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Abstract
For 𝜃 a small generic universal stability condition of degree 0 and A a vector of integers adding up to −𝑘 (2𝑔−2+𝑛),
the spaces M𝜃

𝑔,𝐴 constructed in [AP21, HMP+22] are observed to lie inside the space Div of [MW20], and their
pullback under Rub → Div of loc. cit. to be smooth. This provides smooth and modular modifications M̃𝜃

𝑔,𝐴
of

M𝑔,𝑛 on which the logarithmic double ramification cycle can be calculated by several methods.

1. Introduction

The strata of multiscale differentials are the loci{
(𝐶, 𝑥1, · · · , 𝑥𝑛) : (𝜔log)⊗𝑘 (

𝑛∑
𝑖=1

𝑎𝑖𝑥𝑖) � O𝐶

}

in M𝑔,𝑛 for a vector 𝐴 = (𝑎1, · · · , 𝑎𝑛) of integers summing up to −𝑘 (2𝑔 − 2 + 𝑛). Extensions of these
loci to the compactification M𝑔,𝑛 have been the subject of a vast literature with different techniques
and objectives. In its most algebraic incarnation, such an extension asks for a cycle

DR𝑘
𝑔,𝐴 ∈ CH𝑔 (M𝑔,𝑛)

of the expected dimension supported on the ‘double ramification locus’

DRL𝑘𝑔,𝐴 :=
{
(𝐶, 𝑥1, · · · , 𝑥𝑛) : (𝜔log)⊗𝑘 (

∑
𝑎𝑖𝑥𝑖) � O𝐶

}
⊂M𝑔,𝑛

of multiscale differentials for the partition A. The cycle DR𝑘
𝑔,𝐴 is called the double ramification cycle, as

when 𝑘 = 0, it parametrizes functions ramified over two points of P1, namely zero and infinity. Even the
definition of the cycle DR𝑘

𝑔,𝐴 is subtle; the first rigorous definition was given in [GV05] for 𝑘 = 0 via the
relative Gromov-Witten theory of P1, and in [Hol21, MW20], in general, via Abel-Jacobi theory. Even
subtler however is computing the class of DR𝑘

𝑔,𝐴 in CH𝑔 (M𝑔,𝑛); what is meant by computing here is
finding an expression of DR𝑘

𝑔,𝐴 in terms of generators of the tautological ring R∗(M𝑔,𝑛). A remarkable
such expression, known by now as Pixton’s formula, was discovered by Pixton and proven in [JPPZ17].

Perhaps surprisingly, the developments of [JPPZ17] are not the final word on the subject. For instance,
if one adopts the Gromov-Witten theory perspective, it is natural to ask for a calculation of the virtual
fundamental class for (rubber) relative stable maps to P2 instead of P1, or in the multiscale language,
for the corresponding classes and calculations of the ‘double double’ ramification loci
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2 S. Molcho

{(𝐶, 𝑥1, · · · , 𝑥𝑛) : (𝜔log)⊗𝑘 (
∑

𝑎𝑖𝑥𝑖) � O𝐶 � (𝜔log)⊗𝑘 (
∑

𝑏𝑖𝑥𝑖)}

for two partitions 𝐴, 𝐵 of 𝑘 (2𝑔 − 2 + 𝑛). For these problems, the methods of [JPPZ17] have not been
successfully adapted. To approach them, it has been understood ([HPS19], [Ran19], [HS22], [MR21],
[Her19]) that one should study these problems in the context of logarithmic geometry. In this context,
it is more natural to study instead the logarithmic double ramification cycle

logDR𝑘
𝑔,𝐴.

This is a certain refinement of DR𝑘
𝑔,𝐴, but it does not live on M𝑔,𝑛 – or, better, it does not lie in

CH(M𝑔,𝑛), but rather in the logarithmic Chow ring logCH(M𝑔,𝑛) ([Bar18], [MPS21]).
We will not define the logDR𝑘

𝑔,𝐴 here (or the DR𝑘
𝑔,𝐴 for that matter), but it is possible to explain the

relevant aspects of the relationship between logDR𝑘
𝑔,𝐴 and DR𝑘

𝑔,𝐴 on general grounds. Let (𝑋, 𝐷) be a
smooth Deligne-Mumford stack with a normal crossings divisor D; the case of primary interest is of
course 𝑋 = M𝑔,𝑛, 𝐷 = 𝜕M𝑔,𝑛 = M𝑔,𝑛−M𝑔,𝑛. The divisor D then stratifies X into the strata consisting
of connected components of intersections 𝐷1 ∩ · · · ∩ 𝐷𝑘 of various irreducible components of D.1 A
simple blowup is the blowup of X along a smooth stratum closure. Such a blowup 𝑝 : 𝑋 ′ → 𝑋 produces
a new pair (𝑋 ′, 𝐷 ′ = 𝑝−1 (𝐷)). A blowup obtained by iterating this procedure a finite number of times is
called an iterated blowup. A logarithmic modification of (𝑋, 𝐷) is any modification2 𝑝 : 𝑋 ′ → 𝑋 which
can be dominated by an iterated blowup of (𝑋, 𝐷). Logarithmic modifications form an inverse system,
with a map 𝑋 ′′ → 𝑋 ′ in the system if the modification 𝑋 ′′ → 𝑋 factors through 𝑋 ′ → 𝑋 . In this case,
we say that 𝑋 ′′ is finer than 𝑋 ′, or a refinement of it. The partial order determined by refinement yields
a system of groups CHop(𝑋 ′) indexed by Gysin pullback. Then

logCH(𝑋, 𝐷) := lim
−−→

CHop (𝑋 ′),

where 𝑋 ′ → 𝑋 ranges through logarithmic modifications of (𝑋, 𝐷). 3 The ordinary Chow ring CH(𝑋)
is contained in logCH(𝑋) as a subring, and there is a retraction (which is not a ring homomorphism)
logCH(𝑋) → CH(𝑋) by pushforward. Thus, to say that logDR𝑘

𝑔,𝐴 is a nontrivial refinement of DR𝑘
𝑔,𝐴 in

logCH(M𝑔,𝑛) is to say that logDR𝑘
𝑔,𝐴 ∉ CH(M𝑔,𝑛) ⊂ logCH(M𝑔,𝑛) but its pushforward equals DR𝑘

𝑔,𝐴.
The ring logCH(𝑋, 𝐷) is, apart from trivial cases, not finitely generated. However, any given element

of it is determined by a finite amount of data: for each 𝑥 ∈ logCH(𝑋, 𝐷), there exists some log
modification 𝑋 ′ → 𝑋 and an element 𝑥 ′ ∈ CH(𝑋 ′) so that 𝑥 = 𝑥 ′ under the natural inclusion CH(𝑋 ′) ⊂
logCH(𝑋, 𝐷). Such a pair (𝑋 ′, 𝑥 ′) is called a representative of x on 𝑋 ′. It is often the case, however,
that several such representatives (𝑋 ′, 𝑥 ′) exist, with none being preferable. For the sake of concreteness,
one could have (𝑋 ′𝑖 , 𝑥 ′𝑖), 𝑖 = 1, 2 representing x, while by definition, there is a representative (𝑋 ′′, 𝑥 ′′)
dominating both, meaning 𝑝𝑖 : 𝑋 ′′ → 𝑋 ′𝑖 is a modification and 𝑥 ′′ = 𝑝∗𝑖 (𝑥𝑖); there may be no direct
map 𝑋1 → 𝑋2 or vice versa.

This is the case for logDR𝑘
𝑔,𝐴. Representatives of it can be found on any log modification 𝑝 :

M′

𝑔,𝑛 →M𝑔,𝑛 which is sufficiently fine in some sense that we do not make precise here, but which
intuitively means that the closure of DRL𝑘𝑔,𝐴 meets the boundary of M′

𝑔,𝑛 sufficiently transversely. The
log modifications M′

𝑔,𝑛 are, however, neither unique nor canonical, and there is no coarsest or finest
log modification supporting a representative. So, in a sense, the ambiguity of choosing a representative
is built into the logDR𝑘

𝑔,𝐴 problem.

1With the convention that an irreducible component can repeat if it self-intersects.
2A proper birational map. A locally projective modification is the same thing as a blowup.
3Alternatively, we can avoid the use of operational Chow rings by restricting attention to 𝑋 ′ which are smooth. This gives the

same ring as each 𝑋 ′ can be dominated by a smooth one.
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While the ambiguity of a representative of a class in logCH causes few conceptual difficulties, it
can cause substantial ones on more practical matters. For instance, if one is interested in writing a
formula for the class, several hurdles have to be overcome: from the offset, one must decide which
generating set for the various CHop (𝑋 ′) to use. Fortunately, a good candidate for a generating set does
exist, consisting of the Chow ring CH(𝑋) and the algebra of boundary strata of the various 𝑋 ′, which
is captured by combinatorial data: the algebra of piecewise polynomial functions on the tropicalization
of X [MPS21, MR21, Bri96, Pay06, FS97]. Even so, while this choice of generating set determines the
form of the answer, to write down an explicit formula, one generally needs to have precise control over
the additional generators adjoined. In practice, this means choosing a representative (𝑋 ′, 𝑥 ′) with some
sort of special presentation.

Early approaches to the logDR𝑘
𝑔,𝐴 focused on properties of the blowup M′

𝑔,𝑛 →M𝑔,𝑛 supporting a
representative. The idea here is that, since no best possible choice for M′

𝑔,𝑛 exists, one might as well
choose one that is fine enough that avoids as many pathologies as possible: choose an M′

𝑔,𝑛 that is
smooth, whose strata do not self-intersect, and so on. These approaches sufficed to prove soft properties
of the logDR𝑘

𝑔,𝐴, which depend on the form of the class; it was proven, for instance, that it is tautological
[MR21, HS22]. But choosing least pathological models M′

𝑔,𝑛 relies on abstract use of resolution of
singularities, which makes the problem of finding an explicit formula essentially impossible.

In [HMP+22], Pixton’s formula was extended to logDR𝑘
𝑔,𝐴. The strategy adopted there was in the

opposite direction: the compactifications M′

𝑔,𝑛 constructed were as closely tied with the geometry of the
Abel-Jacobi section as possible. The reason for doing so was to connect the logDR𝑘

𝑔,𝐴 with the DR cycle
on the universal Picard stack, which had been calculated in [BHP+20] by a (rather elaborate) extension
of the methods of [JPPZ17]. The end result was, for each ‘universal stability condition’ 𝜃 [KP19], which
through works of [OS79, Cap94, KP19, Pan96, Mel19] produces a compactified Jacobian Pic𝜃 , a log
modification M𝜃

𝑔,𝐴→M𝑔,𝑛 resolves the indeterminacies of the Abel-Jacobi section

M𝑔,𝑛 � Pic𝜃 .

The study of such resolutions was initiated in [AP21] via tropical methods, at least in the presence of
some mild assumptions on the stability condition, but studying the problem logarithmically allows one
to go further, by endowing M𝜃

𝑔,𝐴 with an explicit functor of points. In other words, the nonpathological
compactifications M′

𝑔,𝑛 were traded for modular ones. As the functor of points of M𝜃

𝑔,𝐴 can be
understood completely explicitly when working logarithmically, this was sufficient to compute logDR𝑘

𝑔,𝐴

on each M𝜃

𝑔,𝐴.
However, the spaces M𝜃

𝑔,𝐴 are typically singular, and the calculation in [HMP+22] expresses
logDR𝑘

𝑔,𝐴 as an operational class. Nevertheless, there are significant advantages to working with a
nonsingular space. For instance, in [MR21], the logDR𝑘

𝑔,𝐴 is approached via strict transforms and Segre
classes and requires as inputs [Ful98, Theorem 6.7] and [Alu16], which do not work for singular toroidal
spaces such as M𝜃

𝑔,𝐴. Furthermore, ongoing work of Abreu-Pagani and myself aims to calculate the
logDR𝑘

𝑔,𝐴 by Grothendieck-Riemann-Roch techniques, which require working with the class in the ho-

mological CH∗ instead of the operational theory. For this approach, the singularities of M𝜃

𝑔,𝐴 cause
difficulties.

The goal of this paper is to address these difficulties. For each universal stability condition 𝜃, we
construct a refinement

M̃𝜃
𝑔,𝐴→M𝜃

𝑔,𝐴

and show the following:
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Theorem 1.1. The stack M̃𝜃
𝑔,𝐴 is smooth. When 𝜃 is nondegenerate, the induced map M̃𝜃

𝑔,𝐴 →M𝑔,𝑛

is a composition of a logarithmic modification with a root stack. Hence, it is proper, birational (an
isomorphism over the compact type locus Mct

𝑔,𝑛) and of DM-type.

Furthermore, the refinement M̃𝜃
𝑔,𝐴 is modular:

Theorem 1.2. Let S be a logarithmic scheme, and 𝑆 →M𝑔,𝑛 be a logarithmic map, corresponding to
a family of curves 𝐶 → 𝑆. Lifts of 𝑆 → M̃𝜃

𝑔,𝐴 correspond to pairs (𝐶 ′ → 𝐶, 𝛼) consisting of

◦ A destabilization 𝐶 ′ → 𝐶,
◦ An equidimensional piecewise linear function 𝛼 on 𝐶 ′ which twists (𝜔log)⊗𝑘 (

∑
𝑎𝑖𝑥𝑖) to a 𝜃-stable

line bundle on 𝐶 ′.

The notion of equidimensional piecewise linear function and twisting is explained in Section 4.
Stability here is a minimality condition, also explained in 4, which ensures, among other things, finiteness
of automorphisms groups. In particular, the strata of M̃𝜃

𝑔,𝐴 are entirely explicit and correspond to certain
combinatorial/linear algebraic data, which we call 𝜃-stable equidimensional flows. These are defined
in 2.20.

In other words, the space M̃𝜃
𝑔,𝐴 is a ‘dream compactification’ of the double ramification problem:

nonsingular and modular. In particular, M̃𝜃
𝑔,𝐴 carries a universal family 𝐶 𝜃

𝑔,𝐴→ M̃𝜃
𝑔,𝐴 and a universal

line bundle L on 𝐶 𝜃
𝑔,𝐴 – that is, an Abel-Jacobi section

M̃𝜃
𝑔,𝐴→ Pic𝜃 .

The line bundle L is simply the pullback of the universal line bundle on Pic𝜃 . The universal family 𝐶 𝜃
𝑔,𝐴

is not the pullback but rather a blowup of the pullback of the universal family of Pic𝜃 , which is also
better behaved. Recall that a scheme is called quasi-smooth if every divisor is Q-Cartier. We have the
following:

Theorem 1.3. The universal curve 𝐶 𝜃
𝑔,𝐴 is quasi-smooth.

From the perspective of the semistable reduction theorems, this result is surprising. The semistable
reduction theorem ensures that given a family of curves 𝐶 → 𝑆, we can find blowups 𝑆′ → 𝑆 and
𝐶 ′ → 𝐶 ×𝑆 𝑆′ which are smooth; however, the blowup required on the base S depends on the family
𝐶 → 𝑆, which makes constructing the semistable family 𝐶 ′ → 𝑆′ explicitly very difficult in practice.

The connection with the double ramification cycle is as follows: when 𝜃 is nondegenerate and
sufficiently close to the 0 stability condition, M̃𝜃

𝑔,𝐴 supports a representative of logDR𝑘
𝑔,𝐴, and the

methods of [HMP+22] also apply.

Corollary 1.4. The universal DR formula for L computes the logDR𝑘
𝑔,𝐴 on M̃𝜃

𝑔,𝐴.

The smoothness of the spaces M̃𝜃
𝑔,𝐴, however, also allows the use of alternative methods of cal-

culation. This was, in fact, the main driver in writing the paper. Our motivations, ranked in order of
confidence, can be listed as

◦ Find a desingularization of M𝜃

𝑔,𝐴 in which one can calculate log DR𝑘
𝑔,𝐴 via traditional algebro-

geometric techniques which avoid Gromov-Witten theory and localization.
◦ Highlight the following phenomenon: M̃𝜃

𝑔,𝐴 is constructed by combining two faraway ideas. Stability

conditions from the universal Jacobian provide a compact space M𝜃

𝑔,𝐴. Techniques from stable maps
then provide a desingularization relative toM𝜃

𝑔,𝐴. We expect this phenomenon to be present in several
moduli problems.
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◦ Optimize the computer calculations of log DR𝑘
𝑔,𝐴.4 Currently, the software deals with the singularities

of M𝜃

𝑔,𝑛 by desingularizing using a general desingularization algorithm for cones.

The construction of the spaces M̃𝜃
𝑔,𝐴 itself is, in fact, very simple. In the brilliant work of Marcus

and Wise [MW20], a modification

Div𝑔,𝐴→M𝑔,𝑛

is constructed. The modification is not of finite type and is highly nonseparated; it is the universal
modification which resolves the Abel-Jacobi section to the universal Picard stack Pic𝑔,𝑛. Along with it,
a further modification

Rub𝑔,𝐴→ Div𝑔,𝐴

is given, which is, up to orbifold corrections, a log modification as above. We briefly review these
constructions in Section 6. The motivation of [MW20] for these constructions is, in the case 𝑘 = 0, to
compare the double ramification locus

DRL𝑘𝑔,𝐴 = Div𝑔,𝐴 ×Pic M𝑔,𝑛

with the space of relative rubber maps to P1, which is identified as

Rub𝑔,𝐴 ×Div𝑔,𝐴 DRL𝑘𝑔,𝐴.

Our observation is simply that the spaces M𝜃

𝑔,𝐴 constructed in [HMP+22] are open substacks of Div𝑔,𝐴,
and that Rub𝑔,𝐴 is smooth. Combining the two properties gives the spaces M̃𝜃

𝑔,𝐴 as

Rub𝑔,𝐴 ×Div𝑔,𝐴 M𝜃

𝑔,𝐴.

Thus, the space M̃𝜃
𝑔,𝐴 is constructed by combining ideas from the theory of relative stable maps with

universal stability conditions. Most of the work in the paper is devoted to understanding how this
combination works – that is, what the functor of points of this fiber product is (a subtlety is that the
fiber product is taken in the category of logarithmic schemes). The main technical tool that allows us to
carry out this translation is the determination of a tropicalization of Div𝑔,𝐴 and the relevant auxiliary
spaces. The tropicalization of Div𝑔,𝐴 is analogous to the tropicalization of the universal Jacobian, as
discussed in [MMUV22], and is perhaps of independent interest to tropical geometers. The analogy
with the tropicalization of the universal Jacobian can, in fact, be made precise by recognizing Div𝑔,𝐴
as the pullback of the universal Picard stack to M𝑔,𝑛 via an Abel-Jacobi section, but we do not explore
this direction here.

The paper is roughly organized into three parts: combinatorial (Section 2), tropical Sections 3 and 4),
and logarithmic (Sections 5 and 6). The parts are of increasing complexity, with the concepts in each
part building upon the concepts in the preceding ones by endowing them with additional structure:
metric structures turn combinatorial objects into tropical ones, and logarithmic structures turn tropical
objects into algebraic ones.

Regardless, in its purest form, the map M̃𝜃
𝑔,𝐴→M𝑔,𝑛 is built by constructing a cone stack ΣRub𝜃

𝑔,𝐴
,

which is identified with a subdivision of the tropicalization Mtrop
𝑔,𝑛 of M𝑔,𝑛 (with an integral structure

that is a finite index substructure of the induced one). This is constructed in Section 4. The cone stack
ΣRub𝜃

𝑔,𝐴
is, in fact, a moduli space of tropical objects – tropical curves with piecewise linear functions

on them that satisfy certain properties, which are discussed in Sections 3 and 4. The cones in ΣRub𝜃
𝑔,𝐴

4This possibility was suggested to me by Aaron Pixton.
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are indexed by the combinatorial data of Section 2. In fact, a cone in ΣRub𝜃
𝑔,𝐴

can be thought of as
parametrizing all possible ways to enrich a given combinatorial type with a metric structure. The space
M̃𝜃

𝑔,𝐴 is then built by algebraizing ΣRub𝜃
𝑔,𝐴

via general techniques of logarithmic geometry, explained in
Section 5. Section 6 is devoted to the analysis of the resulting algebraization and contains the final form
of the results. Section 7 explains how to compute ΣRub𝜃

𝑔,𝐴
algorithmically, and Section 8 is devoted to

an example. The reader is encouraged to skip ahead to the corresponding part of Sections 7 and 8 when
coming upon an unfamiliar notion in the main sections, to see how it works in practice.

2. Stable Flows

2.1. Graphs, divisors and flows

We begin with a short review of some essential notions from the theory of graphs. The notions are
well-known, but we include them to avoid excessive referencing and to fix notation. We will follow the
definitions of graphs and their morphisms from [MMUV22], although we will substitute oriented edges
in the place of half-edges in our presentation. Let Γ be a graph. We write 𝑉 (Γ) for the set of vertices of
Γ, E (Γ) for the set of oriented edges, 𝐸 (Γ) for the set of edges and 𝐿(Γ) for the set of legs. A genus
function on Γ is a function

ℎΓ : 𝑉 (Γ) → N.

The genus of Γ is the natural number

𝑔 = 𝑔(Γ) :=
∑

𝑣 ∈𝑉 (Γ)

ℎΓ (𝑣) + dim 𝐻1(Γ).

When speaking about the genus of a graph, it is to be understood that a genus function has been specified.
However, unless explicitly mentioned, our results do not require fixing the genus and apply equally well
to graphs with or without a genus function. A marking on Γ is a bijection between {1, · · · , 𝑛} and 𝐿(Γ).
A graph with a marking is called an n-marked graph.
Definition 2.2. A divisor on Γ is a formal Z-linear combination of vertices of Γ. The group of divisors
on Γ is denoted by Div(Γ).

Of course, Div(Γ) is nothing but the free abelian group Z𝑉 (Γ) on 𝑉 (Γ), but we insist on the notation
for clarity.
Example 2.2.1. Let Γ be an n-marked genus g graph. Let (𝑎1, · · · , 𝑎𝑛) ∈ Z

𝑛, 𝑘 ∈ Z. Let

𝐴 =
∑

𝑣 ∈𝑉 (Γ)

𝑘 (2ℎΓ (𝑣) − 2 + val(𝑣))𝑣 +
𝑛∑
𝑖=1

𝑎𝑖𝑣𝑖 ,

where val(𝑣) is the valence of v – the number of oriented edges 	𝑒 with 𝔯( 	𝑒) = 𝑣 plus the number of legs
on v – and 𝑣𝑖 is the vertex that contains the i-th leg. Then A is a divisor on Γ. When the 𝑎𝑖 are all 0, A is
called the log canonical divisor. When the 𝑎𝑖 are all −1, it is called the canonical divisor.

There is an evident two-to-one cover E (Γ) → 𝐸 (Γ) from the set of oriented edges to the set of edges,
and every choice of orientation 	Γ on Γ gives a section 𝐸 (Γ) → E (Γ), whose image we denote by 𝐸 ( 	Γ).
Definition 2.3. Given an oriented edge 	𝑒, we write
◦ e for the image of 	𝑒 in 𝐸 (Γ).
◦ 	𝑒 for 	𝑒 with the opposite orientation.
◦ 𝔯( 	𝑒) for the initial point of 	𝑒.
◦ 𝔱( 	𝑒) = 𝔯( 	𝑒) for the terminal point of 	𝑒.
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Definition 2.4. A flow on Γ is a function

𝑠 : E (Γ) → Z

satisfying 𝑠( 	𝑒) = −𝑠( 	𝑒). We write Flow(Γ) for the group of flows on Γ.

Of course, as above, Flow(Γ) can be identified with Z𝐸 ( 	Γ) after choosing an orientation on Γ.
Any flow on s on Γ determines a divisor div(𝑠) on Γ by setting

ord𝑣 (𝑠) =
∑

{ 	𝑒:𝔱 ( 	𝑒)=𝑣 }

𝑠( 	𝑒)

and

div(𝑠) =
∑

𝑣 ∈𝑉 (Γ)

(ord𝑣 (𝑠))𝑣.

Here, the notation { 	𝑒 : 𝔱( 	𝑒) = 𝑣} means the set of oriented edges whose terminal point is v. This
procedure gives a homomorphism

div : Flow(Γ) → Div(Γ).

Definition 2.5. Let Γ be a graph. A basic subdivision of Γ is a graph Γ′ obtained from Γ by replacing
an oriented edge 	𝑒5 with two oriented edges 	𝑒1, 	𝑒2 and a new vertex u, and setting

𝔯( 	𝑒1) = 𝔯( 	𝑒)

𝔱( 	𝑒1) = 𝔯( 	𝑒2) = 𝑢

𝔱( 	𝑒2) = 𝔱( 	𝑒).

There is an evident map Γ′ → Γ which sends 𝑒1, 𝑒2, 𝑢 to e and all other vertices and edges to themselves.
A subdivision of Γ is a composition of basic subdivisions.

Let Γ′ → Γ be a subdivision. The additional vertices on Γ′ are called exceptional. A refinement of
Γ′ is a further subdivision Γ′′ → Γ′.

Suppose Γ′ → Γ is a subdivision, and s is a flow on Γ′. It is often desirable to find the minimal
subdivision of Γ on which s can be defined.

Definition 2.6. We say that Γ′ is minimal with respect to s if

ord𝑣 (𝑠) ≠ 0

on all exceptional vertices v of Γ′.

Lemma 2.7. Suppose Γ′ is a subdivision of Γ, and s is a flow on Γ′. There is a unique minimal
subdivision Γ𝑠 → Γ on which s can be defined.

Proof. Define Γ𝑠 as the subdivision of Γ obtained by keeping only the exceptional vertices of Γ′ on
which

ord𝑣 (𝑠) ≠ 0.

Since the slope of s changes on the vertices v, any subdivision that supports s must refine Γ𝑠 , whereby
the uniqueness of Γ𝑠 follows. �

5It is easy to see that the construction does not depend on the choice of orientation of 	𝑒.
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2.8. Equidimensionality

Let Γ be a graph, and s a flow on Γ. Then s defines a partial orientation on Γ, by orienting the edges so
that 𝑠( 	𝑒) > 0. The orientation is partial, as it is not defined on edges with 𝑠(𝑒) = 0. We call such edges
contracted. The flow s defines an honest orientation on the graph Γ obtained from Γ by contracting the
contracted edges.

Definition 2.9. A flow s is called acyclic if the graph Γ has no oriented cycles for the orientation induced
by s.

An acyclic flow s defines a partial order on the vertices of Γ: the order is generated by the relation

𝑣 < 𝑤

if 𝑣, 𝑤 are the endpoints of an oriented edge 	𝑒 from v to w in the orientation determined by s. Endpoints
of contracted edges are not comparable to one another.

Definition 2.10. Let Γ be a graph. An ordering on Γ is an acyclic flow s, together with the the choice of
a total order among the vertices of the noncontracted edges of Γ, extending the partial order determined
by s. We say the ordering extends or is subordinate to s.

The flow s lifts to any subdivision Γ′ → Γ, by declaring 𝑠( 	𝑒𝑖) = 𝑠( 	𝑒) whenever 	𝑒 ∈ E (Γ) is
subdivided into 	𝑒1, · · · , 	𝑒𝑛 in Γ′, and an ordering extending s on Γ lifts to an ordering extending s on Γ′

uniquely. We can rephrase the notion of ordering in the following convoluted way, which nevertheless
will be meaningful in the next section:

Definition 2.11. A one-dimensional combinatorial target, or combinatorial line, is a graph X consisting
of n-ordered vertices 𝑣1, · · · , 𝑣𝑛, with 𝑣𝑖+1 joined to 𝑣𝑖 by a single edge 𝑓𝑖 , along with two legs – one on
𝑣1 and one on 𝑣𝑛.

One-dimensional combinatorial targets X come with a canonical orientation, in which 𝑓𝑖 is oriented
from 𝑣𝑖 to 𝑣𝑖+1. We denote the canonical orientation by 𝐸 ( 	𝑋).

We can then consider maps Γ→ 𝑋 . Morphisms for us take cells into cells (i.e. vertices or edges into
vertices or edges). A morphism 𝜙 : Γ → 𝑋 also defines a partial order on 𝑉 (Γ), by declaring 𝑣 < 𝑤
if 𝜙(𝑣) = 𝑣𝑖 , 𝜙(𝑤) = 𝑣 𝑗 , with 𝑖 < 𝑗 . Vertices that map to the same vertex of X are incomparable with
one another, and we do not define the order on vertices that map into edges of X. The following class of
morphisms is then special:

Definition 2.12. A map Γ→ 𝑋 is equidimensional if it takes vertices to vertices.

Thus, an equidimensional morphism Γ → 𝑋 defines a total order on the vertices of noncontracted
edges (i.e., those edges which map to an edge instead of a vertex) of Γ.

Definition 2.13. Let Γ be a graph, and s an acyclic flow on Γ. An equidimensional lift of s is the data
of a subdivision Γ′ → Γ, a combinatorial line X and a morphism Γ′ → 𝑋 compatible with the partial
order on the vertices of Γ′ induced by (the lift of) s on Γ′. This data is stable if all vertices of X are
images of vertices of Γ.

We note that stability is not an absolute notion, but it depends on the original graph Γ on which s is
defined.

Suppose Γ′ → 𝑋 is an equidimensional lift of s. Then Γ′ → 𝑋 defines an ordering 𝜅 extending
s, as it orders the vertices of Γ′ that lie on the noncontracted edges of Γ′ (i.e., those on which 𝑠 ≠ 0,
which are precisely the subdivisions of the noncontracted edges of Γ), and since 𝑉 (Γ) ⊂ 𝑉 (Γ′), also
the vertices of Γ which lie on the noncontracted edges of Γ. Conversely, given an ordering 𝜅 extending
s, we can define a combinatorial line 𝑋𝜅 by taking one vertex 𝑣𝑖 for each vertex of a noncontracted edge
of Γ according to the order determined by 𝜅. This defines an evident function

𝜙 : Γ→ 𝑋𝜅 ,
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extending s. This is, however, not a morphism: edges of Γ can map into unions of cells of 𝑋𝜅 . There
is a minimal subdivision Γ𝜅 which turns Γ → 𝑋𝜅 into a morphism by adjoining the preimages of the
vertices 𝜙−1(𝑣𝑖) to the noncontracted edges of Γ𝜅 . The following lemma then follows:

Lemma 2.14. Orderings extending s are equivalent to stable equidimensional lifts of s, under the
correspondence

𝜅 ↔ 𝜙 : Γ𝜅 → 𝑋𝜅 .

2.15. Numerical stability conditions

Let Γ be a graph.

Definition 2.16. A subdivision Γ′ → Γ is called a quasi-stable model of Γ if every edge in Γ is
subdivided at most once.

In other words, the subdivision Γ′ → Γ introduces at most one exceptional vertex on each edge of Γ.

Definition 2.17. A divisor D on a quasi-stable model Γ′ of Γ is called admissible if its value on
exceptional vertices is 1.

Finally, we recall that a stability condition 𝜃 on Γ is simply a function

𝜃 : 𝑉 (Γ) → R.

It is nondegenerate or generic if, for every 𝑆 ⊂ 𝑉 (Γ), we have

𝜃 (𝑆) ±
𝐸 (𝑆, 𝑆𝑐)

2
∉ Z,

where 𝜃 (𝑆) =
∑

𝑣 ∈𝑆 𝜃 (𝑣) and 𝐸 (𝑆, 𝑆𝑐) is the number of edges between S and its complement.
A stability condition determines a list of semistable divisors on Γ: those D for which

𝜃 (𝑆) −
𝐸 (𝑆, 𝑆𝑐)

2
≤ 𝐷 (𝑆) ≤ 𝜃 (𝑆) +

𝐸 (𝑆, 𝑆𝑐)

2

for all 𝑆 ⊂ 𝑉 (Γ). The divisor is stable if the inequalities are strict. Thus, a stability condition is
nondegenerate if and only if all semistable divisors are stable.

A stability condition on Γ lifts canonically to a quasi-stable model Γ′ → Γ by declaring its value on
exceptional vertices to be 0.

Definition 2.18. Let 𝜃 be a stability condition on Γ, and Γ′ → Γ a quasi-stable model. We call an
admissible divisor D on Γ′ 𝜃-semistable if for every subgraph 𝑆 ⊂ Γ′, we have

𝜃 (𝑆) −
𝐸 (𝑆, 𝑆𝑐)

2
≤ 𝐷 (𝑆) ≤ 𝜃 (𝑆) +

𝐸 (𝑆, 𝑆𝑐)

2
.

We note that if 𝜃 is generic, the inequalities above are strict for every divisor supported on 𝑉 (Γ) ⊂
𝑉 (Γ′). However, equality can hold for divisors that have support on exceptional vertices.6

We thus arrive at the key combinatorial notions of this paper. Let A denote a fixed divisor on Γ, and
𝜃 a stability condition.

Definition 2.19. A 𝜃-flow balancing A (or 𝜃-flow for short) consists of a quasi-stable model Γ′ → Γ, a
𝜃-semistable divisor D and an acyclic flow s with

div(𝑠) = 𝐴 − 𝐷.

6and, in fact, necessarily holds for 𝑆 = {𝑣 }, where v is an exceptional vertex.
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Definition 2.20. A 𝜃-stable equidimensional flow (balancing A) consists of

◦ A quasi-stable model Γ′ → Γ.
◦ A 𝜃-semistable divisor D on Γ′.
◦ An acyclic flow s on Γ′ balancing D:

div(s) = 𝐴 − 𝐷.

◦ A stable equidimensional lift Γ′′ → 𝑋 of s.

2.21. Specialization

The data discussed above specializes with respect to edge contractions. Namely, if Γ is obtained from Γ
by contracting some edges, and 𝜙 : Γ→ Γ denotes the contraction map,

(1) Divisors on Γ specialize to divisors on Γ by 𝐷 → 𝐷

𝐷 (𝑣) =
∑

𝑤 ∈𝜙−1 (𝑣)∩𝑉 (Γ)

𝐷 (𝑤).

(2) Stability conditions specialize exactly analogously as 𝜃 (𝑣) =
∑

𝜃 (𝑤).
(3) Flows specialize by 𝑠→ 𝑠, with

𝑠( 	𝑒) = 𝑠( 	𝑒)

under the natural inclusion E (Γ) ⊂ E (Γ).
(4) The genus function ℎΓ of Γ is defined by

ℎΓ (𝑣) = 𝑔Γ (𝜙
−1 (𝑣)) =

∑
𝑤 ∈𝑉 (Γ)∩𝜙−1 (𝑣)

ℎΓ (𝑤) + dim 𝐻1(𝜙
−1 (𝑣)).

All notions discussed, starting with subdivisions and culminating with 𝜃-stable equidimensional flows,
specialize under these definitions.

Example 2.21.1. Let Γ be an n-marked graph with a genus function ℎΓ. Let (𝑎1, · · · , 𝑎𝑛) ∈ Z
𝑛, 𝑘 ∈ Z

and

𝐴 =
∑

𝑣 ∈𝑉 (Γ)

𝑘 (2ℎΓ (𝑣) − 2 + val(𝑣))𝑣 +
𝑛∑
𝑖=1

𝑎𝑖𝑣𝑖

the divisor of example 2.2.1. Then A specializes to the analogous divisor

∑
𝑣 ∈𝑉 (Γ)

𝑘 (2ℎΓ (𝑣) − 2 + val(𝑣))𝑣 +
𝑛∑
𝑖=1

𝑎𝑖𝑣𝑖

under any contraction Γ→ Γ, where 𝑣𝑖 is the vertex of Γ that contains the i-th leg.

3. Abel-Jacobi Theory on Tropical Curves

The notions of the previous section are combinatorial. We extend them to tropical notions by introducing
a metric on our graphs. We recall our convention: monoids M are sharp (they have no nontrivial
units), finitely generated, integral and saturated. The category of monoids Mon is dual to the category
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RPC of cones, which means rational polyhedral cones together with an integral structure, under the
correspondence

𝑀 → 𝑀∨ := (Hom(𝑀,R≥0), Hom(𝑀,Z))

𝜎∨ = {𝑢 ∈ Hom(𝑁,R) : 𝑢 ≥ 0 on 𝐶} ∩ Hom(𝑁,Z) ← 𝜎 = (𝐶, 𝑁).

Let Γ be a tropical curve metrized by a monoid M. In other words, Γ is a graph together with a length
function

ℓ : 𝐸 (Γ) → 𝑀 − 0

from its set of edges to the nonzero elements of M. We denote the length of the edge e by ℓ𝑒.
Divisors and flows are combinatorial data and do not take into account the metric structure of Γ.

Piecewise linear functions on Γ, however, are honest tropical notions:

Definition 3.1. A piecewise linear function 𝛼 is a function

𝛼 : 𝑉 (Γ) → 𝑀gp

from the vertices of Γ to the associated group of M, which satisfies the following condition: for every
oriented edge 	𝑒 in Γ between 𝑣, 𝑤 ∈ Γ, there exists an integer 𝑠( 	𝑒) ∈ Z such that

𝛼(𝑤) − 𝛼(𝑣) = 𝑠( 	𝑒)ℓ𝑒 .

We write PL(Γ) for the group of piecewise linear functions on Γ.

Every piecewise linear function 𝛼 on Γ determines a flow 𝑠𝛼 by taking its underlying slopes:

PL(Γ) → Flow(Γ)
𝛼→ 𝑠𝛼, 𝑠𝛼 ( 	𝑒) = slope of 𝛼 on 	𝑒.

In particular, we can talk about divisors of piecewise linear functions, orientations and so on, via the
underlying flow. The flows that can arise from a piecewise linear function are constrained by the metric
structure on Γ.

Definition 3.2. We call a flow that arises as the underlying slopes of a piecewise linear function a twist
on Γ.

All flows that arise from piecewise linear functions are acyclic. The condition a flow must satisfy to
be a twist, however, must involve the metric somehow. In short, we start with a flow s on Γ and want
to lift it to a function 𝛼. We can start at a vertex 𝑣 ∈ Γ and assign a value of 𝛼(𝑣) ∈ 𝑀gp arbitrarily.
But then, the rest of the values 𝛼(𝑤) are completely determined by the lengths of Γ and the slopes of s
(provided Γ is connected). For any oriented path 𝑃𝑣→𝑤 from v to a vertex w, we must have

𝛼(𝑤) = 𝛼(𝑣) +
∑
	𝑒∈𝑃𝑣→𝑤

𝑠( 	𝑒)ℓ𝑒,

and the function 𝛼 is well-defined if and only if this expression is independent of path. This condition
is most conveniently phrased in terms of the intersection pairing

〈, 〉 : Flow(Γ) × Flow(Γ) → 𝑀gp

〈𝑠, 𝑡〉 =
1
2

∑
	𝑒∈E (Γ)

𝑠( 	𝑒)𝑡 ( 	𝑒)ℓ𝑒 .
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In terms of the intersection pairing, the lifting problem amounts to the statement that for every 𝛾 ∈ 𝐻1 (Γ),
we have

〈𝑠, 𝛾〉 = 0.

Here, 𝐻1 (Γ) is considered as embedded in Flow(Γ) � Z𝐸 ( 	Γ) after choosing an orientation, by writing
a cycle 𝛾 as an oriented path

𝛾 =
∑
	𝑒

and associating to 𝛾 the flow defined by

𝛾( 	𝑒) = 1, (and so necessarily 𝛾( 	𝑒) = −1)

if 	𝑒 appears in the path with the same orientation as in 	Γ, and 0 if e is not in the path.

Remark 3.3. This inclusion identifies 𝐻1 (Γ) with the kernel of

div : Flow(Γ) → Div(Γ).

This coincides with the usual identification of 𝐻1 (Γ) with the kernel of

Z𝐸 (
	Γ) → Z𝑉 (Γ)

coming from the CW-complex structure on Γ.

3.4. Subdivisions of tropical curves

Let Γ be a tropical curve. A subdivision of Γ is a tropical curve Γ′ metrized by M, such that the
underlying graph of Γ′ is a subdivision of the underlying graph of Γ and such that the lengths of the
edges 𝑒′ ∈ 𝐸 (Γ′) that subdivide an edge 𝑒 ∈ 𝐸 (Γ) add up to the length of e: if 𝜙 : 𝐸 (Γ′) → 𝐸 (Γ) is
the induced map of edges, we must have ∑

𝑒′ ∈𝜙−1 (𝑒)

ℓ𝑒′ = ℓ𝑒 .

Subdivisions Γ′ come with an evident map Γ′ → Γ. The collection of vertices in Γ′ that are not in Γ
are called exceptional vertices. A refinenent of Γ′ → Γ is a further subdivision Γ′′ → Γ′.

Suppose Γ′ → Γ is a subdivision, and 𝛼 is a piecewise linear function on Γ′. It is often desirable to
find the minimal subdivision of Γ on which 𝛼 can be defined.

Definition 3.5. We say that Γ′ is minimal with respect to 𝛼 if

div(𝛼) (𝑣) ≠ 0

on all exceptional vertices v of Γ′.

Lemma 3.6. Suppose Γ′ is a subdivision of Γ, and 𝛼 is a piecewise linear function on Γ′. There is a
unique minimal subdivision Γ𝛼 → Γ on which 𝛼 can be defined.

Proof. Define Γ𝛼 as the subdivision of Γ obtained by keeping only the exceptional vertices of Γ′ on
which

div(𝛼) (𝑣) ≠ 0.
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Since the slope of 𝛼 changes on the vertices v, any subdivision that supports 𝛼 must refine Γ𝛼, whereby
the uniqueness of Γ𝛼 follows. �

3.7. Equidimensional piecewise linear functions and twists

Any integral monoid 𝑀 ⊂ 𝑀gp can be regarded as a partial order on 𝑀gp: for 𝑥, 𝑦 ∈ 𝑀gp, we declare
𝑥 ≤ 𝑦 if 𝑦 − 𝑥 ∈ 𝑀 . Thus, a piecewise linear function 𝛼 on Γ comes with a partial ordering of its
values 𝛼(𝑣) ∈ 𝑀gp. This partial order is evidently compatible with the orientation on Γ induced by the
underlying twist of 𝛼.
Definition 3.8. Let Γ be a tropical curve. A piecewise linear function is totally ordered if its values
𝛼(𝑣), 𝑣 ∈ 𝑉 (Γ), are totally ordered.
Remark 3.9. The condition that the values 𝛼(𝑣) of the function 𝛼 at the vertices v are totally ordered
can be equivalently phrased in terms of the underlying flow s of 𝛼. Since for any 𝑣, 𝑤 we have that

𝛼(𝑤) = 𝛼(𝑣) +
∑
	𝑒∈𝑃𝑣→𝑤

𝑠( 	𝑒)ℓ𝑒

for any oriented path 𝑃𝑣→𝑤 , to say that 𝛼(𝑤) comes after 𝛼(𝑣) in a total order for 𝛼 is to say that∑
	𝑒∈𝑃𝑣→𝑤

𝑠( 	𝑒)ℓ𝑒 ∈ 𝑀 ⊂ 𝑀gp

for any oriented path 𝑃𝑣→𝑤 , or, equivalently, that the evaluation∑
	𝑒∈𝑃𝑣→𝑤

𝑠( 	𝑒)ℓ𝑒 (𝑥) ≥ 0

for any 𝑥 ∈ 𝜎 = 𝑀∨.
Borrowing ideas from the theory of semistable reduction, we make the following definition.

Definition 3.10. A piecewise linear function 𝛼 on Γ is equidimensional if
◦ The values 𝛼(𝑣) are totally ordered.
◦ For any edge e with endpoints 𝑣, 𝑤 that satisfy 𝛼(𝑣) < 𝛼(𝑤), and any vertex u with 𝛼(𝑣) ≤ 𝛼(𝑢) ≤

𝛼(𝑤), we necessarily have 𝛼(𝑢) = 𝛼(𝑣) or 𝛼(𝑢) = 𝛼(𝑤).
While on its face the definition of equidimensionality seems dependent on the values of 𝛼, the

definition is, in fact, invariant under translation of the values 𝛼(𝑣) by any common element 𝑥 ∈ 𝑀gp.
Thus, the definition descends to twists, and it makes sense to talk about equidimensional twists.

The definition of equidimensional piecewise linear function can perhaps be clarified by introducing
its image, which is a one dimensional tropical target, also referred to as a tropical line.
Definition 3.11. A tropical line is the structure of a canonically oriented7 one-dimensional polyhedral
complex metrized by M on R.

We spell out the meaning of the definition: a tropical line is, thus, as a polyhedral complex, simply
a combinatorial line X with a length assignment ℓ 𝑓𝑖 ∈ 𝑀 − 0 for each of its edges. But to say that this
polyhedral complex is a polyhedral complex structure on R over M means that it furthermore comes
with a chosen piecewise linear embedding

𝜄𝑋 : 𝑋 ⊂ R.

7While it is probably more appropriate to not include an orientation in the definition of a tropical line, and call our notion a
‘canonically oriented tropical line’, we have no applications for the unoriented notion and thus prefer to impose the condition to
avoid excessive terminology.

https://doi.org/10.1017/fms.2023.83 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.83


14 S. Molcho

This data is very similar to the definition of a piecewise linear function on a tropical curve: an element

𝜄𝑋 (𝑣𝑖) := 𝛾𝑖 ∈ 𝑀gp

for each vertex 𝑣 ∈ 𝑉 (𝑋), such that

𝛾𝑖+1 − 𝛾𝑖 = ℓ 𝑓𝑖 .

In particular, the ordering on the vertices has been chosen so that 𝛾𝑖+1 > 𝛾𝑖 by assumption, which means
that the piecewise linear structure is compatible with the canonical orientation 𝐸 ( 	𝑋) of definition 2.11
on X. We will also consider the trivial polyhedral decomposition as an allowable tropical line, where R
is considered as a single cell. In that case, we will simply write R for the tropical line.

Let Γ be a tropical curve and X a tropical line metrized by M. By definition, a map of polyhedral
complexes Γ→ 𝑋 is a piecewise linear map that respects the cell structure of the polyhedral decompo-
sition: each cell (that is, vertex or edge) of Γ maps into a cell of X (rather than a union of more than one
cells). In particular, a piecewise linear function 𝛼 on Γ can be tautologically thought of as a map

Γ→ R

to the trivial tropical line. The piecewise linear function 𝛼 may or may not factor through X:

Γ 𝑋

R

𝛽

𝛼
𝜄𝑋

Since 𝜄𝑋 is a monomorphism, the arrow 𝛽, if it exists, is unique.

Definition 3.12. A map of polyhedral complexes 𝑃→ 𝑄 is called equidimensional if it takes cells onto
cells.

As tropical curves and tropical lines are particularly simple examples of polyhedral complexes, the
meaning of equidimensionality of a map

𝛽 : Γ→ 𝑋

is very simple to describe: it says that each vertex 𝑣 ∈ Γ must map to a vertex in X.

Lemma 3.13. Let Γ be a tropical curve metrized by M, and let 𝛼 be a piecewise linear function on Γ.
Then 𝛼 is equidimensional if, and only if, there exist a tropical line X and a factorization of 𝛼 through
an equidimensional map 𝛽 : Γ→ 𝑋 .

Proof. Suppose e is an edge of Γ with endpoints 𝑣, 𝑤, and 𝛼(𝑤) > 𝛼(𝑣). Suppose u is a vertex of Γ with
𝛼(𝑣) ≤ 𝛼(𝑢) ≤ 𝛼(𝑤). If 𝛼 factors through X, then 𝛽(𝑣) and 𝛽(𝑤) must be consecutive vertices 𝑣𝑖 , 𝑣𝑖+1
of X (otherwise, the edge e would map to a union of cells). But to say that 𝛽 is equidimensional is to
say that 𝛽(𝑢) must be a vertex of X, and hence one of 𝑣𝑖 , 𝑣𝑖+1. So either 𝛼(𝑢) = 𝛼(𝑣) or 𝛼(𝑢) = 𝛼(𝑤).
Conversely, given an equidimensional function 𝛼, we build X by taking one vertex 𝑣𝑖 for each distinct
value in {𝛼(𝑣) : 𝑣 ∈ 𝑉 (Γ)} and define

𝜄𝑋 (𝑣𝑖) = 𝛼(𝑣)

to be the corresponding value. �

Remark 3.14. Note that while the definition of equidimensionality requires that vertices of Γ must map
to vertices of X, edges can map either onto edges or vertices of X. Edges that map onto vertices of X are
precisely those on which the slope of 𝛼 is 0 (i.e., the contracted edges). We point out that in order for a
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given 𝛼 to factor through X (i.e., in order for 𝛼 = 𝜄𝑋 ◦ 𝛽 to hold), strict constraints must hold between
the lengths of the edges e of Γ and the edges f of X. Suppose 	𝑓 ∈ 𝐸 ( 	𝑋) is a canonically oriented edge
of X (c.f. definition 2.11) between vertices 𝑣𝑖 and 𝑣𝑖+1, and suppose an edge e of Γ maps to f. Then,
orienting e so that 𝑠( 	𝑒) > 0, we must have that 𝛽 maps the initial point 𝔯( 	𝑒) = 𝑣 to 𝑣𝑖 and the terminal
point 𝔱( 	𝑒) = 𝑤 to 𝑣𝑖+1, and furthermore,

𝑠( 	𝑒)ℓ𝑒 = 𝛼(𝑤) − 𝛼(𝑣) = 𝜄𝑋 (𝑣𝑖+1) − 𝜄𝑋 (𝑣𝑖) = ℓ 𝑓 .

Thus, in order for a given acyclic flow s to lift to an equidimensional twist with underlying combinatorial
type Γ→ 𝑋 , the system of equations

𝑠( 	𝑒)ℓ𝑒 = ℓ 𝑓 for all 	𝑒 that map to 	𝑓 , 	𝑓 ∈ 𝐸 ( 	𝑋)

needs to be satisfied. We note that this system of equations is stronger than the equations 〈𝛾, 𝑠〉 = 0
required for the flow to lift to a twist: since X is contractible, the image of any loop 𝛾 ∈ 𝐻1 (Γ) in X is an
oriented path 𝑃 =

∑ 	𝑓 where each edge appears an equal number of times with opposite orientations.
But then

〈𝑠, 𝛾〉 =
∑
	𝑒∈𝛾

𝑠( 	𝑒)ℓ𝑒 =
∑
	𝑓 ∈𝑃

𝑜( 	𝑓 )ℓ 𝑓 = 0,

where the 𝑜( 	𝑓 ) = 1 if 	𝑓 is canonically oriented and −1 otherwise.

Remark 3.15. The definition of equidimensionality may seem convoluted from the vantage of tropical
curves metrized by monoids, but it is natural from the dual point of view of cone complexes and
semistable reduction. We find the dual point of view more intuitive, but we stick with the tropical
perspective as it is more ubiquitous in the literature. Namely, a tropical curve Γ metrized by M is
equivalent data to a map of cone complexes (with integral structure)

Σ𝐶 → Σ𝑆 := 𝑀∨.

Plainly, one builds Σ𝐶 out of Γ as a fibration over Σ𝑆 . The fiber over 𝑥 ∈ Σ𝑆 is obtained by attaching a
vertex 𝑣𝑥 for each 𝑣 ∈ 𝑉 (Γ) and an edge of length ℓ𝑒 (𝑥) ∈ R≥0 for each 𝑒 ∈ 𝐸 (Γ). Then, a piecewise
linear function 𝛼 on Γ corresponds to a piecewise linear map �̃�

Σ𝐶 Σ𝑆 × R

Σ𝑆

�̃�

pr1

A tropical line X corresponds to a subdivision Σ𝑋 → Σ𝑆×R→ Σ𝑆 so that the composed map Σ𝑋 → Σ𝑆
is equidimensional (maps cells onto cells) and furthermore sends integral structures onto integral
structures, and an equidimensional piecewise linear function that factors through X corresponds to a
factorization of �̃� through Σ𝑋 that sends cells of Σ𝐶 onto cells of Σ𝑋 . The name equidimensional comes
from the fact that maps of fans which send cones onto cones are the ones that induce equidimensional
maps of toric varieties.

Suppose 𝛼 is a piecewise linear function or twist on Γ, and Γ′ → Γ is a subdivision. Then 𝛼 lifts
to a piecewise linear function on Γ′. Suppose 𝛼 is equidimensional on Γ′. We say that Γ′ is a minimal
subdivision on which 𝛼 is equidimensional if the following stability condition holds:
(★) For every exceptional vertex v of Γ′, there exists a nonexceptional vertex w of Γ such that

𝛼(𝑣) = 𝛼(𝑤).
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We remark that the minimal Γ′ on which 𝛼 is equidimensional is, in general, finer than the minimal
model Γ𝛼 on which 𝛼 is defined. Furthermore, the model is unique if it exists. This is very similar to
the combinatorial analogues in 2.14, but the tropical picture deviates here: a model where 𝛼 becomes
equidimensional may not exist, as the required combinatorial subdivisions may not lift with respect to
the metric structure. Experts will recognize here that one can always find a minimal equidimensional
model, but only after altering the base monoid M. However, one can say the following with relative ease:
Lemma 3.16. Suppose that Γ is a tropical curve with piecewise linear function 𝛼, and Γ′ is a subdivision
on Γ on which 𝛼 is equidimensional. Then a minimal model EqΓ (𝛼) on which 𝛼 is equidimensional
exists.
Proof. As in the construction of Γ𝛼, one obtains EqΓ (𝛼) from Γ′ by deleting all exceptional vertices in
Γ′ that violate (★). �

Definition 3.17. Suppose 𝛼 is a piecewise linear function on Γ, and that 𝛼 lifts to an equidimensional
function

Γ′ → 𝑋

on some subdivision of Γ. We call the lift stable if Γ′ → 𝑋 is the minimal such lift (i.e., satisfies (★)).
We write

𝛼 : EqΓ (𝛼) → 𝑋

for the minimal lift.

4. Tropical Moduli

This section closely follows [MW20] in spirit, but in the tropical world.

4.1. Cone complexes and cone stacks

Since we want to build tropical moduli spaces parametrizing our objects – tropical curves with various
types of piecewise linear functions on them – and our objects come with automorphisms, the notion of a
cone complex is inadequate. Rather, we will use the formalism of cone stacks, developed in [CCUW20].
We recall only the very basics of the theory that we will use from loc. cit and refer the interested reader
there for a comprehensive treatment.

A face morphism or face map of cones 𝜏 → 𝜎 is an isomorphism of 𝜏 with a face of 𝜎. Note that
in the definition we consider 𝜎 itself as a face, so arbitrary isomorphisms 𝜏 → 𝜎 are considered face
morphisms as well. A covering of a cone complex Σ by face morphisms is a collection of face maps
𝜏 → Σ that is jointly surjective. Such coverings generate a Grothendieck topology on the category of
cone complexes. A cone stack is a stack on this site, with the (essentially straightforward) appropriate
notion of algebraicity. Since face maps are, however, so simple, the notion of cone stack is, in fact,
equivalent to the following much simpler definition [CCUW20][Proposition 2.19]:
Definition 4.2. A cone stack is a category fibered in groupoids

Σ→ RPC 𝑓 ,

where RPC 𝑓 is the full subcategory of RPC with face maps as morphisms.
Remark 4.3. Since the category of cones is equivalent to the category of monoids, we can consider Σ
equivalently as a category cofibered in groupoids over the category of monoids with morphisms being
isomorphisms onto a quotient by a face. We will freely swap between conventions, as in our setup it is
more convenient to work with the monoid M metrizing our tropical curves rather than its dual cone, but
when writing Σ(𝑀), we formally mean the groupoid Σ(𝜎), for 𝜎 = 𝑀∨.
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Most frequently, cone stacks natually arise as colimits. More precisely, suppose D is a category, and
𝐹 : D→ RPC 𝑓 is a functor. Concretely, this amounts to the data of cones 𝜎𝛼 for 𝛼 ∈ Ob(D), and face
morphisms 𝑢𝛼→𝛽 : 𝜎𝛼 → 𝜎𝛽 for any morphism 𝛼→ 𝛽 in D. Then one constructs a cone stack

lim
−−→
D

𝜎𝛼 → RPC 𝑓

by taking the fiber over 𝜎 to be the groupoid with objects

𝜙 ∈
∐

𝛼∈Ob(D)
HomRPC(𝜎, 𝜎𝛼)

(the notation here means all RPC morphisms, not just face morphisms) and with an isomorphism from
𝜙 : 𝜎 → 𝜎𝛼 to 𝜓 : 𝜎 → 𝜎𝛽 if there exists 𝛼 → 𝛽 in D such that 𝑢𝛼→𝛽 ◦ 𝜙 = 𝜓. We note that
when all morphisms 𝑢𝛼→𝛽 appearing in 𝐹 (D) are proper face morphisms (i.e., face morphisms to a
proper face), the groupoid above is equivalent to a set. This way, one recovers the notion of generalized
cone complexes of [ACP15] or cone spaces of [CCUW20]. Moreover, when there exists at most one
morphism between any two 𝜎𝛼 → 𝜎𝛽 , one gets an ordinary polyhedral complex. The following table,
while simply an analogy, is perhaps helpful:

Tropical Algebraic

Monoid Ring
Cone Affine Scheme

Cone Complex Scheme
Face Topology Étale Topology

Generalized Cone Complex Algebraic Space
Cone Stack Algebraic Stack

Example 4.3.1. Fix a genus g and a number of markings n. There is a cone stack Mtrop
𝑔,𝑛 → RPC 𝑓

which over a cone 𝜎 parametrizes genus g, n-marked curves Γ metrized by 𝑀 = 𝜎∨, defined by

Mtrop
𝑔,𝑛 (𝜎) = {(Γ, ℓ𝑒 : 𝐸 (Γ) → 𝑀 − 0) : 𝑔(Γ) = 𝑔, {1, · · · , 𝑛} � 𝐿(Γ)}.

For further details on the CFG structure, the interested reader is referred to [CCUW20].

4.4. Stacks of twists

We make the simplifying assumption that all graphs that appear have at least one leg.

Definition 4.5. We define cone stacks

ΣDiv,ΣOrd, ΣRub → RPC 𝑓

by setting, for a cone 𝜎 with dual monoid 𝑀 = 𝜎∨

ΣDiv(𝜎) = {Γ, 𝛼 ∈ PL(Γ)}
ΣOrd(𝜎) = {Γ, 𝛼 ∈ PL(Γ) which is totally ordered}

ΣRub (𝜎) = {Γ, 𝛼 ∈ PL(Γ), EqΓ (𝛼) → 𝑋},

where

◦ Γ is metrized by M.
◦ 𝛼 vanishes on the vertex of Γ containing the first leg.
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Isomorphisms are isomorphism of graphs that respects the functions, orderings and equidimensional
lifts.

Remark 4.6. The assumption that Γ contains a leg is not serious, but we impose it to rigidify the
problems above via the condition 𝛼 = 0 on the vertex. Otherwise, we have to talk about tropical line
torsors, which we would rather avoid as all applications we have in mind involve curves that already
have a marking.

Let CombDiv be the category whose objects consist of a graph Γ and an acyclic flow s. A map
(Γ, 𝑠) → (Γ, 𝑠) in CombDiv is given by a map 𝑓 : Γ → Γ, where Γ is an edge contraction of Γ,
such that 𝑠 ◦ 𝑓 = 𝑠 (in particular, automorphisms respecting the flow are allowed). Similarly, we define
CombOrd to consist of pairs (Γ, 𝑠) and a total ordering 𝜅 on Γ extending s, and CombRub to consist
of a pair (Γ, 𝑠) and a stable equidimensional lift Γ′ → 𝑋 of s (2.13).

For each (Γ, 𝑠) ∈ CombDiv, define a cone

𝜎(Γ,𝑠) ⊂ R
𝐸 (Γ)
≥0

consisting of the ℓ that satisfy the equations

〈𝑠, 𝛾〉ℓ = 0

for all 𝛾 ∈ 𝐻1(Γ). The pairing here is the intersection pairing of Section 3. By definition, the pairing
requires a length on each edge of Γ. The subscript ℓ here means that on the point ℓ = (ℓ𝑒)𝑒∈𝐸 (Γ) of
R
𝐸 (Γ)
≥0 , we give the tautological length ℓ𝑒 to the edge e. Under a morphism (Γ, 𝑠) → (Γ, 𝑠), we get a

face morphism

𝜎(Γ,𝑠) → 𝜎(Γ,𝑠)

and so we may glue the cones into a cone stack

Σ′Div := lim
−−→
(Γ,𝑠)

𝜎(Γ,𝑠) .

Similarly, as in the discussion in remark 3.14, for a triple (Γ, 𝑠, Γ′ → 𝑋) in CombRub, we take the cone

𝜎(Γ,𝑠,Γ′→𝑋 ) ⊂ R
𝐸 (Γ′)
≥0 × R

𝐸 (𝑋 )
≥0

consisting of the (ℓ𝑒, ℓ 𝑓 )𝑒∈𝐸 (Γ′) , 𝑓 ∈𝐸 (𝑋 ) that satisfy

𝑠( 	𝑒)ℓ𝑒 = ℓ 𝑓

whenever 	𝑒 ∈ E (Γ′) maps to 	𝑓 in 𝐸 ( 	𝑋) ⊂ E (𝑋), and glue to a cone stack

Σ′Rub := lim
−−→

(Γ,𝑠,Γ→𝑋 )

𝜎(Γ,𝑠,Γ′→𝑋 ) .

Finally, as in remark 3.9, for (Γ, 𝑠, 𝜅) ∈ CombOrd, we take the cone

𝜎(Γ,𝑠,𝜅) ⊂ R
𝐸 (Γ)
≥0

defined by the equations

〈𝑠, 𝛾〉ℓ = 0
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for 𝛾 ∈ 𝐻1(Γ), and the additional condition: for any two vertices 𝑣, 𝑤 such that w comes later than v in
the ordering 𝜅, and an oriented path 𝑃𝑣→𝑤 from v to w, we keep the lengths ℓ = (ℓ𝑒)𝑒∈𝐸 (Γ) ⊂ R

𝐸 (Γ)
≥0 for

which additionally, ∑
	𝑒∈𝑃𝑣→𝑤

𝑠( 	𝑒)ℓ𝑒 ≥ 0.8

Equivalently, we can fix a minimal vertex 𝑣0 for 𝜅, and an oriented path 𝑃𝑣 from 𝑣0 to v for each v, and
keep the lengths ℓ such that ∑

	𝑒∈𝑃𝑣

𝑠( 	𝑒)ℓ𝑒 ≤
∑
	𝑒∈𝑃𝑤

𝑠( 	𝑒)ℓ𝑒

whenever 𝑣 ≤ 𝑤 in the ordering 𝜅 (the advantage of doing so is that one has to consider fewer paths:
one for each vertex v instead of one for each pair of vertices 𝑣, 𝑤). We glue these cones to a cone stack

Σ′Ord = lim
−−→
(Γ,𝑠,𝜅)

𝜎(Γ,𝑠,𝜅) .

Theorem 4.7. The cone stack Σ′Div represents the functor ΣDiv, the cone stack Σ′Ord represents ΣOrd and
the cone stack Σ′Rub represents ΣRub.
Proof. Let M be a monoid, with 𝑀∨ = 𝜎. An element ΣDiv(𝑀) is a tropical curve Γ metrized by M,
together with a piecewise linear function 𝛼 vanishing on the vertex containing the first leg. This data
defines a map

𝜎 → R𝐸 (Γ)
≥0

𝑥 → (ℓ𝑒 (𝑥))

and an underlying flow 𝑠𝛼 := 𝑠. But the flow is a twist, and so

〈𝑠, 𝛾〉 ∈ 𝑀gp

is 0. So the ℓ𝑒 (𝑥) map into 𝜎(Γ,𝑠) . Conversely, a map 𝑓 : 𝜎 → 𝜎(Γ,𝑠) defines a metric on Γ, by taking
ℓ𝑒 ∈ 𝑀 to be the composition

𝜎 𝜎(Γ,𝑠) R≥0
𝑓 pr𝑒

of f with the e-th projection. The acyclic flow s is a twist on Γ, since the lengths have been chosen so
that the equations 〈𝑠, 𝛾〉 = 0 are satisfied. The twist only lifts to a piecewise linear function on Γ up
to translation by an element of 𝑀gp, but it lifts uniquely if we assume that its value is 0 on the vertex
containing the first leg. This shows

ΣDiv � Σ′Div.

The proofs for Ord, Rub are similar, using the fact that the defining equations of the cones 𝜎(Γ,𝑠,𝜅) and
𝜎(Γ,𝑠,Γ′→Γ) are, according to remarks 3.9 and 3.14, precisely the conditions necessary for s to lift to a
totally ordered or equidimensional twist, respectively. �

There are evident maps ΣRub → ΣOrd → ΣDiv obtained by forgetting the additional structure at each
step.
Lemma 4.8. The map ΣOrd → ΣDiv is a subdivision. The map ΣRub → ΣOrd is a finite index inclusion.

8We note that the equations 〈𝑠, 𝛾〉ℓ = 0 imply that the condition does not depend on the choice of path 𝑃𝑣→𝑤 .
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Proof. We first look at ΣOrd → ΣDiv. It is clear that the map is a monomorphism, so it suffices to show
that the map is bijective on N points. Given a tropical curve Γ with integer lengths, and an 𝛼 : Γ → R,
the values of 𝛼 are elements of Z, and so automatically totally ordered.

For the map ΣRub → ΣOrd, it suffices to show that the map is bijective on Q≥0 points. We start with
an 𝛼 and an ordering 𝜅 of its values and build a tropical line X by taking one vertex 𝑣𝑖 for each distinct
value 𝛼(𝑣), with the ordering of 𝜅. We define an embedding 𝜄𝑋 : 𝑋 → R by

𝜄𝑋 (𝑣𝑖) = value of corresponding 𝛼(𝑣).

There is a map of topological spaces Γ→ 𝑋 , but it does not respect cell structures, as interior points of
edges of Γ map to vertices of X. We refine Γ to Γ′ obtained by subdividing along the preimages of the
vertices of X. This gives a stable equidimensional PL function on 𝛼. �

Remark 4.9. The argument in the proof essentially shows how the finite index inclusion inΣRub → ΣOrd
arises. When subdividing Γ to Γ′, the new points may have rational coordinates; for instance, if an edge
e from v to w has slope 𝑠(𝑒), and 𝛼(𝑢) is an intermediate value between 𝛼(𝑣) and 𝛼(𝑤), the function 𝛼
hits 𝛼(𝑢) at the point

𝛼(𝑢) − 𝛼(𝑣)

𝑠(𝑒)

of e, and thus e needs to be subdivided there. This point is in 𝑀
gp
Q

, but not necessarily in 𝑀gp.

Lemma 4.10. The cone stack ΣOrd is simplicial and the cone stack ΣRub is smooth.

Proof. It suffices to check that the cones 𝜎(Γ,𝑠,Γ′→𝑋 ) of ΣRub are isomorphic to N𝑘 for some k. But the
equations

𝑠( 	𝑒)ℓ𝑒 = ℓ 𝑓

for 	𝑒 mapping to 	𝑓 ∈ 𝐸 ( 	𝑋) show that the coordinates of the noncontracted edges in 𝐸 (Γ) are redundant,
and the cone is, in fact, isomorphic to

N𝐸 (𝑋 ) × N𝐸
𝑐 (Γ) ,

where 𝐸𝑐 (Γ) denotes the set of contracted edges of Γ. The fact that ΣOrd is simplicial follows from the
fact that its cones are isomorphic to those of ΣRub after tensoring with Q. �

In fact, more can be said. From the isomorphism of the real points of a cone in ΣOrd with R𝐸 (𝑋 )
≥0 ×

R
𝐸𝑐 (Γ)
≥0 , it follows that the rays (i.e., the one dimensional cones) in ΣOrd are precisely those that

parametrize maps 𝛼 consisting of

◦ Either a single contracted edge.
◦ Or, maps without contracted components to a target with exactly one edge.

In either case, the map 𝛼 automatically lifts to an equidimensional one. Thus, the sublattice structure of
ΣRub agrees with that of ΣOrd on rays. Since ΣOrd is simplicial, we obtain the following:

Corollary 4.11. Let 𝜎(Γ,𝑠,𝜅) be a cone in ΣOrd, and 𝜎(Γ,𝑠,Γ′→𝑋 ) the corresponding cone in ΣRub. The
lattice of 𝜎(Γ,𝑠,Γ′→𝑋 ) is the lattice freely generated by the primitive vectors along the rays of 𝜎(Γ,𝑠,𝜅) .

Proof. Since 𝜎(Γ,𝑠,Γ′→𝑋 ) is smooth (i.e., isomorphic to someN𝑘 ), its lattice must be the lattice generated
by the primitive vectors along its rays. Since those primitive vectors are the same as the primitive vectors
of ΣOrd, the conclusion follows. �

Thus, ΣOrd is in a certain sense a coarse moduli space of ΣRub: see, for example, [GM15, Subsection
3.2].
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4.12. Carving out small subcomplexes

The complexes ΣDiv,ΣRub,ΣOrd are very large: they are indexed by additional data over the category
of all graphs, which is itself notoriously large. When algebraizing, as we will in the next section, the
resulting schemes have infinitely many connected components and are highly nonseparated. Here, we
want to impose several increasingly stringent conditions that carve out subcomplexes which algebraize
to much more pleasant spaces.

First, we can, as usual, restrict our attention to genus g, n-marked graphs. We may then write

ΣDiv𝑛

which decomposes

ΣDiv =
∐
𝑛≥1

ΣDiv𝑛 .

Similar descriptions are available for the order and rubber versions.
Given an n-marked graph Γ, we can consider 𝑛+1-marked graphs Γ𝑐 , one for every cell c of Γ (vertex

or edge), obtained by attaching a leg 𝑙𝑛+1 on c when it is a vertex, and a bivalent vertex with a single leg
𝑙𝑛+1 on c when it is an edge. A map Γ𝑐 → Γ is obtained by deleting the latter vertex. There is a map

R
𝐸 (Γ𝑐)
≥0 → R

𝐸 (Γ)
≥0

which is an isomorphism when 𝑐 = 𝑣 is a vertex, and which is the fiber product

R
𝐸 (Γ𝑐)
≥0 R2

≥0

R
𝐸 (Γ)
≥0 R≥0

+

ℓ𝑒

when e is an edge. Given a piecewise linear function 𝛼 on Γ, with underlying flow 𝑠 = 𝑠𝛼, it lifts
canonically to a piecewise linear function on Γ𝑐 by not changing the slopes if e has been subdivided.
The union of the cones

𝜎(Γ,𝑠,𝑛+1) ⊂ ΣDiv𝑛+1

forms a subcomplex with a forgetful map to 𝜎(Γ,𝑠,𝑛) .

Lemma 4.13. The universal family of ΣDiv𝑛 restricts to

lim
−−→

𝑐∈𝑉 (Γ)∪𝐸 (Γ)

𝜎(Γ𝑐 ,𝑠,𝑛+1)

over 𝜎(Γ,𝑠,𝑛) .

Proof. Let C → ΣDiv𝑛 be the universal family, and 𝜎 a cone. A map 𝜎 → C is a map 𝜎 → ΣDiv𝑛 ,
together with a section of

C ×ΣDiv𝑛 𝜎 → 𝜎.

In other words, it consists of a tropical curve Γ metrized by 𝑀 = 𝜎∨, a piecewise linear function 𝛼 and
a section of Γ. The section is a point of Γ, which is either a vertex or lies on an edge. Sections that land
in e are in bijection with subdivisions Γ′ of Γ whose underlying graph is Γ𝑒, and are thus parametrized
by the choice of lengths of the two pieces of e determined by the section. Since 𝛼 lifts canonically to Γ′
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by not altering the slopes, the triples (Γ, 𝛼, section through 𝑒) are in bijection with maps

𝜎 → 𝜎(Γ𝑒 ,𝑠,𝑛+1)

as claimed. �

The analogous result does not hold for ΣOrd. The reason is that an ordering 𝜅 does not lift canonically
to an ordering on the universal curve. All that can be said is that the universal curve of ΣOrd is the
pullback of the universal curve of ΣDiv.

The result is also false for ΣRub, but a curious intermediate statement can be obtained. Points of ΣRub
have more structure, contained in the map Γ′ → 𝑋 . Suppose 𝜅 is the induced ordering. The section of
the universal curve in particular factors through some cell Γ′𝑐 of Γ′ now, and thus the ordering 𝜅 lifts
canonically to Γ′𝑐: points in any cell of Γ′ are in a unique order relative to 𝛼. It follows that the universal
curve of ΣRub𝑛 factors through ΣOrd𝑛+1 → ΣDiv𝑛+1 . However, it does not necessarily factor through
ΣRub𝑛+1 . The reason is that while 𝛼 and the total ordering lift canonically to Γ′𝑐 , the equidimensional lift

Γ′ → 𝑋

does not. The induced map

Γ′𝑐 → 𝑋

is no longer equidimensional. Further subdivision of X and consequently of Γ′𝑐 is required, which may
require extracting additional roots, as in 4.9. Nevertheless, the argument suffices to show the following:
Lemma 4.14. The universal family of ΣRub is simplicial.
Remark 4.15. To get a smooth universal family, one can work instead with an alternative stack ΣAF9

parametrizing (a strenghtening of) equidimensional maps on orbifold tropical curves. We do not intro-
duce this here as ΣRub is good enough for our purposes.

We now continue our carving mission much more aggressively. As usual, we can fix the genus g of
the graph, along with its n markings. This way, we obtain substacks

Σ?𝑔,𝑛 .

Next, we fix a universal stability condition 𝜃 [KP19]. This means a stability condition for the universal
family Ctrop

𝑔,𝑛 →Mtrop
𝑔,𝑛 of stable tropical curves: a numerical stability condition in the sense of Subsection

2.15 for each stable graph Γ of genus g with n legs, which are compatible with respect to all contractions
of edges and automorphisms. We restrict to stable graphs here for simplicity but, in fact, a similar
procedure even works for the cone stack of all genus g, n-marked tropical curves 𝔐trop

𝑔,𝑛 .
Let A be the divisor of example 2.2.1 associated to a vector (𝑎1, · · · , 𝑎𝑛) ∈ Z

𝑛, 𝑘 ∈ Z, which is
compatible with contractions according to example 2.21.1.

We write ΣDiv𝜃
𝑔,𝐴

for the subcomplex of ΣDiv𝑔,𝑛 consisting of the cones 𝜎(Γ,𝑠) such that the graph Γ is
quasi-stable, and 𝐷 = 𝐴−div(𝑠) is 𝜃-stable. In other words, (Γ, 𝑠) is a 𝜃-flow relative to the stabilization
Γst. We write

ΣOrd𝜃
𝑔,𝐴

for the subcomplex consisting of (Γ, 𝑠, 𝜅) with Γ quasi-stable and 𝐷 = 𝐴 − div(𝑠) 𝜃-stable, and

ΣRub𝜃
𝑔,𝐴

for the subcomplex consisting of (Γ, 𝑠, Γ′ → 𝑋) with Γ quasi-stable, 𝐷 = 𝐴 − div(𝑠) 𝜃-stable and
Γ′ → 𝑋 a stable equidimensional lift. In other words, (Γ, 𝑠, Γ′ → 𝑋) is a 𝜃-stable equidimensional flow
relative to the stable graph Γst.

9The acronym stands for ‘Abramovich-Fantechi’.
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Figure 1. Above, a point of ΣOrd, representing a piecewise linear function 𝛼 with 𝛼(𝑣) < 𝛼(𝑢) < 𝛼(𝑤),
and a lift to its universal family. The relation between 𝛼(𝑢) and 𝛼(𝑣𝑛+1) on the universal family is
undetermined. Below, an analogous point of ΣRub. Here, the relation 𝛼(𝑣𝑛+1) < 𝛼(𝑢) = 𝛼(𝑢′) is forced.

Lemma 4.16. The preimage of ΣDiv𝜃
𝑔,𝐴

in ΣOrd𝑔,𝑛 is ΣOrd𝜃
𝑔,𝐴

, and the preimage of ΣOrd𝜃
𝑔,𝐴

in ΣRub𝑔,𝑛 is
ΣRub𝜃

𝑔,𝐴
.

Proof. The proof is immediate from the definition of the morphisms. �

The space ΣDiv𝜃
𝑔,𝐴

has a stabilization map to Mtrop
𝑔,𝑛 . It is shown in theorem [HMP+22, Theorem

23] that for nondegenerate 𝜃, this map factors isomorphically through a subdivision. We then get the
following:

Corollary 4.17. Let 𝜃 be a nondegenerate stability condition. The map

ΣRub𝜃
𝑔,𝐴
→Mtrop

𝑔,𝑛

factors isomorphically through the composition of a subdivision and a finite index sublattice inclusion.

5. Algebraizing and Globalizing

5.1. Tropicalization and tropical operations

In this paper, we use the language of logarithmic geometry as our main means to access algebro-geometric
problems via combinatorial tools. We rapidly lay out our conventions. For a thorough treatment of
logarithmic geometry, we refer the interested reader to [Kat89] and [Ogu18]. For a shallower treatment
more adapted to our needs here, we refer to [HMP+22, MR21].

A log scheme (or log DM stack) is a pair (𝑆, 𝑀𝑆) consisting of a scheme (or DM stack) S with a log
structure 𝑀𝑆 (i.e., a sheaf of monoids on the étale site of S with a homomorphism of monoids)

𝜖 : 𝑀𝑆 → O𝑆

to the structure sheaf of S with its multiplicative monoid structure, such that 𝜖−1(O∗𝑆) � O∗𝑆 . As is
common, we drop 𝑀𝑆 from the notation; however, when speaking about a log scheme S, it it to be
understood that a log structure 𝑀𝑆 is present.
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The quotient

𝑀𝑆 := 𝑀𝑆/O∗𝑆

is a constructible sheaf on S, called the characteristic monoid. The characteristic monoid stratifies S;
the strata are the connected components of the loci of S on which 𝑀𝑆 is locally constant. As with
our conventions on monoids, we will assume throughout that 𝑀𝑆 is a sheaf of finitely generated and
saturated monoids.

The main example to keep in mind is a normal crossings pair – a smooth S with a normal crossings
divisor D. This defines a log structure by setting, for an étale map 𝑖 : 𝑈 → 𝑆,

𝑀𝑆 (𝑖 : 𝑈 → 𝑆) = { 𝑓 ∈ O𝑈 : 𝑓 |𝑖−1 (𝑆−𝐷) ∈ O∗𝑈 (𝑖−1 (𝑆 − 𝐷))}.

The characteristic monoid 𝑀𝑆 is, in that case, at a point x of the étale site of S, equal to

𝑀𝑆,𝑥 = N𝑘 ,

where k is the number of distinct (in any sufficiently small étale neighborhood) branches of D that
contain x.

The important point for us is that any cone stack, as in Section 4, can be given a functor of points in
the category of log schemes: for a cone stack Σ, one obtains a prestack

Σ→ LogSch

by defining

𝑇 → Σ� Hom(𝑀𝑇 (𝑇)
∨,Σ).

The associated stack is representable by an algebraic stack with logarithmic structure, referred to as
an Artin fan. Instead of introducing Artin fans here, we will simply understand morphisms from a log
scheme to Σ to mean maps to the associated stack.

Definition 5.2. Let S be a log DM stack. A tropicalization for S is a cone stack Σ𝑆 with a map 𝑆 → Σ𝑆
which is strict (i.e., induces an isomorphism on log structures) and has connected fibers.

In particular, under our definition, a tropicalization for S is not unique. For any log smooth DM stack S
locally of finite type (for example, a normal crossings pair), one can construct a canonical tropicalization
Σ𝑆 of S as follows. When S is sufficiently small – the technical term is atomic, meaning that S has a
unique closed stratum and the restriction map 𝑀𝑆 (𝑆) → 𝑀𝑆,𝑥 is an isomorpism for any x in the closed
stratum – it is easy to check that the rational polyhedral cone Σ𝑆 = 𝑀𝑆 (𝑆)

∨ is a tropicalization. In
general, we can find an étale cover U of S by atomic log schemes, and an étale cover V of 𝑈 ×𝑆 𝑈 by
atomic log schemes. Then, the coequalizer

Σ𝑉 Σ𝑈 Σ𝑆
:=

considered as the cone stack associated to a colimit as in Section 4 is a tropicalization of S. It is
straightforward to check that the composed map 𝑈 → Σ𝑈 → Σ𝑆 descends to a map 𝑆 → Σ𝑆 .

Example 5.2.1. Let M𝑔,𝑛 be the moduli space of genus g, n-marked stable curves. The divisor of
singular curves is a normal crossings divisor and so endows M𝑔,𝑛 with a logarithmic structure. A
tropicalization for M𝑔,𝑛 is Mtrop

𝑔,𝑛 .

Let S be a log DM stack with a tropicalization 𝑆 → Σ𝑆 . Then, any map Σ→ Σ𝑆 induces a map

𝑆 ×Σ𝑆 Σ→ 𝑆.
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The fiber product 𝑆×Σ𝑆 Σ is then an algebraic stack over S, and the map 𝑆×Σ𝑆 Σ→ Σ is a tropicalization
of 𝑆 ×Σ𝑆 Σ. The importance of this observation for us is that, in this fashion, one can lift combinatorial
operations one performs on Σ𝑆 to algebraic operations on S; often, they have clear geometric meaning.
The ones we have encountered in Section 4 are:
◦ Subdivisions Σ→ Σ𝑆 . These lift to log modifications 𝑆 = 𝑆×Σ𝑆 Σ→ 𝑆, which are proper, birational,

surjective representable maps.
◦ Roots Σ′𝑆 → Σ𝑆 , which are maps that replace the integral structure of Σ𝑆 with an integral structure

coming from a finite index sublattice. These correspond to root stacks of S algebraically, which
are proper, birational, nonrepresentable maps 𝑆′ → 𝑆, which are bijective on geometric points – a
generalization of roots along divisors of S. Details can be found in [BV12] and [GM15].

◦ Inclusion of a subcomplex Σ ⊂ Σ𝑆 . These lift to open inclusions 𝑉 ⊂ 𝑆.
The three operations above are, furthermore, logarithmically étale and monomorphisms in the category
of log schemes!

5.3. Logarithmic curves

Let 𝐶 → 𝑆 be a logarithmic curve (see [CCUW20, Section 7]). Applying the tropicalization construction
of the previous subsection yields a map of cone stacks

Σ𝐶 → Σ𝑆 .

Pulling back to S and unwinding the definitions, one arrives at the data of a family of tropical curves10

over the scheme S, referred to as the tropicalization of 𝐶 → 𝑆 in the literature:
◦ For each point 𝑥 ∈ 𝑆, an underlying graph Γ𝑥 : the dual graph of 𝐶𝑥 .
◦ A tropical curve structure on Γ𝑥 metrized by 𝑀𝑆,𝑥 : for each edge 𝑒 ∈ 𝐸 (Γ𝑥), a length ℓ𝑒 ∈ 𝑀𝑆,𝑥 . The

length ℓ𝑒 is the ‘smoothing parameter’ of the corresponding node q in 𝐶𝑥 : there is a unique element
ℓ𝑒 in 𝑀𝑆,𝑥 such that

𝑀𝐶,𝑞 � 𝑀𝑆,𝑥 ⊕N N
2

under the map N→ 𝑀𝑆,𝑥 sending 1→ ℓ𝑒, and the diagonal N→ N2.
◦ Compatibility with étale specializations: for each étale specialization 𝜁 : 𝑦� 𝑥, a map 𝑓𝜁 : Γ𝑥 → Γ𝑦

compatible with the induced map 𝑀𝑆,𝑥 → 𝑀𝑆,𝑦 .
The geometric notions on tropical curves discussed in the previous section globalize to logarithmic

curves. The globalization works the same way for all concepts, by working fiber by fiber and demanding
compatibility with étale specializations: a notion A on a tropical curve globalizes to the analogous
notion on a logarithmic curve as a system of 𝐴𝑥 on Γ𝑥/𝑀𝑆,𝑥 for each 𝑥 ∈ 𝑆, compatible with étale
specializations. For example, a piecewise linear function on 𝐶 → 𝑆 is a collection of piecewise linear
functions

𝛼𝑥 ∈ PL(Γ𝑥)

which are compatible with the maps Γ𝑥 → Γ𝑦 for each étale specialization 𝑦 � 𝑥. It is ordered,
equidimensional, stable, etc. if all 𝛼𝑥 are. For divisors, we use the term tropical divisor to avoid
confusion with the traditional algebro-geometric notion. Thus, a tropical divisor on 𝐶/𝑆 is a collection
of divisors on each Γ𝑥 compatible with the contractions that arise from étale specializations.
Example 5.3.1. Let 𝐶 → 𝑆 be a logarithmic curve with n markings 𝑥1, · · · , 𝑥𝑛, and let (𝑎1, · · · , 𝑎𝑛) be
a vector of integers (for instance, one adding up to −𝑘 (2𝑔 − 2 + 𝑛)). The multidegree of 𝜔

log
𝐶/𝑆
(
∑

𝑎𝑖𝑥𝑖)

10Unwinding the definition is not necessarily simple; we advise the reader with not much experience working with cone
complexes to take the following set of data as the definition of the tropicalization for 𝐶 → 𝑆.
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defines a tropical divisor on 𝐶/𝑆: for each 𝑥 ∈ 𝑆, it is the divisor on Γ𝑥/𝑀𝑆,𝑥 given by

𝐴 =
∑

𝑣 ∈𝑉 (Γ𝑥 )

𝑘 deg 𝜔
log
𝐶𝑥
(𝑣) +

∑
𝑎𝑖𝑣𝑖

for 𝑣𝑖 the vertex containing the marking 𝑥𝑖 , and where deg 𝜔
log
𝐶𝑥
(𝑣) is the degree of 𝜔

log
𝐶𝑥

on the component
of 𝐶𝑥 corresponding to v. The divisor A is then precisely the divisor of example 2.2.1 and so is compatible
with étale specializations by example 2.21.1. We warn the reader that our terminology here clashes with
that of the introduction: the tropical divisor A does require the vector of integers (𝑎1, · · · , 𝑎𝑛) as input
but encodes more information.

Subdivisions deserve a special mention. A subdivision of the tropicalization of 𝐶 → 𝑆 is a subdivision
of the fibers Γ𝑥/𝑀𝑆,𝑥 compatible with étale specializations. These subdivisions certainly give rise to
logarithmic modifications 𝐶 ′ → 𝐶. However, the log modifications that arise this way are special, as
the induced map 𝐶 ′ → 𝑆 remains a logarithmic curve.

Definition 5.4. We call a log modification 𝐶 ′ → 𝐶 that arises from a subdivision of the tropicalization
a subdivision of 𝐶 → 𝑆.

6. Algebraic Moduli

In this section, we will assume that all our curves come with at least one marking. This is analogous
to the assumption in Section 4 that graphs have a leg and can be avoided. But nevertheless, we require
it in order to simplify the presentation, as in our applications a marking is always present. We follow
[MW20] and define the following:

Definition 6.1. The stack Div on LogSch parametrizing over S pairs (𝐶 → 𝑆, 𝛼), consisting of

◦ A logarithmic curve 𝐶 → 𝑆.
◦ A piecewise linear function 𝛼 on C, which is 0 on the component containing the first marking.

Automorphisms are automorphisms of 𝜓 : 𝐶 → 𝐶 fixing the underlying scheme of S, such that the
induced automorphism 𝜓 on the tropicalization of C respects 𝛼: 𝜓 ◦ 𝛼 = 𝛼.

Definition 6.2. The stack Ord parametrizing pairs (𝐶 → 𝑆, 𝛼) of

◦ A log curve 𝐶 → 𝑆.
◦ A piecewise linear function on C whose values are totally ordered and which is 0 on the component

containing the first marking.

Definition 6.3. The stack Rub parametrizing pairs (𝐶 → 𝑆, 𝛼, 𝐶 ′ → 𝑋) of

◦ A log curve 𝐶 → 𝑆.
◦ A piecewise linear function 𝛼 on C which is 0 on the component containing the first marking.
◦ A subdivision 𝐶 ′ → 𝐶 with a stable lift of 𝛼 to an equidimensional map

𝐶 ′ → 𝑋.

Automorphisms are defined as for Div.

Remark 6.4. The assumption that curves 𝐶 → 𝑆 carry a marking is put precisely in order to rigidify
the stacks. We note, however, that in the case of Rub, there is a canonical rigidification which does not
depend on the presence of markings: the values of the function 𝛼 are totally ordered, so we can always
demand that 𝛼 is 0 on the minimal value.

There are evident forgetful maps Rub→ Ord→ Div, and forgetful-stabilization morphisms Div→
M𝑔,𝑛. We note here that we are potentially in an uncomfortable situation; in Section 4, we introduced
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cone stacks ΣDiv, ΣOrd,ΣRub, whereas we should have reserved the notation for tropicalizations of
Div, Rub, Ord. However, we have the following:

Theorem 6.5. We have

Div = M𝑔,𝑛 ×Mtrop
𝑔,𝑛

ΣDiv.

Thus, Div→ ΣDiv is a tropicalization for Div. Analogous statements hold for Ord, Rub.

Proof. We construct a map Div → ΣDiv. Let S be a log scheme; we must construct a map Div(𝑆) →
ΣDiv (𝑆), which amounts to constructing a map locally around each 𝑥 ∈ 𝑆, compatibly with any étale
specialization 𝜁 : 𝑦 � 𝑥. So we may replace S with a sufficiently small neighborhood of x. Then, we
can assume that x is in the closed stratum of S and that 𝑀𝑆,𝑥 = 𝑀𝑆 (𝑆). Furthermore, 𝑀𝑆,𝑦 is a quotient
of 𝑀𝑆,𝑥 by a face. Let (𝐶 → 𝑆, 𝛼) be an element of Div(𝑆).

We write Γ𝑥 for the dual graph of 𝐶𝑥 , and Γ𝑦 for the dual graph of 𝐶𝑦 . These have the structure
of tropical curves metrized by 𝑀𝑆,𝑥 and 𝑀𝑆,𝑦 , respectively. Furthermore, they carry piecewise linear
functions 𝛼𝑥 , 𝛼𝑦 .

The map 𝑀𝑆,𝑥 → 𝑀𝑆,𝑦 canonically induces a tropical curve Γ𝑥 metrized by 𝑀𝑆,𝑦 , by contracting
edges whose length is 0 in 𝑀𝑆,𝑦 , and a piecewise linear function 𝛼𝑥 . We thus get two maps 𝑀𝑆,𝑦 → ΣDiv,
corresponding to (Γ𝑥 , 𝛼𝑥) and (Γ𝑦 , 𝛼𝑦).

The specialization 𝜁 induces a map Γ𝑥 → Γ𝑦 , which, by definition of a piecewise linear function
on C, takes 𝛼𝑥 to 𝛼𝑦 . This is precisely an isomorphism in ΣDiv, and so the map is compatible with
specializations. Thus, we get the desired map Div→ ΣDiv, and as a result, a map

Div→M𝑔,𝑛 ×Mtrop
𝑔,𝑛

ΣDiv.

However, an element of the fiber product is a log curve 𝐶 → 𝑆, together with a piecewise linear function
on its tropicalization; and so the map Div →M𝑔,𝑛 ×Mtrop

𝑔,𝑛
ΣDiv is essentially surjective. Let S be the

spectrum of an algebraically closed field, 𝐶 → 𝑆 a log curve, and Γ its tropicalization, metrized by
𝑀 = 𝑀𝑆 (𝑆). The automorphism groups

Aut(M𝑔,𝑛 ×Mtrop
𝑔,𝑛

ΣDiv) (𝑆)

in the fiber product consist of pairs of an automorphism 𝜙 : Γ → Γ with 𝜙 ◦ 𝛼 = 𝛼, together with an
automorphism 𝜓 of C inducing 𝜙 (i.e., automorphisms 𝜓 of C with 𝜓 ◦ 𝛼 = 𝛼). These are exactly the
automorphisms of Div.

The statements for Ord, Rub are proved precisely the same way. �

Thus, Div, Ord, Rub are obtained from M𝑔,𝑛 by pulling back maps of cone stacks. Furthermore, the
resulting maps Rub → Ord → Div are either subdivisions or roots. As corollaries, we obtain several
theorems by combining the tropical results of Section 4 with the algebraization discussion of Section 5.

Theorem 6.6 ([MW20, Corollary 5.3.5]). The maps Rub → Ord → Div are proper, log étale,
birational log monomorphisms.

Theorem 6.7. The stack Rub is nonsingular and its universal curve is quasi-smooth.

Theorem 6.8. The map Rub→M𝑔,𝑛 is of Deligne-Mumford type. The map Rub→ Ord is a relative
coarse moduli space over M𝑔,𝑛.

Proof. This follows from corollary 4.11 and [GM15, Proposition 3.2.6] by observing that the cones in
ΣOrd, ΣRub provide local charts for Ord, Rub. �

Furthermore, if we fix a universal stability condition 𝜃, 𝑘 ∈ Z, and a vector of integers (𝑎1, · · · , 𝑎𝑛)
with

∑
𝑎𝑖 = −𝑘 (2𝑔 − 2 + 𝑛), and let A be the divisor of example 5.3.1, we obtain:
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Lemma 6.9. The stacks Div𝜃𝑔,𝐴, Ord𝜃𝑔,𝐴, Rub𝜃𝑔,𝐴 are open substacks of Div, Ord, Rub.

However, we can restrict the natural map Div𝑔,𝑛 → M𝑔,𝑛 to Div𝜃𝑔,𝐴, and also the composition
Rub𝜃

𝑔,𝐴→ Div𝜃𝑔,𝐴.
For the sake of completeness, we spell out the functor of points of Div𝜃𝑔,𝐴 and Rub𝜃

𝑔,𝐴. It is simpler
to do so in the category LogSch. For a log scheme S, the S points of Div𝜃𝑔,𝐴 consist of

◦ A quasi-stable log curve 𝐶 → 𝑆.
◦ A piecewise linear function 𝛼, vanishing along the first marking, such that

𝐴 − div(𝛼) = 𝐷

is 𝜃-stable.

The S-points of Rub𝜃
𝑔,𝐴 are, in addition to the above,

◦ A subdivision 𝐶 ′ → 𝐶 over S, a tropical target 𝑋 → 𝑆 and an equidimensional map

𝐶 ′ → 𝑋

This data is required to be stable (i.e., 𝐶 ′, 𝑋 are minimal with this property).

We can restrict the map Div𝑔,𝑛 →M𝑔,𝑛 to its open substack Div𝜃𝑔,𝐴. The content of 4.17 and the
discussion preceeding it is then that the restriction Div𝜃𝑔,𝐴 →M𝑔,𝑛 factors isomorphically through a

log modification M𝜃

𝑔,𝐴 →M𝑔,𝑛; and the restriction of Rub𝑔,𝑛 →M𝑔,𝑛 to Rub𝜃
𝑔,𝐴 factors through a

log modification followed by a root M̃𝜃
𝑔,𝐴→M𝑔,𝑛. We summarize as follows:

Theorem 6.10. The stack M̃𝜃
𝑔,𝐴 is nonsingular. If 𝜃 is nondegenerate, the map M̃𝜃

𝑔,𝐴 → M𝑔,𝑛 is
proper, birational and of DM-type. The universal curve C → M̃𝜃

𝑔,𝐴 is quasi-smooth and carries a
universal line bundle

L = (𝜔log)⊗𝑘 (
∑

𝑎𝑖𝑥𝑖) ⊗ O(𝛼)

which is 𝜃-stable.

The line bundle L, in particular, gives an Abel-Jacobi section

M̃𝜃
𝑔,𝐴→ Pic𝜃

and can be used to compute the DR cycle: when 𝜃 is small and nondegenerate, the ‘universal DR
formula’ of [BHP+20] applies, as in [HMP+22, Theorem A].

Remark 6.11. One can use the Abel-Jacobi section

M𝜃

𝑔,𝐴→ Pic𝜃

to pull back the universal Jacobian Jac of multidegree 0 line bundles. The resulting space

M𝜃

𝑔,𝑛 ×Pic𝜃 Jac

is the space 𝑀� of [Hol21]. Its pullback to M̃𝜃
𝑔,𝐴 is a desingularization, denoted by tDR in [MR21].

Pulling back further, replacing Jac with its 0 section 0 gives

DRL = M𝜃

𝑔,𝐴 ×Pic𝜃 0.
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This is a compact locus which supports the cycle DR𝑘
𝑔,𝐴. When 𝑘 = 0, the further pullback

M̃𝜃
𝑔,𝐴 ×Pic𝜃 0

can be identified with the rubber version of Bumsig Kim’s space of log stable maps to expansions of P1.
In fact, the tropical targets X are the cone stacks associated to expansions. But notice that in the definition
of Rub, we demand that curves map to tropical targets and not expansions. It is precisely the point that
there a lot more maps to tropical targets than algebraic ones, and it is in this space that we carve out the
smooth spaces M̃𝜃

𝑔,𝐴. The space of maps to algebraic targets is of much smaller dimension.

7. Algorithms

Let 𝜃 be a non-degenerate stability condition, and A a divisor on the universal family of Mtrop
𝑔,𝑛 . We

explain how to construct the cone stack of M̃𝜃
𝑔,𝐴 from that of M𝑔,𝑛 algorithmically. The algorithm first

constructsM𝜃

𝑔,𝐴, precisely as in [HMP+22]. It then finds the cones inM̃𝜃
𝑔,𝐴 by unpacking the discussion

of 4. It suffices to work cone by cone in Mtrop
𝑔,𝑛 . We thus fix a stable graph Γ of type 𝑔, 𝑛. We will write

ΣΓ for the cone corresponding to Γ in M𝑔,𝑛, Σ𝜃
Γ for the cone in M𝜃

𝑔,𝐴, and Σ̃𝜃
Γ for the cone in M̃𝜃

𝑔,𝐴.

Algorithm:
1. List all acyclic flows s on quasi-stable models of Γ (without length assignments) with divisor

div(𝑠) = 𝐴 − 𝐷. There is a finite number of possible such flows.
2. For each such flow, find the 𝑥 ∈ ΣΓ such that 〈𝑠, 𝛾〉𝑥 = 0 for any 𝛾 ∈ 𝐻1(Γ). The collection of such x

for a specific flow is a cone of Σ𝜃
Γ . In other words, Σ𝜃

Γ is the subdivision of ΣΓ into the cones where
the various acyclic flows lift to actual twists.

3. Over a cone of Σ𝜃
Γ corresponding to (Γ′, 𝛼), list all possible orderings 𝜅 extending 𝛼. Equivalently,

lift the data Γ′, 𝛼 to stable equidimensional lifts Γ′′ → 𝑋 of 𝛼. There is, again, only a finite number
of such data.

4. Find the vectors 𝑥 ∈ Σ𝜃
Γ that realize a given order 𝜅. This means orienting the edges according to 𝜅

this total order,11 choosing a minimal vertex v, and an oriented path 𝑃𝑣→𝑤 for every 𝑤 ∈ 𝑉 (Γ′); for
all given inequalities 𝛼(𝑤) < 𝛼(𝑢) in the given order, find x such that∑

	𝑒∈𝑃𝑣→𝑤

𝑠( 	𝑒)ℓ𝑒 ≤
∑
	𝑒∈𝑃𝑣→𝑢

𝑠( 	𝑒)ℓ𝑒 .

This determines the cones 𝜎 ∈ Σ̃𝜃
Γ .

5. For each cone 𝜎 in Σ̃Γ
𝜃 , take a generating set for 𝜎 ∩ 𝑁Σ𝜃

Γ
. For x in this generating set, find the

minimal integral multiple 𝑘𝑥 of x for which the quantities

𝛼(𝑢) − 𝛼(𝑣)

𝑠( 𝑓 )
,
𝛼(𝑤) − 𝛼(𝑣)

𝑠( 𝑓 )

are integers when evaluated on 𝑘𝑥, where v ranges through all vertices of Γ′, w is any vertex with
𝛼(𝑤) the value consecutive to 𝛼(𝑣) and f is any edge oriented away from v with other endpoint u.
The sublattice generated by the 𝑘𝑥 is the integral structure of Σ̃𝜃

Γ .
Alternatively, the integral structure can be determined as the sublattice

⊕𝜌∈𝜎 (1)N𝑥𝜌 ⊂ N
𝐸 (Γ)

generated by the primitive vectors 𝑥𝜌 along the one dimensional faces 𝜌 of 𝜎.

11Contracted edges do not contribute and can be ignored here.
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Remark 7.1. Steps 2 and 4 are the hardest steps to carry out, as they involve solving a collection of
linear inequalities. However, as is explained in [HMP+22], the difficulty of step 2 is deceptive. In fact,
it suffices to solve the equations 〈𝑠, 𝛾〉𝑥 = 0 only for acyclic flows s supported on Γ rather than a quasi-
stable model. The system of inequalities then simplifies significantly, as it reduces to a linear system of
equalities. These flows determine the minimal cones of Σ𝜃

Γ , and all other cones are determined by how
twists specialize (i.e., via the combinatorics of specializations rather than the tropical geometry). The
same is true for step 4: it suffices to solve the inequalities for total orders with the fewest possible strict
inequalities. The other cones are determined by specializations. Thus, tropical geometry only enters to
determine the shallowest strata. Afterwards, combinatorics takes over.

8. Example

We present an example of the construction. We use the ramification vector 𝐴 = (−4, 3, 1) on M1,3,
and work out the subdivision of the cone R3

≥0 = 〈ℓ1, ℓ2, ℓ3〉 corresponding to the triangular graph Γ that
consists of three vertices 𝑣1, 𝑣2, 𝑣3 with three edges 𝑒1, 𝑒2, 𝑒3 between them, depicted below:

−4 1

3

𝑒1

𝑒2 𝑒3

We choose a small perturbation of 𝜃 = 0 which is negative on the component containing the first marking
and positive on the others. The acyclic flows balancing 𝐴 − 𝐷, as D ranges through 𝜃-stable divisors on
Γ are then given in the following list (with slopes depicted in red):

𝐷 = (0, 0, 0) :

−4 1

3

2

12

−4 1

3

1

03

−4 1

3

3

21

𝐷 = (−1, 1, 0) :

−3 1

2

2

11

−3 1

2

1

02

𝐷 = (−1, 0, 1) :

−3 0

3

2

21

−3 0

3

1

12
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The seven flows above contribute seven codimension 𝑔 = 1 cells in the subdivision 𝑆𝜃 of R3
≥0. For

example, the first listed flow contributes the wall

ℓ1 = 3ℓ2.

In general, to complete the subdivision, it is necessary to consider all 𝜃-semistable divisors D on quasi-
stable models of Γ as well. There are eight such flows, but in this case, we do not need to list them; since
𝑔 = 1, the 7 codimension 1 walls in fact determine the subdivision.12 The desired subdivision looks as
follows (we present the induced subdivision of the triangle obtained by cutting R3

≥0 with the hyperplane
ℓ1 + ℓ2 + ℓ3 = 1):

The shaded (slice of the) cone is special in Σ𝜃
Γ , as it is not simplicial. It is the region corresponding

to the twist

−3 1

3

−1
1

2

2

1

The cone is subdivided further in Σ̃𝜃
Γ , according to whether the piecewise linear function 𝛼 is greater on

the exceptional vertex u, or the vertex 𝑣2. This corresponds to the three ways to make 𝛼 equidimensional,
namely13

𝑣1 𝑣2

𝑣3

𝑢

1

2

2

1

Γ′′

𝛼(𝑣1)

𝑋

𝛼(𝑣3)

𝛼(𝑣2)

𝛼(𝑢)

12This property is unique to 𝑔 = 1. See [HMP+22, Section 4.3] for a higher genus example.
13We have replaced the degree of div(𝛼) with the name of the vertex for display purposes.
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or

𝑣1 𝑣2

𝑣3

𝑢

1

2

2

1

Γ′′

𝛼(𝑣1)

𝑋

𝛼(𝑣3)

𝛼(𝑣2)

𝛼(𝑢)

or, the degenerate case (note that no subdivision of Γ′ is required here)

𝑣1 𝑣2

𝑣3

𝑢

1

2

2

1

Γ′

𝛼(𝑣1)

𝑋

𝛼(𝑣3)

𝛼(𝑣2) = 𝛼(𝑢)

More concretely, if the edge 𝑒2 has been subdivided as ℓ′2 + ℓ′′2 , with ℓ′2 the length of the edge
connecting 𝑣1 to the exceptional vertex, the cone is subdivided along the hyperplane

ℓ′2 = 2ℓ1.

This yields the simplicial subdivision

Next, we determine the integral structure of the two maximal cones. In fact, the one corresponding
to the second equidimensional twist has the induced integral structure, so we describe it only for the
first twist
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𝑣1 𝑣2

𝑣3

𝑢

1

2

2

1

Γ′′

𝛼(𝑣1)

𝑋

𝛼(𝑣3)

𝛼(𝑣2)

𝛼(𝑢)

The three rays of the corresponding cone are obtained by specializing the values
𝛼(𝑣1), 𝛼(𝑢), 𝛼(𝑣2), 𝛼(𝑣3) so that only two of them are distinct. There are thus three ways to do so,
respecting the given total order 𝛼(𝑣1) ≤ 𝛼(𝑢) ≤ 𝛼(𝑣2) ≤ 𝛼(𝑣3):

𝛼(𝑣1) = 𝛼(𝑢) = 𝛼(𝑣2) < 𝛼(𝑣3)

𝛼(𝑣1) < 𝛼(𝑢) = 𝛼(𝑣2) = 𝛼(𝑣3)

𝛼(𝑣1) = 𝛼(𝑢) < 𝛼(𝑣2) = 𝛼(𝑣3)

The first of these is the specialization

𝑣3

𝑣1

𝛼(𝑣3)

𝛼(𝑣1) = 𝛼(𝑢) = 𝛼(𝑣2)

12

Here, the subdivision demanded that

ℓ2 = ℓ′2 + ℓ′′2

and

ℓ′2 ≤ 2ℓ1.

Since ℓ1 is contracted, this leads to the relation

ℓ2 = ℓ′′2

where the slope of 𝛼 is 2, and so to the equation

2ℓ2 = ℓ3.

Thus, the specialization is the ray through the point

(0, 1, 2).
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The other specializations are obtained similiarily, leading to the points (1, 2, 0), (1, 1, 0). The integral
structure of the cone is then

N(0, 1, 2) ⊕ N(1, 2, 0) ⊕ N(1, 1, 0) ⊂ N3.

Its index is computed as the determinant of the three vectors, and is found to be 2.
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