the optimal control is given by the solutions of (4.2), (4.3) with u(t) = -p{t).
Suppose we have chosen Y in (3.12) of Theorem 2 as

M, - 1 *s f < 0 j

Y(t) = | 1 - 13*+ (-a + 2)t2, O^t^l I (4.4)

[(a - 8) - {a + 3)t - (a - 5)t2, 1 < t < 2 j

Then, the solution to (4.3) (compare with (2.6)), with Y{t) taking the place of y(t),
can be shown to be

{ ) {5 + (a-\3)t + (-a + 5y, Kt<2\' K '

where a = -0 .5 .
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Now Z(/) of (2.8), needed for the evaluation of J\(Y) in (3.12), can also be seen
to be

1, - 1 = £ / < ]
Z(t) = \ 1 + at -t2, 0 < / < l l .

- 1 +5t + (a-4)t2, \^t^
(4.6)

With Y(t), P(t) and Z{t) at hand, / , and J2 are then calculated according to
(3.12) and (3.13) respectively, giving

/, = 18.8958333,

72 = -11.7345238

and, from [8], the optimal value of /, is
/ • = 6.1701.

J21(7l(t, a))

Figure I. Suboptimality from Jt and J2-
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Thus, indeed, J2<J*^ Jl but the large difference, 7, - J2 = 30.6303571, indi-
cates there is much room for improvement. In fact if we consider a in (4.5) as a
parameter and define U(t) = -P{t, a) then Z(t, a) in (4.6) gives a family of states
and the corresponding Jx{a) has been plotted in Figure 1. To apply Theorem 2 to
estimate how far away are these families of controls and states from the optimal
solution, we arbitrarily choose two families of functions defined by

1, ]
( ) ( ) 2 L (4.7)

[ - 0 . 7 + (0J-2a)at2

and

Y2(t,a)=\ 1 + ( 3 a - 1.4);+ ( 0 . 2 - 3 a ) / 2 , 0 < / < l l . (4.8)
[-a + (a- 0.4)* + 0.2?2, 0 ̂  / ̂  2J

Substituting these into (2.6) (compare with (4.3)) and solving for P(t), gives

-Pit a) = j ( ~ 5 - 2 + 9 a ) + (7-6~ 13a)? + (-3.1 + 5a)t2, 0 < f < 11
xUa { ( - 1 . 4 + 4a) + (0.7 -4a)t + at2, \<t<2)'

(4.9)

and

\\J.O — DHJ T^ ^ — \J.V T^ OUJl JUI , u - = » - « » I (A -I
—r2yt, a) l / _ o - s i — N . i , ^ . ^ * I ' *• '

Using (4.7) and (4.9), /21(a) in (3.13) is evaluated. Similarly (4.8) and (4.10) are
used to evaluate J22(ci), (that is, Jx(a) and J2i(a) using the functions y, and Y2

respectively). They are plotted against a in Figure 1. The 'gap' between mina Jx{a)
and maxa,= | 2 {J2i(a)}, gives the required estimate of suboptimality of the
control U(t) = -P(t, a), as in (4.5), applied to (4.2).
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